
A Metamodel Speci�cation Tool Based on Description

Logic and XML-DATA

Christophe Nicolle �

Abstract

Interoperation of heterogeneous and autonomous information systems has tradition-

ally been hampered by semantic di�erences in their data models. With the World Wide

Web, the development of cooperative information systems requires new solution to al-

low interoperation. In this paper, we address the problem by de�ning a methodology

to help in the building of cooperative information systems. This metho-dology called

X-TIME is based on a case-tool that allows to de�ne automatically speci�c transla-

tors between coupled of heterogeneous data models composing the cooperation. This

solution allows the dynamic extension of the cooperation to new heterogeneous informa-

tion systems with a minimum work. It is best suited for World Wide Web environment

where the number of heterogeneous databases that want to exchange data is very large.

Keywords : Cooperation, extensibility, metamodel, translators, description logic, xml-

data

1 Introduction

The multiplication of information sources and the wild development of networks such as In-

ternet requires new solution of interoperability. Interoperability is a new word that indicates

a sharing of knowledge and expertise to allow the resolution of a common goal. In computer

science, exchanging information between various information systems does interoperability.

In database area, sharing data contained in DBMS makes interoperability.

1.1 Motivation

Data exchange between various heterogeneous databases is an intensive research area in the

database world. Each year since 1983 [5], new architectures have been developed to merge

data in a common representation. Distributed, Federated (loosely and tightly coupled),

multi-base, and mediation architectures are de�ned to group legacy and remote databases

in a cooperative information systems.

The corresponding methodologies try to combine three processes. The �rst process is a

structural description of legacy information. This description is made through a model

(global, pivot, meta, and other). Now, with new cooperative challenge such as the World

Wide Web, extensibility has become the new main feature of these models. Extensibility is

the feature of generic models, with generic concepts that can be specialised to map with the

concepts of various data models. Unfortunately, a high level of abstraction is often associ-

ated with a low level of semantic. The second process is a semantic description. To keep

�LE2I - Universit�e de Bourgogne. B.P. 47870, 21078 DIJON Cedex - FRANCE. email:

cnicolle@u-bourgogne.fr

1

the meaning of initial data during the description process, old approaches advise to have

con�dence in the ability of the "cooperation administrator". The others propose to add con-

straints, meta-data, context or ontology to avoid or limit semantic losses. The third process

concerns the mapping of both structural and semantic description from a representation (or

data model) to another. This third process exists since the origin of data processing where

it was necessary to explain to a computer what it had to make. Mapping is needed in the

conception of information systems, the reengineering of information systems, the migration

of information systems, and now the cooperation of information systems. In this last area,

mapping becomes a very hard and heavy task due to the number of translators to de�ne.

Some approaches try to reduce the number of required translators by using a common rep-

resentation or model. Thus, for n models the system needs n translators. For example,

mediation architecture requires a Wrapper (a pseudo translator) for each cooperating infor-

mation system. Building a translator requires a coding experience and a good knowledge of

various techniques of data representation. In a wide area network such as World Wide Web,

these requirements are insuÆcient due to the number of translators needed.

1.2 Scenario of Cooperation

To illustrate this paper, we describe an example of scenario for the cooperation of three

heterogeneous databases in a loosely federated system. These databases (Relational, Codasyl

and Object Oriented) cooperate by exchanging data. This is done, �rst, by exporting a

part of each local schema to other databases, next, by querying importing schemas to get

corresponding data from a source database. In our example, we focus on schema exchanges

from the Relational to Codasyl and Object Oriented databases.

Figure 1: Cooperation of three heterogeneous information systems

The �gure 1 depicts the cooperation scenario between a golf club using a Relational system,

a hotel using an Object Oriented system and a tourism oÆce using a Codasyl system. The

goal of the cooperation is to complete activities allowed by the hotel and the tourism oÆce

with the various training possibilities of the golf club.

The relational schema describes the management of training courses, the members and

competitions of the golf club. This schema depicts that a member can be registered for a

competition if he has a suÆcient level. A member can participate to a training course :

Periodic-Training (one day per week) or Week-Training (several grouped days on one week).

A training course is organised by a Teacher and has a type (beginner, practice, ...). In the

following, primary keys are noted with '#' and foreign keys are written in italic.

Competition (#Competition, name, date, min-level)
Member (#Member, name, �rst-name, level, address)
Registered (#Competition, #Member)
Participate (#Member, #Training)
Training (#Training, max-member, min-member, type, teacher)
Type (#Type, name, min-level)
Week-Training (#Week-Training, �rst-date, last-date)
Periodic-Training (#Periodic-Training, day, hours, time)
Teacher (#Teacher, name, �rst-name, level)

Inclusion dependencies are de�ned as follow :

Training.type � Type.#Type
Training.teacher � Teacher.#Teacher
Week-Training.#Week-Training � Training.#Training
Periodic-Training.#Periodic-Training � Training.#Training
Registered.#Member � Member.#Member
Registered.#Competition � Competition.#Competition
Participate.#Member � Member.#Member
Participate.#Training � Training.#Training

The export schema shared with other systems is composed of speci�c relations concerning

training. These relations are : Training, Type, Week-Training, Periodic-Training. This

schema is sent through the network to other databases. Each target database uses tools to

translate this export schema into an import schema written in its own local model. In a

loosely federated architecture, import schemas are locally integrated with the local schema.

A user can access to federated data by querying this integrated local schema.

