A Component-Based Method for Developing Web Applications

A Component-Based Method for Developing Web
Applications

Jonas A. Montilva C." and Judith Barrios A.”

Abstract

We describe, in this paper, a component-based software engineering method for helping
development teams to plan, organize, control, and develop web applications. The method is
described in terms of three methodological elements: a product model that captures the
architectural characteristics of web applications, a team model that describes the different
roles to be played by the members of a team during the development of web applications,
and a process model that integrates the managerial and technical activities that are required to
develop componentized web applications of high quality. The main features of the model are
its component-based approach that helps reduce costs and development time; its ability to
integrate managerial and development processes into a unique process model; and its
emphasis on business modelling as a way of gaining a better understanding of the application
domain objectives, functions and requirements.

Keywords: Component-Based Software Engineering, Web Engineering, Web
Information Systems

1. Introduction

Developing web applications is a very complex process that demands highly skilful personnel.
Its complexity is due to the fact that it involves many different information technologies
including WWW, human factors, information systems, business modelling, programming
languages, distributed systems, and databases. A web application is defined as a software
application that uses a web-based user interface to provide a set of information services to its
users. These services, called the business logic of the application, comprise the input, storage,
update, access, retrieval, and manipulation of data objects that are stored in one or more
servers. Web information systems, e-commerce systems, e-business portals, e-government
systems, and instructional web sites are some typical examples of web applications.

The scope, purpose and complexity of web applications vary widely from small scale
informational services to large-scale enterprise applications that support several business
processes. Ginige and Murugesan (2001a) groups web applications into the following
categories: informational, interactive, transactional, workflow-based, collaborative work
environments, online communities, marketplaces, and web portals.

Although a great number of web applications are actually in use everywhere, the way most
of them were developed raises many concerns. A survey conducted in Nov. 2000 by the Cutter
Consortium evidences the following problems related to web-based development projects: (1)
84% of the delivery systems didn’t meet business needs; (2) 79% of the projects reported
schedule delays; (3) 63% exceeded the budget; (4) 53% of the delivery systems didn’t provide
the required functionality; and (5) 52% of the deliverables were of poor quality. Ginige and

* University of Los Andes, Faculty of Engineering, School of System Engineering, Computer Science
Department, Merida, Venezuela. Email: jonas@ing.ula.ve,
** University of Los Andes, Faculty of Engineering, School of System Engineering, Computer Science
Department, Merida, Venezuela Email:, jjudith@ing.ula.ve

22

Jonas A. Montilva C. / Judith Barrios A.

Murugesan (2001a) highlight the main problems associated to web application development.
Some of these problems are the following: (a) the developers pay little attention to
development methodologies, quality assurance and project management; (b) many developers
considers web development as an authoring process, rather than an application development
process; (c) the complexity of web applications has grown significantly; and (d) quality
attributes are not given the due consideration they deserve during the development process.

The need for better ways of developing web applications that take into account the nature
and complexity of this type of applications has been recognized by many researchers (Ginige
and Murugesan, 2001b; Deshpande and Hansen, 2001; Barry and Lang, 2001; Hadjerrouit,
2001; and Gaedke and Rehse, 2000). To address this need, Web engineering has emerged very
recently as a discipline that deals with systematic, disciplined and quantifiable approaches to
development, operation, and maintenance of Web-based systems and applications (Murugesan
and Deshpande, 2002).

A set of methods, techniques, guidelines, and methodologies have emerged, during the last
three years, to help development teams to produce better web applications. Some of the most
well-documented ones have been proposed by Conallen (2000), Fraternali and Paolini (2000),
Hadjerrouit (2001), Gaedke, et al (2000), and Allen (2001). The Conallen’s method is an
adaptation of the Rational Unified Process (Krutchen, 1998). It uses an object oriented
approach to model web applications. The method described by Fraternali and Paolini (2000)
makes more emphasis on the hypermedia nature of web applications. Hadjerrouit (2001)
stresses the use of software engineering process in the development of web application, but
recognizes the relevance of user interfaces in this type of applications. The methods proposed
by Gaedke, et al (2000) and Allen (2001) emphasize the importance of reusability in the
process of developing web applications. Both of them apply principles and process models
borrowed from Component-Based Software Engineering.

