
A Profile's Design
 for Parallel Applications Modelling

Daniel Alberto Giulianelli* Claudia Fabiana Pons†
Rocío Andrea Rodríguez* Pablo Martín Vera* Victor

Manuel Fernandez*
Fecha de Recibido: 07/12/2009 Fecha de Aprobación: 25/02/2010

Abstract
During the last times hardware progress has reached home computers with technologies
that were only used in main frames. Clear examples of this statement are multiple core
personal computers. As this new hardware becomes popular it is neccessary to change
the way of designing applications in order to be able to use it. UML is a wide general-
purpouse modeling language that counts with a graphic vocabulary.

In some cases, when a particular application is going to be modeled, the UML's
graphic vocabulary, results too abstract. That's why a specialization of the language
is neccessary by means of the adding of new artifacts that allows modeling the
special characteristics of the particular domain. This paper shows a profile that
specializes UML to facilitate the parellized applications modeling, considering
their own characteristics.

Keywords: Stereotypes, Metamodeling, OCL, Profile, Constraints, UML

 El avance del hardware en los últimos tiempos ha traído a máquinas hogareñas
tecnologías que sólo eran utilizadas en grandes servidores. Un claro ejemplo de esto son
las computadoras con procesadores con múltiples núcleos. Al popularizarse este
hardware es necesario un cambio en la forma de diseñar las aplicaciones para poder hacer
uso del mismo. UML es un lenguaje de representación de amplio propósito general que
cuenta con vocabulario gráfico.

En algunos casos cuando se quiere modelar un tipo de aplicación particular el
vocabulario gráfico de UML resulta ser muy reducido. Por esta razón es necesario
extender el lenguaje con nuevos artefactos que permitan modelar las características
particulares del dominio en cuestión. En este paper se presenta un profile el cual
agrega expresividad a UML para modelar aplicaciones paralelizables, teniendo en
consideración las características propias de las mismas.

Palabras Claves: Estereotipos, Metamodelado, OCL, Perfil, Restricciones, UML

Resumen

* La Matanza National University, Florencio Varela 1903, Buenos Aires, Argentina
dgilian@unlam.edu.ar , rrodri@unlam.edu.ar , pvera@unlam.edu.ar , vfernandez@unlam.edu.ar
† La Plata National University, Calle 50 y 150 La Plata, Buenos Aires, Argentina
cpons@info.unlp.edu.ar
‡ Se concede autorización para copiar gratuitamente parte o todo el material publicado en la Revista
Colombiana de Computación siempre y cuando las copias no sean usadas para fines comerciales, y que
se especifique que la copia se realiza con el consentimiento de la Revista Colombiana de Computación.

REVISTA COLOMBIANA DE COMPUTACIÓN
Volumen 11, número 1
Págs. 56 - 68

1 Introduction

Nowadays the power of home computers has substantially grown
making available to everybody equipment that was only used in big
servers due to its high price. The multicore technology included in
current microprocessors is a clear example practically, all new
equipments include microprocessors with 2 or more cores in the same
integrated circut; this technology was reserved only to servers 3 years
ago. This new trend rises because of the need of a higher performace
through the parallel computing, without the need of increasing the clock
speed [5].

The multi-core technology is applied in different devices: desktop
computers with 2 to 4 cores, laptops or notebooks with usually 2 cores in
the same chip, gaming consoles with up to 9 cores in the same processor
(eg: play station 3), or, for example the console X-Box 360 from
Microsoft that has 3 processors, each one with 2 cores. Also the integration
of these technologies on mobile devices like smart phones is growing.

This new technology opens a new design field, because, if it is necessary
to develop high performance software, it cannot be thought as sequential
processing like almost all the designers usually do, but it must be
thought, from the design the way of parellizing a determined task.

In order to address the problem, it is necessary to count with tools that
allow the modeling of these characteristics in one application and hence,
it´s necessary having way of identifying: task that can be performed in
parallel, exclusively sequential task, communication method among
different processors in order to share data, (e.g.: shared memory,
services, etc.).