In this context, a hotel customer or a tourist can query the local integrated schema of

Codasyl or OO database about proposed activities. His query (Codasyl or OO) requires

access to data residing at both local and relational golf club database site. Thus, this query

is decomposed into two sub-queries, one for local database and one sent by the network to

the relational site. This last sub-query is translated into a relational query by translator

tools to be handled by the relational site. Resulting relational data are sent back. Data

received by the local site are formatted by a translator tool to be associated with local data

(resulting from the �rst sub-query) to answer the initial query.

1.3 Related Work

To build a cooperative information system, a �rst step is collecting schemas of each local

database. In a cooperative information system, all schemas exported from databases are

translated and integrated into a cooperative schema which is used by the �nal user to

query the cooperation "transparently" [15]. Several approaches have been proposed for the

building of cooperative information systems.

These approaches can be classi�ed in three categories: the approach using a uni�ed global

schema, the approach using a high-level representation language or a metamodel, and the

approach using a direct mapping. The �rst approach consists in combining all information

systems in a global system using integration techniques. This solution is adapted for tightly

coupled federated systems that use a global schema to represent information exported by

their component information systems. The schema is expressed in a global data model [17]

in which the user of the federated system puts its requests. This method needs a translation

at several levels.

First of all, a translation of data models as �rst integration process step, then a global request

translation in local requests, and, �nally, a data translation resulting from these requests.

Then, the local schema represents a view of the global schema. This solution needs a detailed

analysis of all schemas and data. Therefore this is an expensive and intensive solution for a

great number of database [11]. Moreover, this solution is not extensible to take into account

the introduction of new systems.

The second approach using a metamodel allows the syntactic and/or semantic translation of

component systems ([3, 4, 10]). This approach is very exible and allows a great opening on

others systems. Nevertheless, component systems have to express their requests in a high

level language (this does not allow the access to Legacy database). Anyway, manipulation

of high level languages is complex, and more, in metamodels, there is no uni�ed interface

on databases.

The third approach using direct mapping allows the resolution of heterogeneity by providing

direct translation paths between each pair of data models composing the cooperative infor-

mation system [2, 6, 7]. In this case, cooperative users can access to information through

their own local interface. This solution is adapted to all cooperative systems and more

particularly to loosely coupled federated systems described by Sheth in [17]. This approach

becomes rapidly complex in term of number of translators required for an important number

of heterogeneous data models. Indeed for n di�erent models, it is necessary to build n*(n -

1) translators.

The above approaches propose generic models and frozen tools that are not extensible and

not adaptable to various information systems. Nevertheless, they have pointed out the need

to reduce the number of translators requires to allow interoperability of information systems.

Tools that are based on the reuse of pre-de�ned concepts and translations can be used to

make the generation of one to one data model translators easier [13, 18]. The semiautomatic

or automatic generation of one to one translators thus facilitates the translation in coopera-

tive information systems. To reach this goal, we propose a case tool called X-TIME, which

helps in the de�nition of schema translators for each cooperating information systems. This

case tool is based on an extensible metamodel coupled with transformation rules. In this

paper we focus on the main step of our solution : The building of a metamodel and tools

corresponding to speci�c cooperating information systems. The remainder of this paper is

organised as follows : Section 2 presents the requirements of our methodology. Section 3

describes the metamodel building step on the example presented in section 1.2. Section 4

presents an overview of our translation methodology. The last section concludes this paper.

2 Requirements

Existing solutions propose a static model (super model, canonical model or meta-model)

de�ned from a limited set of data models [3, 4, 10]. These solutions best suited to the

integration of homogeneous databases (relational) are not well adapted to wide networks

such as internet where a great variety of information systems co-exist. Cooperation of

various information systems requires an extensible model. A �rst solution has been proposed

by Barsalou in [4] with a Metamodel where meta-concepts (or metatypes) are organised

in an inheritance lattice. Unfortunately, the addition of new concepts only took place

by the specialisation of existing meta-concepts without reorganisation of the metamodel

structure. Thus, as shown in �gure 2 the metamodel structure depended on the order in

which information systems were integrated in the cooperation.

To solve this problem, it is necessary to proceed to a classi�cation step before adding concepts

in the metamodel. This classi�cation, automatically achieved, guarantees the reorganisa-

tion of the metamodel to every new addition of an information system in the cooperation.

This classi�cation is done in three parts. First of all concepts of data models are formally

Resulting hierarchy without
a dynamic classification process

Resulting hierarchy without
a dynamic classification process

M1

M6 M3

M4 M5

1 - M1
2 - M6
3 - M3
4 - M4
5 - M5
6 - M2

M2

M1

M2 M3

M4 M5M6
Concept

Specification
Order

Concept
Specification

Order

1 - M1
2 - M2
3 - M3
4 - M4
5 - M5
6 - M6

Figure 2: Without Subsumption, order is required in concept speci�cation

described using description logic. Then, a mechanism of subsumption is going to analyse

the formal de�nition of these concepts to organise them in a hierarchy of specialisation (see

�gure 3).

Classification
and

Subsumption

No order in concept
specification

M1

M2 M3

M5M6

M4

Resulting hierarchy with
a dynamic classification process

M2
M6

M1

M4

M5

M3

Figure 3: Classi�cation of concepts and subsumption mechanism

Finally, the formal de�nition of every concept is simpli�ed according to the place they occupy

in the hierarchy (thanks to the inheritance mechanism). The formal de�nition of concepts

is made only one time, independently of the number of cooperating information systems.