We believe that a component-based approach to the development of web applications has
several advantages over those approaches based on object-orientation and human factors.
Firstly, the reuse of components has proven to reduce the cost and time to deliver a solution,
since the application is not designed and nor written from scratch. Secondly, the component-
based approach promotes a better quality of the product due to the reuse of already proven
components. Finally, better design of the web application architectures can be obtained by
reusing architectural patterns that promotes separation of concerns.

We propose, in this paper, a component-based method for developing web applications.
The method integrates the UML Components process (Cheesman and Daniels, 2000) with the
methodological framework provided by the IEEE 1074 standard for developing software life
cycles (IEEE, 1995). The method uses a watch metaphor for integrating the management and
development processes that a team requires to plan, organize, coordinate, control, and develop
web applications using a component-based approach.

Section 2 of this paper delineates the methodological elements that comprise the method:
the product model which describes the generic characteristics of web applications, the team
model that suggests an appropriated way of organizing the development team, and the process
model that describes the managerial and technical activities that are needed to develop web
applications. Sections 3 — 5 present, in more detail, each of the three methodological elements
of the method. Finally, Section 6 summarizes the concluding remarks of this research.

2. The Methodological Elements Of The Watch Method

The design of the Watch method was based on principles and concepts taken from Method
Engineering (ME) and Software Engineering (SE). Odell (1996) defines ME as a systematic
and coordinated approach to establishing work methods. An important ME principle
establishes that a well-defined method should be described in terms of two components: a
model of the product to be developed and a process model that explains how to develop the
product (Brinkkemper, 1996). We extended the application of this principle by adding a third
element: a team model, which describes the roles that the members of the development team
play during the development process.

A Component-Based Method for Developing Web Applications

To describe our method and its application, we elaborated a two level abstraction hierarchy
that explains the relationships between the three models mentioned above and the
development of a particular web application (see Figure 1). The upper level is made of the
three models that compose the method: a product model, a process model, and a team model.
The product model describes the concepts and architectural patterns that are common to most
web applications. The process model describes the activities that the development team should
follow to develop web applications. The team model is a description of the roles played by the
participants of the process of developing a web application.

To apply the method in a specific web application project, the team leader must instantiate
the three models of the method (the upper layer). The product model helps to design the
architecture of the web application. The process model is used to define the activities,
techniques, tools, and notations that the team requires to develop the web application. The
team model helps to organize the team and define the responsibilities of its members.

We describe in the next sections each of these three models.

The Watch Method

Product Process Team
Model Model Model
A product A process A team

A web application project

Figure 1. The structure and application of the Watch method

3. The Product Model

A product model is a generic description of the common elements that are found in the final
products elaborated using a method. As described in this paper, the Watch method addresses
the development of web applications.

A web application is a web-based software application that allows its users to execute
business logic with a web browser (Conallen, 1999). The user interacts with the application
through a web browser that allows him/her to input data and request the execution of functions
or services from an application server. A common architectural style used for designing web
applications is the n-tier architecture. The front tiers deals with the presentation aspects of the
application, including the user interface and the user dialog management. The user interacts
with the application through this tier. The middle tier is related with the business logic of the
application. It is the engine of the web application. It processes the input data and the
transactions or services requested by the users through the front tier. It executes the operations
needed to accomplish the services, process the input data, send/retrieve data to/from the back
tier, and organizes the output data to be sent to the front tier. The back tier is concerned with
data management. It behaves as a data server that stores and retrieves the application data into
one or more databases.

Based on this architectural style and the architectural patterns proposed by Conallen (2000)
and Curphey (2002) for building web applications, we designed a product model for this kind

23

24

Jonas A. Montilva C. / Judith Barrios A.

of systems. This model is described in terms of a domain architecture whose structural view is
shown in Figure 2. This view organises the components of a web application into three layers.
Each layer includes one or more tiers as described next.