When modeling specific domains some problems arise in the UML
(Unified Modeling Language) [2], [13], which make necessary the
extension of the language. This language extension will allow the
creation of new artifacts dedicated to a specific task or with a
determined meaning in the application's domain; hence they will allow
the modeling of those features that were not considered within the
original UML conception. This extension is defined by building a
profile, which is a mechanism used to extend a language in order to
express more specific concepts of certain applications' domains.

The following paragraph provides the profile's definition and its
objectives according to OMG (Object Management Group) [11]: A
UML profile is a specification that does one or more of the following:

�Identifies a subset of the UML metamodel.

57A Profile's Design for Parallel Applications Modelling

�Specifies “well-formedness rules” beyond those specified by
the identified subset of the UML metamodel. “Well-
formedness rule” is a term used in the normative UML
metamodel specification to describe a set of constraints written
in UML's Object Constraint Language (OCL) that contributes
to the definition of a metamodel element.

�Specifies “standard elements” beyond those specified by the
identified subset of the UML metamodel. “Standard element”
is a term used in the UML metamodel specification to describe
a standard instance of a UML stereotype, tagged value or
constraint.

�Specifies semantics, expressed in natural language, beyond
those specified by the identified subset of the UML
metamodel.

�Specifies common model elements, expressed in terms of the
profile.

In the OMG site it is possible to find different Profiles, for example [11]:
CORBA, Data Distribution, Testing, Enterprise Application
Integration, System on a Chip.

This work objective is to define a new UML profile, which we call
PROCODI, that allows modeling Concurrent and Distributed
Processes. The paper is organized in the following way: section 2
describes the steps to build a profile; section 3 shows an example of
modeling an application using the proposed tool and, finally, section 4
specifies conclusions and future work.

2 Profile Construction

The definition of this new language (UML based specialization that
extends it by adding expressivity to this particular domain), makes
necessary to generate a profile [3]. The steps to build the profile are the
following:

1. To define the domain entities.
2. To create a stereotype for each entity of the meta modeling,

determining the UML's elements that are going to be extended for
each stereotype.

3. To define, as profile's elements labeled values, the attributes that
appear in the metamodel, including their types' definition and their
initial values.

4. For each stereotype a graphic construction is assigned in order to
facilitate the modeling, adding expressivity to the new language.

58
Daniel Alberto Giulianelli, Claudia Fabiana Pons, Rocío Andrea Rodríguez,

Pablo Martín Vera, Victor Manuel Fernandez

5. To define the well-formedness rules of the domain's specific
models.

2.1 Domain's Own Entities
The elements of the UML language extension must be identified in
order to be able to determine its meta-modeling. The components that
are introduced by PROCODI are the following:

�Semaphores and Monitors: When threads are used, it is very
probable that some resources should be shared; hence it is
necessary to administrate their access, because only one
thread can use the resource at a time.

�Cardinality: This construction is proposed when several
threads perform an identical operation.

�Timer: extending cardinality, a construction can be made
which represents activities that are performed periodically
between a determined time.

�Messages Queues: When using applications with asynchronyc
communication, a lot of times, the messages received from
different nodes and applications go to a queue, and they
remains waiting to be processed until the resource is available.
Some examples of this technology implementation are:
MQSeries from IBM [7] and Microsoft Message Queuing
(MSMQ) [9].

�Web Services: Actually both in GRID [8] and Enterprise
environments to achieve the reuse of functionalities among
applications, it is possible to expose a determined
functionality by means of web services. This fact allows other
applications to consume them by a simple http call.

The following elements arise from making adaptations to the
preexisting Activities diagram's elements.

�Node: each swim lane of the Activity Diagram will be an
application node.

�Thread: A clearer notation is proposed, when mentioning
different states for each tread through dotted lines.

Besides, shared memory is very frequently used in parallel applications
and concurrent processing. Two specific types of them are detailed as
follows:

�Shared memory: a unique and global memory accessible from
all the processors.

�Shared - distributed memory: memory is physically

59A Profile's Design for Parallel Applications Modelling

distributed but logically shared.