The subsumption and the simpli�cation of the de�nition concepts are made automatically

each time a new system is introduced in the cooperation. This guarantees the building of a

speci�c metamodel. To complete the metamodel de�nition, we associate to each metatype

a syntactic de�nition in XML-DATA. We will see that XML-DATA replaces advantageously

the usual BNF de�nitions.

In this section, we �rst present some features of Description Logic and XML-DATA. Then we

present the generic metatype, which is de�ned to model all possible properties of metatypes,

which represent data models features.

2.1 Main Features of Description Logic

This part briey presents main concepts on description logic issued from the KL-ONE fam-

ily. KL-ONE [22] is a system allowing knowledge representation and automatic classi�cation

using the subsumption mechanism. This presentation focuses on four basic notions of de-

scription logic used to model and classify knowledge in the Strategic Hierarchy Builder :

roles, concepts, individual concepts and subsumption mechanism.

Role. It is an oriented relation from an owner concept to a member concept. Cardinalities

can be attached on a role. These cardinalities represent minimum and maximum numbers of

possible instances of the member concept linked with the owner concept. A role is graphically

de�ned by an arrow with a symbol (circle and/or square grouped). A role can be specialised

(dotted arrow in �gure 4 between r2 and r1) to build a new role with the same structure

but with new constraints. Using the syntax of the system Back [9], which is a speci�c

implementation of description logic, the description of a role is realised by specifying the

owner concept as "domain" and the member concept as "range".

Concepts : A concept can be viewed as a real world entity. The prede�ned concept

"anything" which is the most general concept subsumes all others. A concept inherits roles

from the concepts by which it is subsumed. The specialisation of a concept can be directly

realised giving father concepts in the hierarchy. It inherits attached roles from father concept

(dotted arrow in �gure 4 between r1 and r2).

Individual concepts : A distinction is made between generic and individual concepts

corresponding roughly to the di�erence between classes and their instances. To simplify

description, individual concepts can be viewed as real world objects.

Subsumption mechanism : A subsumption mechanism classi�es de�ned concepts. A

concept named A subsumes a concept named B, if the de�nition of A is more general than

the de�nition B. Using the basic mechanism and applying tests on all de�ned concepts,

an inheritance hierarchy of concepts can be found. This mechanism is a key point of the

Strategic Hierarchy Builder described in this paper.

Concept Role Cardinality Specialisation Link

Figure 4: Example of description logic using XKL1Editor

2.2 Main Features of XML-DATA

XML-Data is a meta-language used to create schemas, identify structures and constraints in

an XML document. A XML-DATA schema is considered as a well formed XML document.

In this article, we use XML-DATA to model the structure and the constraints of metatypes.

This choice is based on many motivations. First, XML-DATA allows us to de�ne extensible

schema. This extensibility is achieved by specialising existing elements or existing attributes

to add new elements or attributes. This feature is well adapted in our methodology. Next,

this language has the property to support the inclusion of many documents as parts of one

document. In database area, this property is derived to integrate many schemas in one

cooperative schema. Last, XML-DATA allows to web applications to exchange data using

a standard coding. Thus this feature will allow to exchange data between heterogeneous

information systems using intermediate standard representation which can be handled by

any browsers or XML tools. Detail descriptions of XML and XML-Data can be found in

[1, 21, 20, 16].

2.3 Basic Metatype De�nition

There are two sorts of metatypes: speci�c and basic metatypes. Speci�c metatypes are used

to capture the semantics of di�erent categories of modelling concepts. In our example, the

cooperation is built from the speci�cation of three sets of metatypes. The �rst set contains

concepts of the Tourism OÆce model (record and set concepts of the Codasyl data model).

The second set contains concepts of the Hotel model (Class and Inheritance Link concepts

of the OO data model). The third set contains concepts of the Golf Club model (Table,

Primary Key and Foreign Key concepts of the relational data model). Basic metatypes,

which initially composed the metamodel, are de�ned to help in the de�nition of speci�c

metatypes. Initially they are de�ned from a generic concept call "metatype" of which the

de�nition is given in appendix (section 6). A metatype M is de�ned by a tuple M =

(AM ,CM ,PM), where AM is a set of syntactic elements that describe the structure of M.

CM is a set of user de�ned constraints that are used to restrict the meta data constraints

associated with the super metatype of which M is a specialisation. PM is a set of operations

or methods. It is used to model methods of the object oriented (or any similar) model. PM
is empty for data models (e.g. relational model) which do not allow the encapsulation of

data and operations into a type.

In the following, we describe the basic metatypes. Section 3 describes the set of speci�c

metatypes corresponding to our example.

� Metatype META

The highest metatype in the specialisation hierarchy is a generic metatype, META,

with an empty structure. Its purpose is to de�ne meta data constraints and operations

that can be shared by all metatypes. It is de�ned by META=([], CMeta, []). CMeta

comprises a set of data modelling constraints. For example, CMeta contains an ID

function that uniquely identi�es the instances of metatypes. The description logic of

META is given in table 1.

� Object Metatypes

Metatype Complex-Object represents modelling concepts that are used to describe

complex structure entities such as: CLASS in the object oriented model, ENTITY

TYPE in the Entity-Relationship model and RECORD in the Codasyl data model.