Presentation Layer| Business Logic Data Layer
Layer
BPl:smess <
§ ﬁ ﬁ Com:(;i?nts
atabases
S & g & | AN
hg & ?vﬁ‘ N—/| 7 N—/|
t
g g Business g
Entity XML Data
Components Stores

Figure 2. The product model of the method

The presentation layer is responsible for the interaction with the end users. It deals with the
presentation of information to the users, the capture of inputs, and the management of the
user’s dialog. This layer is made of two tiers, one for each type of component: client-side and
web server components. The client-side components are related with the HTML pages of the
web application that are rendered by web browsers on client machines. They provide user
interface functionality that is not achievable by HTML elements alone. They may be
implemented using Java Applets, ActiveX controls, and Scriptlets. The web server
components, on the other hand, are executed by web servers. They provide the functionality
needed at the web server in order to:

o Prepare the HTML formatted pages that are required by web browsers, and
e Request, from the business logic tier, the services demanded by end users.

The web server components may be implemented as scripts that are interpreted by the
web servers, or as compiled binary files that are executed by the web servers.

The business logic layer consists of two kinds of components: business process
components and business entity components. The business process components handle the
services or transactions that are requested by users through the user interface. They determine
the operations of the business entity components that must be invoked and the order in which
they must be executed. The business entity components are persistent. They represent the
business entity types of the application domain whose state must be stored by the application.

The data layer is responsible for managing the data stores where the states of the business
entities are stored. Databases and XML data stores, together with their engines, are the main
architectural components of this layer.

Figure 3 illustrates the main architectural components of a web application and their
relationship with the deployment infrastructure used to install and execute these components.

A Component-Based Method for Developing Web Applications

Deployment Infrastructure
HTTP RMI JDBC
XML 1P
Web — lop — Web K—soap | Application £— SQL —) Data
Browser SOAP Server XML Server XML Server
Y
Server Data
ng :TM'— Pages - Business Stores
ages Process
(ASP, Components (Databases,
Servlets, XML
ISAPI, -Business Data Stores)
Client CGl, Entity
Scripted JSP) Components
-l C
(J2EE,
(JavaScripts, NET,
VBScripts) com)
Client
Compiled
|| Components
(Applets, o .
ActiveX Web A Architectural C it
controls)

Figure 3. Main components of a web application

According to the product model outlined in this section, the development of a web
application involves the specification, design, implementation and testing of the three groups
of components:

— The presentation group. It is composed by HTML pages, client scripted or compiled
components, and server page components. This group is responsible for the user interface
aspects of the web application.

— The business logic group. It is made of business process components and business entity
components. They are responsible for processing the logic of the application. The
business process components implement the services that are requested by the users
through the presentation components. Each of these services involves the execution of a
workflow that access and/or modify the state of the business entity components.

— The data group. It includes the databases or data stores that are managed by their
corresponding engines. The state of the business entity components are accessed and/or
updated by this group of components.

It should be observed that these three groups of components involve the use of
technologies that are quite different. Separating the web application components into these
groups has, at least, two advantages. Firstly, the development of the components can be more
casily assigned to members of the development team according to their expertise and
technological skills. Secondly, the separation of concerns facilitates the decisions to be made
during the design of the application.

4. The Team Model

An important aspect of any software development project is the organisation of the effort that
will be required to develop the application. The definition of team roles are important because
it helps the project leader to select the right people and assign them based on the skills needed
to perform the different types of task that a project requires. We will refer to the group of
people that participates in the web application development process as the development team.
A development team can be organised in many different ways depending on the
complexity of the web application to be developed. Allen and Frost (2001) provide a catalog
of team roles organized into three groups: application development roles, component
development roles, and support roles. Based on this catalog and the Watch product model, we

25

26

Jonas A. Montilva C. / Judith Barrios A.

chose a set of team roles and adapted these roles to fit the development of componentised web
applications. The resulting team configuration is made of the following roles and its associated
responsibilities:

— Project manager/team leader. This role has associated the responsibility for planning,
organizing, directing (leading), supervising, and controlling the application development
process.

— Adviser user/ambassador user. Brings to the project the knowledge about the business
or application domain. Provides the business requirements and acts as a bridge between
the development team and the user community.

— Application developer/Senior developer. Interprets and models user requirements and
uses technical skills to design and evaluate application architectures and their
components.