2.2 Stereotype's generation
Once the metamodeling elements have been identified, the stereotypes'
definition for each element that is being extended is performed. It is
very important to take into account which UML's metamodeling
elements are being extended and to apply a stereotype over them. Some
examples are: classes, associations, relationships, operations,
attributes, etc. In this way, the stereotype will be applied to a UML
metaclass. It can be observed in Table 1, the association among the
extension's elements and the metaclasses in which the elements
stereotypes are defined. On their turn, the defined stereotypes generate
new classes that can be extended too, for example, in Table 1 the
following case is shown: the ProTimer is using ProCardinality as a
metaclass which is a stereotype that belongs to the profile.

Table 1. Association among Extension Elements and Metaclasses

2.3 Labeled Values Definition
The determination of the profile elements' labeled values is done; these
labeled values are attributes of the elements that we are extending. They
include their type definition and their possible initial values.

In Figure 1, the stereotypes derived from the metaclasses can be
observed: Class, Collaboration, Operation, ActivityParameter, and
their labeled values.

Fig 1. Labeled values determination for each profile element.

60
Daniel Alberto Giulianelli, Claudia Fabiana Pons, Rocío Andrea Rodríguez,

Pablo Martín Vera, Victor Manuel Fernandez

2.4 Graphic Constructions
For each one of the added stereotypes, in order to extend UML, a
graphic construction is built, which will grant more expression to the
language. Figure 2 shows the graphic constructions chosed for each one
of the stereotypes.

From figure 2 it is possible to see that all the final stereotypes from Table
1 have a graphic construction, except those composity relationship's
cases where a graphic construction is not performed for the basic class

61A Profile's Design for Parallel Applications Modelling

but for the elements that integrate it. The cases are:

�ProMemory where graphic constructions are created for the
defined memory types: Pro Shared Memory y ProShared
Distributed Memory

�ProSharedResourceAccessControl where the elements that
are modeled are: ProSemaphore y ProMonitor

�ProExtendedMessage: where two graphic constructions are
made that allow to distinguish the message type:
ProMailMessage y ProSMSMessage

2.5 Constraint Definition

Next, the PROCODI constraints are written. It is possible to perform
the task by using a natural language, however OCL (Object Constraint
Language) was chosen [12]. The OCL language is adopted like standard
language by OMG, to describe UML models' constraints. These
constraints can be applied both to a business level objects of a system
and to a class or object of a metamodel. The advantage of using a formal
language like OCL is the possibility of checking the compliance of the
defined constraints through a tool.

These OCL expressions are evaluated into a context; this is the link
between an UML diagram's entity and the OCL expression. This
context definition specifies the model's entity for which the expression
is defined. The reserved word Context is used to define the

62

Fig 2. Graphic construction generated for each stereotype

Daniel Alberto Giulianelli, Claudia Fabiana Pons, Rocío Andrea Rodríguez,
Pablo Martín Vera, Victor Manuel Fernandez

contextual type and when it is used within the OCL expression, the
reserved word self is used to refer to the contextual instance. For more
details over how to write OCL constraints it is advisable to read the
paper [1]. To build the profile shown in this paper the following OCL
constraints types were required:

�Invariant: The expression must be true for each instance of the
classifier at any moment in time.

�Preconditions and Post conditions: The purpose of them is to
specify the conditions that must hold before or after the
operation executes. The reserved words pre: and post: are
used. Within a post condition, the @pre suffix can be used to
refer to values at the beginning of the operation.

�Initial and derived values: The model elements' initial values
are initialized or their derived values (obtained based on other
values).

2.5.1. Invariant Constraint Type
The following pagraphs show the Invariant Constraints of the model,
expressed in OCL.

First, the case of the stereotype ProCardinality is written, which
represents a set of activities that will replicate in several parallel threads.
This set of activities is called operation and so the final quantity of
performed operations will be greater than 1, because they will be
executed in several threads.

Contex ProCardinality
inv : self.TotalOperations>1

When defining a frequency time with which an operations set will be
executed in several threads, it´s modeled with the graphic construction
ProTimer (see Picture 2). For this stereotype, the constraint that the time
interval set must be greater than 0, is specified.

Contex ProTimer
inv : self.Interval>0

Every defined Web Service must have at least one established method,
which is express in OCL in the following way:

Contex ProWebService
inv : self.WebMethods -> size()>0

It also explicits that both the semaphores and monitors must have

63A Profile's Design for Parallel Applications Modelling

indicated the quantity of resources to share at least equal to 1.