Metatype MComplex-Object is speci�ed by CO = (ACO , CCO, PCO), where ACO
is de�ned using the usual tuple and set constructions on meta object types. The

component CCO and PCO are not rede�ned at this level, but are inherited from the

super metatype META.

Metatype MSimple-Object, which is a specialisation of metatype MComplex-Object,

represents modelling constructs with at structure. It is de�ned by SO = (ASO , CSO,

'META':= 'metatype'

and atmost(1,r description)

and atmost(1,r link)

and atmost(1,r attribute)

'MComplex-Object' := 'metatype' 'MSimple-Object' := 'metatype'

and exactly(1,r description) and exactly(1,r description)

and exactly(1,r description label) and exactly(1,r description label)

and exactly(1,r identifying description) and exactly(1,r identifying description)

and no(1,r link) and no(1,r link)

and atleast(1,r attribute) and atleast(1,r attribute)

and exactly(1,r attribute label) and exactly(1,r attribute label)

and exactly(1,r attribute type) and exactly(1,r attribute type)

and exactly(1,r attribute cardinality) and exactly(1,r attribute cardinality)

and all(r attribute type, simple type attribute)

'MNary-Link' := 'metatype' 'MBinary-Link' := 'metatype'

and exactly(1,r description) and exactly(1,r description)

and exactly(1,r description label) and exactly(1,r description label)

and exactly(1,r identifying description) and exactly(1,r identifying description)

and all(r identifying description,'OID') and all(r identifying description,'OID')

and exactly(1,r link) and exactly(1,r link)

and atmost(1,r attribute) and all(r link,'binary')

and exactly(1,r attribute label) and atmost(1,r attribute)

and exactly(1,r attribute type) and exactly(1,r attribute label)

and exactly(1,r attribute cardinality) and exactly(1,r attribute type)

and exactly(1,r attribute cardinality) //

Table 1: Basic Metatypes Description

PSO) where the attribute structure ASO inherits the tuple structure ACO of metatype

MComplex-Object, but restricts the type of its components to primitive domains. The

components CSO and PSO are inherited from the metatype MComplex-Object.

� Link Metatypes

Metatype MNary-Link models types that represent connections between real world

entities. Links can carry attributes. It is de�ned by NL = (ANL, CNL, PNL). The

component CNL and PNL are not rede�ned at this level, but are inherited from the

super metatype META.

Metatype BL categorises binary connections involving real world object types. It is

a special case of MNary-Link and it is de�ned by BL = (ABL, CBL, PBL). In the

following we do not give the XML-DATA of MNary-Link and MBinary-Link which

are directly inherited from the type elements "n ary" and "binary" (see appendix in

section 6).

The use of the sumsumption mechanism on the basic metatypes gives a hierarchy depicts in

�gure 5.

3 Speci�c Metamodel Building

To construct a cooperation, every information system must describe data model that it uses.

For it, every site uses a tool called XKL1Editor that allows to describe concepts of the local

data model at semantic and syntactic level. The semantic part is described with the help

of description logic [22], the syntactic part is described with the help of the XML-Data

meta-language [20]. The semantic description uses logical terms to describe concepts. Every

Figure 5: Resulting hierarchy using subsumption on the set of basic metatypes

clause generates a question where the local administrator must give a syntactic description

(XML-Data) of the element. The semantic description always begins by a specialisation

of a generic metatype that owns prede�ned clauses. Once the process of each data model

description is done, it is necessary to regroup information of every site to launch the process

of construction of the corresponding metamodel.

Although the metamodel is initially composed of a set of basic metatypes, its �nal compo-

sition depends on data models that compose cooperation. The metamodel is dynamically

constructed by a mechanism of subsumption. This mechanism compares the semantic de�-

nition (description logic) of each element described by local database administrators. This

comparison is automated in a tool called Strategic Hierarchy Builder. The dynamic con-

struction of the metamodel permits to have always a metamodel adapted to information

systems that want to co-operate. Moreover, this solution simpli�es the addition of new

information systems in the cooperation. The result of this construction is an a-cyclic graph

where each node is a metatype corresponding to one or several elements described by local

administrators and where each arc represents a specialisation link. This organisation allows

the reuse of the de�nition of every metatypes and then to simpli�y its de�nition to make

only appear di�erences between metatypes. At this level, we have obtained a speci�c meta-

model that describes the syntax and the semantic of each concept used in the cooperating

information systems. Figure 6 depicts our example of speci�c metamodel. This metamodel

contains �ve basic metatypes (META, CO, SO, NL, BL) and �ve speci�c metatypes (REL

for relational data model, CLA and IHL for object oriented data model, REC and SET for

Codasyl data model). Arrows model specialisation links.

3.1 Speci�cation of the Golf Club Data Model Concepts

The data model of the Golf club is a relational data models. The result of the speci�cation

step of relational concepts is a metatype MRelation (REL). The meta-type MRelation repre-

sents the concept RELATION (relation name, mono-valued attributes, on simple domains,

functional and inclusion dependencies). It is de�ned by REL=(AREL, CREL, PREL). The

structure AREL represents objects with at structure (mono-valued, simple. CREL models

the relational primary key; namely, a sub-sequence of attribute labels that uniquely identify

the tuples of a relation. Moreover, CREL models foreign key. PREL is empty. Table 2 and

�gure 7 gives the description logic and XML-DATA de�nition of MRelation.