— Web developer. Its responsibility is to specify, design and develop web-based user
interfaces. It encompasses human factors skills (e.g., graphic design) and technical skills
related to the web technology.

— Business component developer. Models and interprets business requirements and uses
technical skills to design, code, integrate, test, and deploy business components.

— Data component developer. Models and interprets data requirements and uses technical
skills to design, create, integrate, and evaluate databases and other types of data stores
(e.g. XML data stores).

This configuration includes only core roles, i.e., roles that are more or less permanent
throughout the project. Depending on the complexity and size of the project, more roles and
responsibilities can be added or removed from this configuration.

5. The Process Model

We use a watch metaphor for designing the structure and dynamics of the Watch process
model. Using this metaphor, the development of a web application can be seen as a watch or
clock whose moving hands can be set and controlled by the project manager. The numbered
dial represents the development phases, while its moving hands represent the order in which
these phases are executed. The management processes are, therefore, at the center of the
watch. They control the progress of the phases and decide when to advance to the next phase
or go back to a previous phase to review or correct a deliverable or product.

The structure of our process model is based on the IEEE 1074 Standard for developing
software life cycles processes (IEEE, 1995) and the UML Component process for developing
component-based software (Chessman and Daniels, 2000). We chose and adapted those
process groups of the IEEE 1074 standard and the UML Component process that are most
appropriate to the development of small and medium size web applications. These processes
were then reorganized into two groups: management and development processes, as shown in
Table 1.

Table 1. The process structure of the method

Management Process
Group

Development Process
Group

Project Management
Software Quality
Management
Software Configuration
Management
Verification & Validation
Risk Management
Training

Business Modelling
Requirements Definition
Architectural Design
Component Specification
Component Provisioning
Component Assembly
Application Testing
Application Delivery

A Component-Based Method for Developing Web Applications

The management process group encloses those activities that are concerned with the
processes of managing the project, assuring the quality of the application, managing changes
and risks, and training the team. The development process group, on the other hand,
encompasses the technical activities that are needed to model the application domain, elicit
and specify requirements, and design, code, test, and deliver the application. The development
process group is adapted from the UML Components process.

Figure 4 shows the dynamics of the Watch process model expressed in terms of its phases,
their execution order and the relationship between the development processes and the
management processes.

Post-development’,
Processes |

Business
Modeling

Requirements
Definition &
Specification

Web Application
Delivery

Web Application
Testing

Design

Processes

Component
Specification

Component
Assembly

Component
Provisioning

Figure 4. The Watch process model

The development of a web application starts at the center of the model, i.e., at the
management process. Project initiation, project planning, and team organisation are the first
project management activities to be performed. Business modelling is the first development
activity to be executed after the project has been planned and organised. The other
development activities are then performed in sequential order under the control of the
verification and validation process.

The model is highly iterative. Once the project is planned and the team is organized, the
development processes are initiated under the control of the managerial processes in a
clockwise order, as indicated by the dial of the model. The verification & validation process
determines, through a product review, if the progress of the project needs go back to a
previous phase in order to correct detected failures, errors or deficiencies in the deliverables or
products of the project.

The management processes and each of the development phases of the model are described
in the next two sections.

5.1 The management processes

Management is a critical success factor in software development. The quality of the product,
the delivery of the right product on time and under budget, and the proper control of the
system configuration can only be ensured by the correct application of managerial processes.

In the Watch process model, the managerial processes group is similar in functionality to
the engine of a watch. It directs and controls the execution of the development processes. That

27

28

Jonas A. Montilva C. / Judith Barrios A.

is the reason why we envisaged the managerial processes at the center of the watch; they
control the progress of the phases and decide when to advance to the next phase or go back to
a previous phase to review or correct a product.

