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Sliding Mode Controller for Robust Force Control of
Hydraulic Actuator with Environmental Uncertainties

Jaouad Boumhidi * Mostafa Mrabti †

Abstract

In this paper, a reduced order linear model is selected to describe the hydraulic servo-actuator with large
environmental uncertainties. The exploitation in simulation of the perturbed 5th  order linear model is
enough for the first approach, that is to say, before experimentation to value the studied law control
potential. Because its robust character and superior performance in environmental uncertainties, a
sliding mode controller, based on the so called equivalent control and robust control components is
designed for control of the output force to track asymptotically the desired trajectory with no chattering
problems. A comparison with H-infinity controller shows that the proposed sliding mode controller is
robustly performant .
Keywords : Sliding mode control, hydraulic Servo-Actuator, output tracking.

1   Introduction
Electro hydraulic actuators are widely used in industrial applications [2], [11]. They can

generate very high forces and exhibit rapid responses. However, it is well-know that is a complex
system with regard to nonlinearity [3]. The linearization based method has been suggested as an
effective way of using the nonlinear model of the system in the control law. However, the
linearized model is an approximation of the real system dynamics. The latter having uncertainties,
the sliding mode controller (SMC) is then preferred because it's robust character and superior
performance [5]-[7]. Sliding mode utilizing discontinuous feedback controllers can be used to
achieve robust asymptotic output tracking [5], [10]. However, for experimentation, the fast
dynamics in the control loop which were neglected in the system model, are often excited by the
fast switching of the discontinuous term causing the so called “chattering". The boundary layer
solutions are proposed in [6], [9] as chattering suppression method. However the error
convergence to zero is not guaranteed. Another class of techniques is based on the use of an
observer [4], [5]. However, state observer can cause loss robustness. The higher-order sliding
mode approach, known as r-sliding mode is also used [13], [14]. However, the discontinuity set of
controllers is a stratified union of manifolds with codimension varying in the range from 1 to the
relative degree r. Unfortunately, the complicated structure of the controller discontinuity set causes
certain redundant transient chattering. In this study, a new sliding mode controller form is
proposed to achieve, both, robust asymptotic output tracking with rapid convergence and with no
chattering problems. The control action consists of the equivalent control and robust control
components. By an appropriate choose of the later as a continuous function, the chattering
problems are eliminated and asymptotic tracking holds guaranteed. By applying the proposed
controller, the perturbed sliding surface equation is enforced to zero and by an appropriate choice
of this surface, the tracking error tends asymptotically to zero in finite time and with no chattering
problems. The organization of this paper is as follows: In section II we present the uncertain
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system model. Section III presents the proposed sliding mode approach, with the design algorithm,
Section IV gives the simulation results for the tracking output force by using the SMC which is
compared to H-infinity technique [1]-[2], [8] and the concluding remark are given at the end of the
paper.

2   System model and preliminaries

The hydraulic system which is the object of this study is composed of a servo valve and
actuator, with input voltage and output actuator force. The input voltage modulates the servo
valve drawer position, opening supply and return orifices, allowing flow to enter and leave the
actuator, which allows the displacement of the piston to create the output force (Fig.1).

Fig.1 A schematic diagram of the actuator

The system analysis and its nonlinear model are presented in [8]. By linearizing this model
equations in the vicinity of an appropriate point of functioning, we obtain the following
system equations (1)-(5):

The relation between the servo valve drawer position vx  and the input voltage u can be

written as 
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where vk is the valve gain, v? is the damping ratio of servo valve and v?  is the natural

frequency of the servo valve.

The differential equations governing the dynamics of the actuator are :
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where 21 PPuP ??  is the load pressure, eqf  is the spring coefficient and S  is the piston

ram area.

The relation between the piston and the uncertain environment :
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the environmental amortisement is neglected here, er  is an arbitrary value  of the

environmental stiffness and )1( xxcr ?  is the output force

The relation between the pressure uP  and the flow

dt
udPmVrV

dt

dx
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1 ?

?? (4)

Where rV  the residual volume in the extreme position of the piston,  mV  is the mean

volume in the mean position of piston and ?  is the bulk modulus of oil.

The relation between the flow and the servo valve drawer position
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where dKcK and  are respectively the flow gain and the pressure coefficient, qC

represents the discharge coefficient, aP  is the supply pressure, vLn and  are the geometric

parameters, ?  is the fluid density and 0,0 vxuP  are respectively the pressure and the valve

position of the linearization point.

By combining the equations (1)-(5) and by considering the numeric values of the system
parameters [2], we obtain the 7th order linear model defined by the transfer function as:
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where its frequencies characteristic presents an intrinsic classic aspect of the hydraulic
actuator [12].

Many industrial applications, consider for synthesis, the reduced order linear model of
hydraulic actuator generally between 2 and 5, in [2], the 3th and 5th order linear models are
proposed by considering respectively the 3 first and 5 first poles. The order reduction is
operated with regard to there  frequencies characteristic and the reduced order linear model are
obtained from the empiric approach “Engineering judgment”. According to the frequencies
characteristic for these models (Fig. 2), only the 5th order linear model takes into account the
localized resonance in approximately 2300 (rad/s). Let consider this reduced 5th order linear
model with non minimum phase which is defined by the transfer function as:
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To obtain a nominal model with minimum phase, the propitious bilinear transformation

1)2/(
1
?