3.2 Speci�cation of the Tourism OÆce Data Model Concepts

The data model of the Tourism OÆce is a Codasyl data model. The result of the speci�cation

step of the Codasyl concepts is a metatype MRecord (REC) and a metatype MSet (SET).

Figure 6: The resulting speci�c metamodel

The meta-type MRecord specialises meta-type MComplex-Object. It is de�ned by REC =

(AREC , CREC , PREC). The component AREC is directly de�ned from ACO The components

PREC and CREC are empty. The meta-type MSet is an oriented binary link with an owner

and a member. The meta-type MSet is de�ned by SET = (ASET , [], CSET). CSET contains

speci�c constraints of SET concept.

3.3 Speci�cation of the Hotel Data Model Concepts

The data model of the Hotel is an object oriented data model. The result of the speci�-

cation step of the object oriented concepts is a metatype MClass (CLA) and a metatype

MInheritance-Link (IHL).

As illustrated in �gure 6, the meta-type MClass specialises meta-type MComplex-Object

and MBinary-Link. It is de�ned by CLA = (ACLA, CCLA, PCLA). The structure ACLA
is a mixed between the structure of ACO and the structure of ABL. The inheritance from

ABL allows the representation of reference attributes. Conversely, The meta-type MClasse

re�nes the component PCO to introduce the behavioural aspect of the objects. A detailed and

formal description of methods is beyond the scope of this paper. Thus the component PCLA
is not presented. CCLA is empty. The corresponding XML-DATA de�nition is presented in

�gure 8.

The meta-type MInheritance-Link is a binary link. In addition to the constraints inherited

'MRelation A' := 'metatype'

and exactly(1,r description) 'MRelation C' := 'metatype'

and exactly(1,r description label) and exactly(1,r link)

and exactly(1,r identifying description) and all(r link,'binary')

and all(r identifying description,'Primary key') and all(r link,'foreign key')

and atleast(1,r attribute)

and exactly(1,r attribute label)

and exactly(1,r attribute type)

and exactly(1,r attribute cardinality)

and all(r attribute type,simple type attribute)

Table 2: MRelation Description in DL

a Primary Key

Define
a Foreign Key

Define
a Foreign Key

Attribute

Define
an Attribute

Define

Figure 7: MRelation Description in XLML-DATA

from the meta-type MSet, it maintains a constraint of subset between the population of

the specialised and generalised meta-types which generalises the concept of inheritance of

the object oriented data model. Moreover, MInheritance-Link specialises the structure of

MBinary-Link to represent connection without attribute. The meta-type MInheritance-Link

is de�ned by IHL = (AIHL, CIHL, []).

Figure 8: MClass description in XML-DATA

4 Translators Building

To complete our methodology, we have developed tools to generate translators using the

metamodel hierarchy. These translators will allow to exchange schemas between heteroge-

neous sites. To build these translators, we associate a transformation rule between certain

metatypes. At this level, we will see that the number and the diÆculty of transformations are

widely reduced. When transformation rules are de�ned, a translator compiler automatically

builds all translators needed to exchange heterogeneous schemas in the cooperation.

4.1 Transformation Rules Generation Step

The hierarchy of specialisation de�ned in the previous step allows the reduction of the

number of transformation rules needed to build the translators. Rather than de�ning rules

between all metatypes, it is suÆcient to de�ne rules between every couple of metatypes

joined by an arc (�gure 9). The number of rules to de�ne by couple of metatype depends of

several factors:

...

MBinary-Link
MSet

...

MBinary-Link

MInheritence-LinkMInheritence-Link
MSet

Legend : Transformation Rule :Specialisation Link :

MClass
MRelation

MBinary-Link
MSet
MInheritance-Link

MComplex-Object
MComplex-Object
MComplex-Object
MComplex-Object
MComplex-Object
MComplex-Object
MComplex-Object

MComplex-Object

MRecord

MNary-Link
MSimple-Object

MNary-Link
MNary-Link
MNary-Link
MNary-Link
MNary-Link
MNary-Link
MNary-Link
MNary-Link

MComplex-Object
MSimple-Object
MRecord
MClass
MRelation
MBinary-Link
MSet
MInheritance-Link
...... ...
......

Without organisation in a specific metamodel With a specific metamodel

Figure 9: Comparison with / without metamodel

� META is not considered like a metatype that can be translated. It provides generic

notions that are specialised by the other metatypes. There is not rule for arcs joining

META to other metatypes. For example in �gure 9, the number of eÆcient metatypes

to translate is 9 (All except META). The number of arcs is 9 (all except those join to

META).

� For metatypes that only have one father, there is one rule from the son to its father and one

rule from the father to its son. Therefore generally, an arc needs two transformation

rules. On �gure 9, this case is applied to 7 metatypes (except CLA and REL). There

are 14 rules to de�ne.

� For metatypes that have several fathers, there is one rule from the son to its fathers. This

rule assures the transformation of a son metatype instance into one or several father

metatype instances. Inversely, there is one rule by arc joining fathers to a common

son. For example, in �gure 9, the metatype CLA possesses two fathers (CO and BL) as

well as REL (SO, BL). There are three rules de�ned for each of these two metatypes:

First, A rule from CLA to the couple CO and BL; Next, a rule from CO to CLA; Last,

a rule to BL to CLA. It is the same way for REL (REL to BL and SO, SO to REL

and BL to REL).