Table 3. The Managerial Activities and Deliverables

Processes Activities Deliverables
Project Management Project Initiation Project Plan
Project Planning Team Structure
Team Organisation Progress Reports
Team Direction
Team Staffing
Project Control
S/W Quality Management S/W Quality Planning S/W Quality Plan
Quality Assurance Quality Model
S/W Configuration CM Planning CM Plan
Management (CM) Configuration Control Change Procedures
Verification & Validation V & V Planning V&V Plan (testing plans)
(V&V) Products Review Review Reports
Risk Management Risk Identification Risk Checklist
Risk Analysis Risk Mgmt Plan
Risk Prioritization
Risk Management Planning
Risk Resolution
Training & Training Planning Training Plan
Documentation Team Training Document Plan
Training Guides Production | Training Reports
User’s Training Manuals

We identified, as crucial to the management of a web application project, six managerial
processes: Project Management, Software Quality Management, Software Configuration
Management, and Verification & Validation, Training and Risk Management. According to
the IEEE 1074 standard, the two last mentioned processes have an integral nature. We
included them into the management process group because they are under the control of the
project manager. The main managerial activities and their deliverables are itemized in Table 3.
The description of these activities is omitted from this paper due to space reasons.

5.2 The development processes

The Watch process model comprises eight development phases. These phases are executed

sequentially in a clockwise order starting by the Business Modelling Phase and ending at the

Web Application Delivery Phase. From any phase, it is always possible to return to a previous

one in order to:

— Add or modify a deliverable, such as the business model, the requirement specification,
the application architecture or a component;

— Repair an error detected in a deliverable; or

— Review and elaborate a task or activity of a previous phase.

The Verification & Validation Process of the managerial group determines when the
project has to move in a counterclockwise direction.

The Business Modelling Phase

The first development phase to be executed is called Business Modelling. This activity
identifies and describes in detail the business domain to be served by the web application. The
purpose of this phase is to allow the development team to get a good understanding of the
business domain before initiating the requirements definition phase. The deliverable of this

A Component-Based Method for Developing Web Applications

phase is the Business Model which captures the objectives, business processes, business
objects, actors, business rules, events, and job structure of the business domain.

This phase starts by defining the scope and objectives of the business domain. The
business processes and actors are identified and modeled next. A business process is a set of
business activities that, when executed correctly, contributes to reach an objective. Business
processes are executed by a set of actors (e.g., managers, employees or customers) with the
support of the web application. Business objects and rules are modeled next. Business objects
are the types of entities that are related to the domain (e.g. clients, accounts, resources and
products) and whose state are accessed or modified by business processes. Business rules are
precise statements that describe, constrain and control the structure, operations, and strategies
of a business (ILOG, 2001). Events are then identified. An event triggers the execution of one
or more business processes. They capture the dynamics of a business. Finally, the job structure
of the business domain must be represented. A job structure describes the organisation of
roles, responsibilities and authority lines of the business.

The business model describes each of these business elements and the structural and
dynamic relationships between them. Eriksson and Penker (2000) describe an extension to
UML that can be used to build the structure of the business. The dynamics aspects of the
business can be modeled using Petri Nets extensions for workflows, such as the Proclets
notation described by Van Der Aalst, et al (2000).

The Requirement Definition & Specification Phase

The purpose of the Requirements Definition & Specification phase is to discover, define and
specify the functional and non-functional requirements to be satisfied by the web application.
The main deliverables of this phase are the Requirements Definition Document (RDD) and the
Requirements Specification Document (RSD). The RDD is written in plain English with the
help of the users. The adviser and ambassador users plays a major role in the elaboration of
this document which is written for the users applying the terminology or “business language”
of the application domain. RDD documents in functional and non-functional requirements as
seen by users. Scenarios and use cases can be used in this phase to describe and specify the
functional requirements.

The RSD expresses the user’s requirements in a formal or technical way that can be
understood by the developers without any ambiguity. It describes the user’s requirements
using a formal, semiformal, or graphical notation or language, such as the Unified Modelling
Language (Booch, et al, 1999). The structure and behavior of the web application is specified
using three models: functional, structural and dynamics. The functional model of the
application can be built using the UML use case notation, which helps describe graphically the
functionality to be provided by the application. The structural model may be built using UML
class diagrams. This model captures the classes of business entities to be managed by the
system, their relationships, their attributes, and theirs operations. The dynamics model
represents the behavior of the application. UML sequence diagrams can be applied here to
describe how each function specified by the functional model must be performed by the
application. Workflow techniques can also be very helpful in documenting the application
dynamics. Petri Net based techniques such as PROCLETS (Van der Aalst, et al, 2000) and WF
nets, UML swimlanes and activity diagrams (Booch, et al., 1999), can be applied to describe
the interaction between the business processes and the application.