?
?

ktp

ktp
p   with k1=0.005 and k2  infinite is considered, which allows the displacement

of the poles and zeros in the left half complex plane, without changing their imaginary part.
This transformation goes hand in hand with the behaviour of hydraulic actuator in
environment uncertainties, because the 7th linear model order has all poles in the left half
complex plane. On the other hand, environmental amortisement which allows the zeros in the
left half complex plane is neglected in the 7th linear model order.

We obtain the 5th linear model order with minimum-phase where its exploitation in simulation
in the presence of uncertainties, is enough for the first approach, that is to say, before
experimentation to value the studied law control potential [2].
The nominal model in state space is then as follows:
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where 
n

X ??   is the available state, with n=5, ??)(tu , ??)(ty  and A , B  and K are
matrices of appropriate dimensions.
The system can be described by the uncertain model as follows:
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)()( tXK?  is the bounded perturbation term allocating the controlled output force, caused mainly
by the large environmental uncertainties.
We denote now the output tracking error by: )()()( trytyte ?? , where )(ty  is the controlled

output and )(try  is the reference output. We define the relative degree l  of the system to be the

least positive integer i  for which the derivative )(
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asymptotically to zero in a finite time, if we can find a controller which ensures that
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,...,,( ??  where ft  some finite time 0tft ? ¦

3   Main results

We want that the evolution of the tracking error to be governed by a globally asymptotically
stable differential equation, so called sliding surface equation. The main idea is to find a sliding
mode controller for the system defined in state space by (7)-(8) which ensures that the sliding
surface equation tend asymptotically to zero in a finite time. By an appropriate choice of this
surface, the tracking error tends asymptotically to zero in a finite time with no chattering problems.
The surface can be expressed as:
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where the coefficients i?  are selected according to the above Remark.
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 where ? ?TnxxX ...22 ? ,  then )(t?  can be written as:

rYXKARxKAr ??????? 2),(21),(1? . Let 0?  the solution of the equation 0)( ?t? with

respect to 1x , and then we can specify the sliding surface equation as:
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Theorem:    For the system defined by (7)-(8), the sliding mode control law which ensures that
)(te  tends asymptotically to zero in finite time can be written as: )()()( trutequtu ??  where:
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undisturbed nominal system state slide on the S .
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equations (10) and (13), with 01 ?r  for all KA ?? , .

Proof. In sliding surface, where 0?? , equu ?  is the control law obtained from the equivalent

control method [5] which is determined from the solution of equation 0)( ?t??  in (12) and assume

that 0)( ?t?  in (11), we obtain )0122)(
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For the disturbed sliding surface equation 0?? , let us consider a Lyapunov

function
2
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? ?V . From (12), and by using the expression of )(tu  in the theorem we have:
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Design Algorithm:

1. Choose the desired trajectory )(try  and formulate the derivative
)(

...,),(
l

rytry? .

2. Choose the coefficients i?  and formulate the sliding surface equation according to the

above Remark
3. From (9), Solve the undisturbed sliding surface equation 0??  with respect 1x  obtain 0?

4.  Derive 1r  from (10), 2F  and 1f  from (13) and choose the constant m satisfying the

condition in the theorem
5. Formulate the equivalent control and robust control presented in the theorem, respectively
for the undisturbed and disturbed sliding surface equation

In conclusion, for the perturbed sliding surface equation, if the constant m satisfies the condition in
the theorem, the robust asymptotic convergence is obtained in finite time and the asymptotic
tracking will be achieved. Since the proposed robust control term in the theorem is to be used , the
chattering will be eliminated and asymptotic tracking will hold guaranteed. In sliding surface,

01 ??x  and the total control tend to the equivalent linear  control which makes the undisturbed

nominal system state slide on the S .
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4 Simulation Results of Hydraulic Servo-Actuator

For the hydraulic servo-actuator described by the uncertain model (7)-(8), the relative degree
is 3?l , we have:
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)(try  is the reference square signal, and )(ty  is the controlled force output.
The figures 4 and 6 illustrate the output force when the control laws in figures 3 and 5 are
applied respectively. And illustrate the robust asymptotic tracking with no chattering
problems for the proposed robust sliding mode controller, which is compared to H-infinity
technique presented in [2]. The rapid convergence for the proposed  sliding mode controller is
also shown.
The simulation results show that the maximal value of the control energy is less than the
saturation value of the servo-valve, that is: V25.3?su [2].

In practice, the perpetual excitations in the control laws in figures 3 and 5, are due to the
compensation of the delay registered in the hydraulic-zeros, operated by the injection of an
additive tension control.
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Fig.2. Frequencies characteristic of models (order 7 solid (-)), (order 5 (..)) and (order 3 (--))
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Fig. 3.  Sliding mode control law ( 00,0 ?????? KandBA )
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Fig. 4. Output force y(t) (-) and y1(t) (..)when respectively the (SMC) and
the H-infinity controller are used
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Fig.6. Output force y(t) (-) and y1(t)(..) when respectively the (SMC) and
the H-infinity controller are used

5 Conclusion

The proposed sliding mode controller is applied for force control of an hydraulic servo-actuator
with environmental uncertainties. The system is described for simulation by the uncertain selected
5th order linear model with minimum-phase, which is enough for the first approach that is to say
before the experimentation to value the law control potential. By applying the proposed controller
form, both, robust asymptotic output tracking with rapid convergence and with no chattering
problems are obtained, and illustrated in the simulation results. The best performance and rapid
convergence are also demonstrated for the proposed sliding mode controller when it is compared
with H-infinity controller. Consequently, the proposed sliding mode controller has the potential to
be implemented for experimentation to obtain a very good performance.
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