Thus, the number of rules does not depend on the number of metatypes but depends on the

number of arcs. For example, in �gure 9, instead of de�ning 72 transformation rules for 9

metatypes (9 metatypes * (9-1) metatypes), it is suÆcient to de�ne 16 transformation rules

(5 simple arcs * 2 (sense of rules) + 3 multiple arcs * 2 metatypes).

Transformation rules are used to convert an XML-DATA schemamodelling a source metatype

into another XML-DATA schema modelling a target metatype. To build transformation

rules, we have developed in Java a tool called Translation Rule Builder (TRB). This tool

provides a set of functions, which helps in the de�nition of rules that manipulate metatypes.

These functions are simple functions such as change, replace, delete, create, insert, and �nd

a string in a �le, and complex functions such as mathematical and logical functions. More-

over, some rules can be built by the combination of other rules. At the end, we have a

collection of pre-de�ned rules that can be combined to built a speci�c transformation rule.

Rules are stored in a Transformation Rule Library. Thus each rule de�nes with the TRB is

automatically generated in JAVA. The creation of new rules by combination of existing rule

generates a corresponding Java code.

4.2 Translator Construction Step

When the metamodel and rules are speci�ed, it is necessary to build translators. This

operation takes place in three steps with the help of a tool called " Translator Compiler "

[12].

The �rst step determines transformation paths. A transformation path joins two distant

metatypes in the metamodel. In our example, the transformation path between MRelation

and MComplex-Object is [REL, SO, CO] (see �gure 10). The construction of transforma-

tion paths is achieved using Dijkstra's algorithm [8].

The second step consists in regrouping transformation paths to create a translation path.

This step is achieved by successive regrouping of transformation path.

� First of all, transformation paths that possess the same source metatype and the same

target metatype are regrouped. In our example the path between MRelation and

MClass is constructed from two transformation paths [REL, SO, CO, CLA] and [

REL, BL, CLA]. This step allows to sole problems due to multiple inheritance. The

resulting path is [REL, [SO, BL], [CO, BL], CLA] (see �gure 10).

� Next, paths between metatypes generalising a source model and metatypes generalising

a target model are regrouped. In �gure 10, the translation path between a relational

model (REL) and an object model (CLA, IHL) is [REL, [SO, BL], [CO, BL], [CLA,

BL], [CLA, SET], [CLA, IHL]].

Figure 10: Transformation paths from relational to object and Codasyl metatypes

The last step is the compilation of transformation rules according to the resulting translation

path. This compilation generates a speci�c translator that allows the translation of a schema

from a source to a target data model and inversely. An association of the code of every rule

is done to obtain this translator. Then an optimisation of this code is made. The Translator

Compiler provides the java source code of the translator. Therefore, it is possible to build

the corresponding executable �le on the various platforms composing the cooperation. To

complete the de�nition of the resulting translators we associate XSL stylesheet [1, 19] to each

cooperating systems. This stylesheet are used to represent the �nal translated XML-DATA

schema in the target database syntax. XSL is an XML eXtensible Stylesheet Language

initially de�ned to write transformations from XML to HTML. However it can also serve in

data applications.

4.3 Metatype De�nition Simpli�cation

When organised, cooperation can be spreat to new heterogeneous information systems. It is

suÆcient for these new systems to specify concepts of their data model with the help of the

XKL1Editor tool. The resulting metatypes are integrated to the list of metatypes existing

in the cooperation. The Strategic Hierarchy Builder tool can rebuild a new metamodel

adapted to this new cooperation [14]. The number and the type of transformation rules to

de�ne depend on the resulting hierarchy. It exists several possibilities.

� If a new metatype (New-M) is connected to the hierarchy of specialisation as a leaf

of an unique father (M2), then it is necessary to de�ne two transformation rules (one

from the father to the son, one from the son to the father, �gure 11.(a)).

� If this metatype (New-M) leaf possesses several fathers (M1, M2), it is necessary to

de�ne a rule from this metatypes to its fathers and a rule from each father to the son

(�gure 11.(b)).

M1 M1

M2

New-M

M2

New-M
New-M

M1 M2 M1

New-M

M2
New-M New-M

M1 M1

M2 M2

(a) (b) (c)

Figure 11: Addition of a new metatype in the hierarchy

� If this new metatype (New-M) possesses sons (M2). It is necessary to de�ne as many

rules as sons. In this case, pre-existing rules can be decomposed and reused (�gure

11.(c)).

In our example, the resulting hierarchy is presented in �gure 6 where REL inherits from SO

and BL metatypes. Thus, three transformation rules must be de�ned: One to transform

REL instances into SO and BL instances, one to transform SO instances into REL instances

and one to transform BL instances into REL instances. This number of rules is independent

of the cooperation size and the number of heterogeneous data models cooperating. Moreover,

the de�nition of all metatypes is simpli�ed. For example, table 3 shows the new de�nition

of MSimple-Object (SO) and MRelation (REL) metatypes.