The Application Design Phase

The Application Design phase translates the requirements specification into a solution, i.e., a
design specification of the web application. The deliverable of this phase is the Application
Design Document (ADD) which describes and specifies the web application architecture, the
user interface and the database(s) to be used by the application. This phase is divided into the
following fours steps:

29

30

Jonas A. Montilva C. / Judith Barrios A.

— User Interface Design. The purpose of this step is to define the structural, aesthetics and
visual characteristics of the web application user’s interface. This interface is made of a
set of interrelated web pages. Each web page is composed by a set of multimedia items
(e.g., text, graphics, still images, animation, and video), forms, dialog boxes, menus,
buttons and navigation bars that allows the user to navigate and operate the web
application. The web developers design first the user interface structure based on the use
cases described by the functional model. The aesthetics and visual properties of the
interface are then decided with the collaboration of the adviser users. A prototype of the
user interface is usually made, in this step, to visualize these properties and allow the
users to validate and incorporate new requirements. Web design principles, such as those
described by Lynch and S. Horton (1999), must also be used to ensure the usability
requirements imposed to the application.

— Architectural Design. In this step, the development team designs the web application
architecture. This architecture is made of a set of software components, connectors, and
constraints that are normally organized into layers or tiers. The product model, shown in
Figure 2, provides an architectural pattern that can be refined, extended or elaborated
using the requirements, in order to define the application architecture. Web application
architecture patterns, such as those described by Conallen (2000), can also be used to
design the application architecture. Once the global view of the architecture is defined
using the patterns, the components that conform the three architectural layers
(presentation, business logic, and data layers) must be identified and initially specified.
Each of these layers is made of a set of components. Each component is, in turn,
composed of a collection of interrelated classes and one or more interfaces that define the
services offered by the component. Components are identified using the business model
and the three models (functional, structural, and dynamics) contained in the RSD.
Business entity components, for instance, are discovered using the structural model which
is composed by a collection of interrelated classes that represent business entity types.
Business process components, on the other hand, are identified using the functional and
dynamics models.

— Database Design. The data component developer must define, in this step, the type,
structure and content of the data store(s) to be used by the application. The conceptual
design of the data components (databases or XML data stores) must be produced in this
step. The structural model contained in the RSD document provides the information
needed to design in detail the components of the data layer.

The Components Specification Phase

The purpose of this phase is to specify, in more detail, the components that comprise the
application architecture and the interactions between these components. The component model
and the deployment framework to be used for implementing the components must also be
defined in this phase. A component model specifies the standards and conventions used to
implement the components. CORBA, J2EE and .NET provide their own component models
that describe how the components interact in a distribute environment. A deployment
framework provides a standard compose-time and run-time environment for deploying the
components and executing the application (Bachman, et al., 2000). The main deliverable of
this phase is the Component Specification Document (CSD).

A component specification is made for each component that comprises the presentation
and business logic layers of the application architecture. The data layer is, commonly,
comprised by a collection of tables or relations that comply with the Relational Model. Its data
components do not require to be specified as programmed components, because of the nature
of its constituents. Instead, the database conceptual design produced in the previous phase
must be transformed into an implementation design and a physical design based on the DBMS
used at the data layer. The relationships or mappings between the business entity components

A Component-Based Method for Developing Web Applications

in the business logic layer and the data components in the data layer must also be specified in
this step.

Contracts are useful mechanisms for specifying the presentation and business logic
components. Two types of contracts can be used to specify these components: usage contract
and realization contract (Cheesman and Daniels, 2001). A usage contracts describe the
relationship between the interface of a component instance and its clients (i.e., the other
component instances that request services from the component instance through its interface).
Usage contracts, on the other hand, establish the relationships between component
specification and component implementation. Usage and realization contracts are consistent
with those proposed by the Software Engineering Institute (Bachman, et al, 2000), called
interaction contracts and component contracts, respectively.