Contex ProSharedResourceAccessControl
inv : self.ResourceQuantity >0

Finally the type of message that cannot be modified at any instance of
those classes is defined for the two derived sub classes of
ProExtendedMessage.

Contex ProMailMessage
inv : messageType=”Mail”
Contex ProMailMessage
inv : messageType=”SMS”

2.5.2. Pre/Post Conditions Contraint Type
In the following example, the messages' queue restriction is written in
OCL: when the message counter is greater than 0, and a pending
message is taken to process it, the message counter will take the
previous value minus 1 which is the message removed from the queue.

Contex ProMessageQueue::PopMessage():Class
pre: self.PendingMessages>0
post: self.PendingMessages=self.PendingMessages@pre -1

The following case shows how to add a new message to the queue.

Contex ProMessageQueue::PushMessage(message:Class):Void
pre: messages->notEmpty()
post:self.PendingMessages=self.PendingMessages@pre+1

2.5.3. Initial and Derive Values Constraint Type
It was necessary to write a constraint to fix the initial default value for
the attribute “AllowsParallelization” (parallelizable) which belongs to
the class ProActivity, that implies that none activity will be
parallelizable except it is indicated.

Contex ProActivity::AllowsParallelization: :Boolean
init: -> false

3 An Application Modelling

Figure 3 shows an example of an application modeling that requires the
parallel processing execution. In this application, a reservation process
of a shared resource allocated in a determinate node arises. The

64
Daniel Alberto Giulianelli, Claudia Fabiana Pons, Rocío Andrea Rodríguez,

Pablo Martín Vera, Victor Manuel Fernandez

resources reservations are made before the moment when the resource
has to be used and each client requests the time range when he will need
the resource. The requests of the different clients, previously registered,
made all day long, are taken for that resource reservation. At the end of
the days, the turn's assignment for the use of the concerned resource is
made among all the received requests. If there is a time overlapping, the
system will calculate an independent priority for each client. This priority
is determined based on previously stored parameters like: last reservation
date, reservation compliance, use' purpose importance, etc. Once it has
been determined to which of the clients the resource will be assigned, the
system automatically sends a notification mail with an access password
to the shared resource and the reservation acceptance's confirmation.

Fig. 3. Reservation Process Modeling using PROCODI

4 Related Work

The necessity of extending the language is shared with other colleagues.
Some of them have generated particular domain's profiles others have
taken previous steps setting out which would be the necessary
adaptations.

�The article [4] specializes in the concurrence modeling. This
article, the same as ours, show the necessity of using
semaphores and monitors. They don´t build graphic

65A Profile's Design for Parallel Applications Modelling

constructions for modeling but they generate classes and by
means of the class diagram they represent these resources.
Another contact point with our work is the use of OCL as a
formal restriction language.

�The profile showed in OMG [10], allows to model
characteristics of real time systems. The authors generate
graphic constructions for the proposed stereotypes. A lot of the
metaclasses adds elements that respond to low level
characteristics, some of them, nowadays, are performed by the
operative system being transparent to the user. N this domain
the following graphic construction were added: Timer, Shared
eAccess, Messages, etc. If it want to be showed if the access is
made by a semaphore or a monitor, it must be specified
without graphic construction. The restrictons' definition is
mada by natural language instead of a formal specification like
OCL.

�The work [6] shows the real time systems modelling. The
authors use the capsule concept, where the objects groupped
into the same capsule match with the objects that are executed
in the same thread, similar to the concep of substreets
presented in this work.

�The article [14] streets are used to represent each one of the
process, they add stereotypes without the definition of graphic
construction for each one of them. They neither apply
restrictions nor generate a language formal extension, but, as
the article's title shows, they plan to adapt UML to this
particular domain.

5 Conclusions

This paper shows the necessity of extending the UML vocabulary to
model the specific characteristics of a determined domain. As it could
be watch, through the present work, creating an extension over UML
implies following a set of steps to formally define the new language.