5 Conclusion

In this paper we have presented a methodology for translating multiple data models. We ad-

dress the problem by de�ning tools that allow the construction of speci�cs metamodels. The

'MRelation' := 'MSimple-Object' and 'MBinary-Link' 'MSimple-Object" := 'MComplex-Object'

and all(r identifying description,'Primary key') and all(r attribute type, simple type attribute)

and all(r link,'foreign key')

Table 3: New MSimple-Object and MRelation Description

dynamic construction of the metamodel allows having a metamodel adapted to information

systems that want to make part of the cooperation. Moreover, it makes the addition of a

new information system in the cooperation easier. The addition of a new model in the coop-

eration is done locally by a description of local data model concepts using XKL1Editor. The

resulting de�nitions in description logic and XML-DATA allow the construction to construct

a new metamodel adapted to the new cooperation as well as speci�c translators. The spe-

cialisation hierarchy allows �rst to reuse the de�nition of every metatype by a mechanism of

inheritance and especially to simplify their de�nition. The X-TIME method permits to cre-

ate extensible and dynamic cooperations. The main characteristics of resulting metamodels

are:

� It provides a minimum set of metatypes that capture the semantics of di�erent cate-

gories of concepts found in data models composing the cooperation.

� It achieves extensibility by organising the metatypes in an specialisation hierarchy.

Thus, a new metatype is de�ned by specialising an existing metatype.

� It achieves translation by de�ning a set of transformation rules translation paths and

translators.

� It allows the reuse of transformation rules and sharing of translation step to reduce

the work of translators building.

Our future objectives are to extend the above results, and to de�ne a formal methodology

and algorithm for heterogeneous query processing. This will allow us to de�ne a query

interface for the interoperation or migration of existing systems.

6 Appendix

In this section, we present the description of the generic metatype. A generic metatype

description is de�ned to model all possible properties of metatypes, which represent data

models features. These properties can be the ability for the metatype to possess a label,

to manipulate concepts such as identifying concepts (keys, OID, etc.), to be described by

attributes (at structures, complex structures, etc.), to manage link concepts (relation,

binary relations, N-ary relations, etc.). To model the generic metatype, a set of description

logic concepts are de�ned (Figure 12). An XML-DATA de�nition of the generic metatype is

given also. This de�nition is reused to help in the XML-DATA de�nition of new metatypes.

For each speci�ed clause, we give the corresponding XML-DATA de�nition.

� the description concept. This concept is introduced to model the ability for a data

model described by metatypes to manage identifying concepts such as label, key or

OID. In description logic the notion of description, description label and identifying

description are three concepts. Roles link the concept of description with others. The

formal description is given by:

Figure 12: Description Logic of Generic Metatype

description :< anything

label_description :< anything

identifying_description :< anything

rc_label_description :< domain(description) and range(label_description)

rc_identifying_description :< domain(description) and range(identifying_description)

The corresponding XML-DATA de�nition of the description concept is:

<elementType id="description_label">

<string/>

</elementType>

<elementType id="description_identifier">

<key id= "oid"><KeyPart href="#description_identifier"/></key>

</elementType>

<elementType id="description">

<element type="#description_identifier" occurs="REQUIRED"/>

<element type="#description_label" occurs="REQUIRED"/>

</elementType>

� the attribute concept is introduced to specify which kind of attribute can be managed

by data models. It is de�ned by three components: a type of structure (simple with

at structure, complex with lists, sets, etc.), an attribute label and which kind of

cardinalities can be used with the structure (mono valued attributes, multi-valued

attributes). In description logic the notion of attribute, label attribute, type attribute

and cardinality attribute are de�ned as concepts. The last two concepts are specialised

to introduce notions of simple and complex attributes and notions of mono-valued and

multi-valued cardinalities. The attribute concept is linked by a role to others.

attribute :< anything

label_attribute :< anything

type_attribute :< anything

simple_type_attribute :< type_attribute

complex_type_attribute :< type_attribute

cardinality_attribute :< anything

mono_valued_attribute :< cardinality_attribute

multi_valued_attribute :< cardinality_attribute

rc_label_attribute :< domain(attribute) and (label_attribute)

rc_type_attribute :< domain(attribute) and range(type_attribute)

rc_cardinality_attribute :< domain(attribute) and range(cardinality_attribute)

The corresponding XML-DATA de�nition of the attribute concept is:

<elementType id="simpletype_attribute ">

<superType type="#attribute_type"/>

</elementType>

<elementType id="complextype_attribute ">

<superType type="#attribute_type"/>

<group groupOrder="OR">

<instance_name>string/</instance_name>

<element type="#attribute" occurs = REQUIRED"/>

</group>

</elementType>

<elementType id="attribute_label ">

<string/>

</elementType>

<elementType id="attribute_type ">

<string/>

</elementType>

<elementType id="cardinality ">

</string>

</elementType>

<elementType id="attribute_cardinality ">

<element type="#cardinality" occurs="REQUIRED"/>

<element type="#cardinality" occurs="REQUIRED"/>

</elementType>

<elementType id="attribute">

<element type="#attribute_type" occurs="REQUIRED"/>

<element type="#attribute_label" occurs="REQUIRED"/>

<element type="#attribute_cardinality" occurs="REQUIRED"/>

</elementType>

� the link concept which allows to represent the general notion of data model relationship

(binary or N-ary relationship, inheritance relationship, etc.) In description logic, the

notion of link is de�ned as a concept and is specialised to introduce the binary and

N-ary link concepts.

link :< anything

binary :< link

nary :< link

The corresponding XML-DATA de�nition of the link concept is :

<elementType id="binary ">

<superType type="#link "/>

<element type="#concept-name" occurs="REQUIRED"/>

<element type="#concept-name" occurs="REQUIRED"/>

</elementType>

<elementType id="n_ary ">

<superType type="#link"/>

</elementType>

<elementType id="Concept-name ">

</string>

</elementType>

<elementType id="link">

<element type="#concept-name" occurs="REQUIRED"/>

<element type="#concept-name" occurs="ONEORMORE"/>

</elementType>

At this step of speci�cation all basic concepts to specify the generic notion of metatype are

de�ned in description logic. The concept metatype is linked by roles to description, attribute

and link concepts de�ned above.