Based on the categories of contracts defined by Cheesman and Daniels (2001), we divide
this phase into the following steps:

— Usage Contract Specification. A component is seen as an integrated collection of classes
that provides a given functionality through one or more well-defined interfaces. A usage
contract specifies the interface of a component. An interface is a set of operations. Each
operation defines a service (functionality or responsibility) that the component instances
will perform when the clients request this service. The usage contract includes: (1) the list
of operations that the interface provides, (2) a specification for each operation of the
interface that describes the input and output parameters, and the constraints that apply to
the operation, (3) a specification of the set of classes that implements the interface, and (4)
the pre- and post conditions that specify the effect of each operation.

— Realization Contract Specification. A realization contract is concerned with the
implementation of a component specification. A realization contract must be consistent
with the component model. The component model and the deployment infrastructure
must, therefore, be defined before specifying the realization contracts. A realization
contract describes the interactions between the implementation of the component
specified by the contract and the other components. The mapping of the components and
the deployment infrastructure must also be specified by the contract. Conallen (1999)
describes an UML extension that can be used in this phase to associate the classes of each
component to the deployment infrastructure to be used for implementing the web
application.

The Component Implementation Phase

The purpose of this phase is to implement the design specifications produced in the
Application Design and the Components Specification phases. The main deliverable is a set of
presentation, business logic and data components that are ready to be assembled.

This phase is divided into four steps:

— User Interface Refinement. The user interface prototype, produced in the Application
Design phase, is refined in this step to accommodate new aesthetics and visual
requirements. This prototype is an HTML user interface framework that is ready to be
assembled with the presentation components.

— Component Provisioning. The purpose of this step is to acquire or develop the
presentation and business logic components that were specified in the Component
Specification Phase. Reusability is a normal practice to be applied in this step. The first
activity to be performed in this step is, therefore, the search for components that can be
reused from previous projects, component repositories, or acquired from third parties.
Based on the results of the component searching step, the development team must
accomplish next the following activities:

e Acquire. Some components can be purchased from third parties or specialized software
companies.

31

32

Jonas A. Montilva C. / Judith Barrios A.

e Subscribe. The services to be offered by some components can be externally supplied
on a subscription basis as web services or megaservices.

e Wrap. The functionality required from some components can be provided by legacy
applications that must be wrapped to provide the required services.

e Adapt. Components that have been used in previous projects or that have been found in
internal component repositories can be adapted to comply with component
specifications and implementation restrictions, such as the component model and the
infrastructure selected for deploying the components.

e Develop. Those components that can not be reused must be developed in-house from
scratch based on the corresponding component specifications.

e Component testing. The software components that were developed, adapted or
wrapped are tested individually using the testing techniques and procedures that are
specified in the V&V plan.

e Data components implementation. The databases or XML data stores that were
specified in the previous phases are implemented, in this step, using the selected
DBMSs.

The Component Assembly Phase

The components acquired or produced in the Component Implementation phase must now be
assembled to produce an integrated application, as described by the application architecture.
The implementation view of the application architecture is refined and used in this phase to
guide the assembly process.

The user interface prototype is extended with the presentation components which, in turn,
are linked to the business logic components using the appropriated middleware of the
deployment infrastructure (e.g., RMI, IOP, SOAP, and XML). The business entity components
must also be linked to the data components using middleware facilities such as XML, JDBC,
and ODBC.

The assembly of components must be tested using top-down, bottom-up or combined
integration testing techniques, as indicated by the V&V plan.

The application documentation is also written in this phase following the indications given
by the documentation plan.

The Web Application Testing Phase

The functional, performance, and acceptation tests are prepared and conducted, in this phase,
based on the testing plan provided by the management processes. The main outcome of this
phase is a tested web application that is ready to be installed.

The Web Application Delivery Phase

In this phase, the web application is installed and tested in its operational environment. The
users and operators are trained based on the training plan produced by the management
processes. Once the application is fully operational, it can be formally delivered to the client.

The end of the Delivery Phase signals the beginning of the post-development processes,
which take control of the initiation of the web application, its operation, maintenance, and
retirement.