This language relies on the UML conformation basis; it doesn´t change
UML's semantics but it specializes UML in order to model the domain
characteristics. The exposed mechanism set has allowed the definition
of a Profile showing the extensions performed by stereotypes, their
graphic constructions, and the necessary constraint written in OCL.

66
Daniel Alberto Giulianelli, Claudia Fabiana Pons, Rocío Andrea Rodríguez,

Pablo Martín Vera, Victor Manuel Fernandez

There are two main advantages in the use of OCL:

�To avoid the ambiguity that may arise when defining
constraints in natural language;

�The possibility of analyze and validate UML models with OCL
expressions using tools in the constraints definitions.

UML could have been extended without new graphic constructions,
simply adding labels over the already existing graphic constructions,
but UML has been created like a graphic language and this mechanism
would take away readability to the language.

As future work, we propose to build this same extension taking DSL
(Domain Specific Language) [8] as a basis, to be able to compare both
approaches.

6 Acknowledgements

We thank Dr. Leon Welicki (Salamanca Pontificial University, campus
Madrid and Reedmon Microsoft, USA), and CC. Artemisa Trigueros
(La Matanza National University, Argentina) because of their
collaboration with the present work.

References

[1] Becker V., Pons C. 2003. Definición Formal de la Semántica de
UML-OCL a través de su traducción a OBJECT-Z. Universidad
Nacional de La Plata, Facultad de Informática, LIFIA-
Laboratorio de Investigación y Formación en Informática
Avanzada, pp 2-6.

[2] Booch G, Rumbaugh J y Jacobson I. 2005. Unified Modeling
Language User Guide. Addison Wesley, 2nd Edition.

[3] Fuentes L. y Vallecillo A. 2004. Una Introducción a los Perfiles
UML. Depto. de Lenguajes y Ciencias de la Computación,
Universidad de Málaga Campus de Teatinos. España.

[4] Goñi A., Eterovic Y., 2004. Building Precise UML Contruscts to
Model concurrency Using OCL, Seventh Intarnational
Conference on the Unified Modeling Language and its
applications.

[5] Grama A., Karypis G., Kumar V., Gupta A. 2003. Introduction to

67A Profile's Design for Parallel Applications Modelling

Parallel Computing. Pearson. Addison Wesley. 2nd Edition.

[6] Gu Z., Shin K., 2004. Synthesis of Real-Time Implementation
from UML-RTModels. Real-Time Computing Laboratory.
Department of Electrical Engineering and Computer Science.
U n i v e r s i t y o f M i c h i g a n . , U S A . U R L :
http://kabru.eecs.umich.edu/aires/paper/gu_modes04.pdf

[7] I B M , M Q S e r i e s . U R L : h t t p : / / w w w -
306.ibm.com/software/integration/wmq/

[8] Kelly S., Tolvanen J., 2008. Domain-Specific Modeling. Wiley-
IEEE Computer Society Pr

[9] Magoules F., Pan J., Tan K., and Kumar. 2009 A. Introduction to
Grid Computing. Publisher CRC.

[10] Microsoft, Message Queuing (2003). URL:
 http://www.microsoft.com/windowsserver2003/technologies/m
smq/default.mspx

[11] OMG, A UML Profile for MARTE (Modeling and Analysis of
R e a l T i m e a n d E n b e d d e d S y s t e m s . U R L :
http://www.omgmarte.com.org/

[12] OMG. Catalog of UML Profile of Specification. 2009 . URL:
http://www.omg.org/technology/documents/profile_catalog.htm

[13] OMG, OCL Specification, Version 2.0, (2006) URL:
http://www.omg.org/spec/OCL/2.0/

[14] OMG, Unified Modeling Language, Infrastructure, Version 2.1.2
(2007) URL: http://www.omg.org/docs/formal/07-11-04.pdf

[15] Pllana S. y Fahringer T., 2002. Institute for software siencie
Austria.Vienna. On Customizing the UML for Modeling
P e r f o r m a n c e - O r i e n t e d A p p l i c a t i o n s . U R L :
http://portal.acm.org/citation.cfm?id=719627

68
Daniel Alberto Giulianelli, Claudia Fabiana Pons, Rocío Andrea Rodríguez,

Pablo Martín Vera, Victor Manuel Fernandez