the formal de�nition is :

r_description :< domain(metatype) and range(description)

r_link :< domain(metatype) and range(link)

r_attribute :< domain(metatype) and range(attribute)

Composed roles are created to link 'metatype' to other concepts. To simplify �gure 12

composed roles are not drawn.

r_label_description := r_description comp rc_label_description

r_identifying_description := r_description comp rc_identifying_description

r_label_attribute := r_attribute comp rc_label_attribute

r_type_attribute := r_attribute comp rc_type_attribute

r_cardinality_attribute := r_attribute comp rc_cardinality_attribute

The corresponding XML-DATA de�nition to model the generic metatype is :

<elementType id="metatype">

<instance_name><string/></instance_name>

<element type="#attribute" occurs="ZEROORMORE"/>

<element type="#description" occurs="ZEROORMORE"/>

<element type="#link" occurs="ZEROORMORE"/>

</elementType>

References

[1] S Abiteboul, P Buneman, and D Suciu. Data on the web. In From Relations to

Semistructured Data and XML, http://mkp.com, 2000. Morgan Kaufmann Publishers.

[2] M Andersson. Extracting an entity relationship schema from a relational database

through reverse engineering. Proceedings of the 13th International Conference of Entity-

Relationship Approach, pages 403{419, december 1994. Manchester UK.

[3] P Atzeni and R Torlone. Mdm : A multiple-data-model tool for the management of

heterogeneous database schemes. Proceedings of the SIGMOD International Conference,

pages 538{531, 1997.

[4] T Barsalou and D Gangopadhyay. M(dm) : An open framework for interoperation of

multimodel multidatabasesystems. Proceedings of the 8th International Conference of

Data Engineering, pages 218 { 227, Febuary 1992. Tempe, Arizona.

[5] C Batini and M Lenzerni. A methodology for data schema integration in the

entity-relationship model. Proceedings of the 3rd International Conference on Entity-

Relationship Approach, pages 413{420, 1983. North Holland.

[6] M Blaha, W Premerlani, and H Shen. Converting oo models into rdbms schema. IEEE

Transaction, pages 28{39, 1994.

[7] S Cluet, C Delobel, J Simon, and K Smaga. Your mediator need data conversion! ACM

SIGMOD International Conference on Management of Data, pages 177{188, June 1998.

[8] O J Dahl, E W Dijkstra, and C A R Hoare. Structured programming, second printing.

A.P.E.C. Studies in Data Processing No.8, Academic Press, 1973. London-New-York.

[9] T Hoppe, C Kindermann, J J Quantz, A Schmiedel, and M Fischer. Back v5, tutorial

and manual. Technische Universitat Berlin, Projekt KIT-BACK, March 1993. Berlin,

Germany.

[10] M A Jeusfeld and U A Johnen. An executable metamodel for re-engineering of database

schemas. Proceedings in the 13th International Conference of Entity-Relationship Ap-

proach, 1994. Manchester, UK.

[11] L V S Lakshmanan, F Sadri, and I N Subramian. On the logical foundations of schema

integration and evolution inheterogeneous database systems. Deductive and Object-

Oriented Database, 3rd International Conference, LNCS 760, 1993. Phoenix, Arizona.

[12] C Nicolle. A translator compiler for interoperable information systems. 17th Interna-

tional CODATA Conference, October 2000. Baveno, Italy.

[13] C Nicolle, D Benslimane, and K Ytongnon. Multi-data models translation in inter-

operable information systems. In Springler Verlag, editor, Lecture Notes in Computer

Science, pages 78{89. CAISE, May 1996.

[14] C Nicolle, N Cullot, and K Yetongnon. Shb : A strategic hierarchy builder for manag-

ing heterogeneous databases. International Engineering and Applications Symposium,

August 1999. Montreal, Canada.

[15] M Papazoglou, N Russel, and D Edmond. A translation protocol acheiving consensus of

semantics between cooperating heterogeneous database systems. Proceeding of the First

IFCIS International Conference on Cooperative Information Systems, pages 78{89, june

1996. Brussels, Belgium.

[16] W J Pardi. Xml. In in Action, http://www.microsoft.com/france/mspress, 1999. Mi-

crosoft Press.

[17] A P Sheth and J A Larson. Federated database systems for managing distributed,

heterogeneous, and autonomous databases. ACM Computing Surveys, 22, 1990.

[18] S Spaccapietra, M Andersson, Y Dupont, K Ytongnon, C Parent, and C Nicolle. Inte-

grating schemas of heterogeneous database systems. Proceeding of the Second Meeting

on the Interconnection of Molecular Biology Databases (MIMBD95), July 20-22 1995.

Cambridge UK.

[19] W3C. Extensible stylesheet language (xsl). http://www.w3.org/XSL/, 1998.

[20] W3C. Xml-data, w3c note 05 jan 1998. http://www.w3.org/TR/1998/NOTE-XML-

data, January 1998.

[21] W3C. Xml web page. http://www.w3.org/XML/, 1998.

[22] W A Woods and J G Schmolze. The kl-one family. Computer Mathematic Application,

23:133{177, 1992.