6 Conclusions

We have introduced in this paper a component-based method for developing web applications.
The distinguished features of the method are the following: (1) its ability to integrate

A Component-Based Method for Developing Web Applications

managerial and technical activities into a process model; (2) its emphasis on reusability of
components that contributes to reduce development costs and time; (3) its ability to iterate
between development phases which is essential to incorporate changes and new requirements;
(4) the emphasis on validation and verification that contributes to increase the quality of the
deliverables of the project, and (5) the addressing of nontechnical issues such as a business
modelling that helps developers to understand much better the system’s overall functions, its
objectives, business processes, and requirements.

References
[1] Allen, P., 2001. Realizing e-Business with Components, Addison-Wesley, London.

[2] Allen, P. and Frost, S., 2001. Planning Team Roles for CBD. In Heineman, G.T and
Councill, W.T (Eds.), Component-Based Sofiware Engineering. Addison-Wesley,
Boston, 113—129.

[3] Bachman, F. et al, 2000. Volume II: Technical Concepts of Component-Based Software
Engineering. Technical Report, Sofiware Engineering Institute, CMU/SEI-2000-TR-008,
May.

[4] Barry, Ch. And Lang, M. A Survey of Multimedia and Web Development Techniques
and Methodology Use, IEEE Multimedia, 8 (2), 52—60.

[5] Booch, G., Rumbaugh, J. and Jacobson, 1., 1999. The Unified Modeling Language User
Guide, Addison-Wesley.

[6] Brinkkemper, S., 1996. Method engineering: Engineering of information systems
development methods and tools. Information and Software Technology, 38, 275--280.

[7] Conallen, J., 1999. Modeling Web Application Architectures with UML, Comm. of the
ACM, 42 (10), 63—70.

[8] Conallen, J., 2000. Building Web Applications with UML. Addison-Wesley, Reading,
Massachusetts.

[9] Curphey, M. et al, 2002. A Guide to Building Secure Web Applications and Web
Services. The Open Web Application Security Project (OWASP). http://www.owasp.org

[10] Deshpande, Y. and Hansen, S., 2001. Web Engineering: Creating a Discipline among
Disciplines, IEEE Multimedia, 8 (2), 82—87.

[11] Fraternali, P. and Paolini, P., 2000. Model-Driven Development of Web Applications:
The Autoweb System. ACM Trans. on Information Systems, 28 (4), 323-382.

[12] Gaedke, M. and Rehse, J., 2000. Supporting Compositional Reuse in Component-Based
Web Engineering, Proc. Of the ACM SAC’2000 Conference, Como, Italy, 927—933.

[13] Hadjerrouit, S., 2001. Web-based Application Development: A Software Engineering
Approach, ACM SIGCSE Bulletin, 33 (2), 31—34.

[14] Eriksson, H. E. and Penker, M., 2000. Business Modeling with UML: Business Patterns
at Work, John Wiley & Sons, New York.

[15] Ginige, A. and Murugesan, S., 2001a. Web Engineering: An Introduction, /EEE
Multimedia, 8 (1), 14—18.

33

34

Jonas A. Montilva C. / Judith Barrios A.

[16] Ginige, A. and Murugesan, S., 2001b. The Essence of Web Engineering, /EEE
Multimedia, 8 (2), 22—25.

[17] IEEE Std. 1074, 1995. IEEE Standard for Developing Software Life Cycle Processes,
IEEE Computer Society, New York.

[18] ILOG. 2001. Business Rules: Powering Business and e-Business. White Paper. May.
www.ilog.com

[19] Lynch, P. J. and Horton, S., 1999. Web Style Guide: Basic Design Principles for
Creating Web Sites, New Haven: Yale University Press.

[20] Odell, J.J., 1996. A Primer to Method Engineering. INFOSYS: The electronic newsletter
for information systems. 3 (19).

[21] Van der Aalst, W.M.P, Barthelmess, P., Ellis, C.A., Wainer, J., 2000. PROCLETS: A
Framework for Lightweight Interacting Workflow Processes. Int. J. of Cooperative
Information Systems, 1—40.

