
Measurement of Tailored agent-oriented
design processes by resorting to flow
graphs: A preliminary investigation

*†Juan C. Garcia-Ojeda
Fecha de Recibido: 10/08/2010 Fecha de Aprobación: 15/10/2010

Abstract
This work describes the OMaSE-based Flow Graph (OFG). OFG is a tool for
assessing the advantages and disadvantages of tailored agent-oriented design
process in assembling time.

* Autonomous University of Bucaramanga, Department of Systems
Engineering,Colombia. jgarciao@unab.edu.co
† Se concede autorización para copiar gratuitamente parte o todo el material publicado
en la Revista Colombiana de Computación siempre y cuando las copias no sean
usadas para fines comerciales, y que se especifique que la copia se realiza con el
consentimiento de la Revista Colombiana de Computación

REVISTA COLOMBIANA DE COMPUTACIÓN
Volumen 11, número 2
Págs. 94 - 115

1 Introduction

Assessing the advantages and disadvantages of non-tailored agent-
oriented design processes has proven to be quite difficult to estimate:
These design processes are heterogeneous in their composition,
structure, and functionality (Cernuzzi, & Rossi, 2002; DeLoach, 2009a;
Sturm & Shehory, 2003). In this connection, the estimation of such
advantages and disadvantages for tailored agent-oriented design
processes could be similarly challenging. In the case of non-tailored
agent-oriented design processes, they fail to exhibit conceptual
agreement (Cernuzzi and Rossi, 2002). Moreover, the evaluation of
these design processes introduces various difficulties (Sturm &
Shehory, 2003): (i) They might address different aspects, e.g., beliefs,
goals, actions, and ongoing interactions (Jennings, & Wooldridge,
2001), or differ in their terminology; (ii) some of these design processes
are influenced by specific approaches such as Object-oriented,
Knowledge Engineering, and Requirements Engineering; and, (iii) the
design processes' completeness. In addition, the significant benefits of
adopting agent-oriented approaches to solve complex problems have
not been yet demonstrated; this is attributable to: the lack of industrial
strength methods and techniques for developing agent-based
applications, the lack of conceptual agreement, and the lack of a
common notation and models (DeLoach, 2009a).

Although a number of factors, such as design processes, concepts, and
techniques, have been suggested as important elements in the evaluation
of non-tailored agent-oriented design processes, the impact of
developing design processes appears as a common thread (Sturm, &
Shehory, 2004;Yu, & Cisneiros, 2002; Cernuzzi, and Rossi, 2002; Dam,
& Winikoff, 2003; Shehory, & Sturm, 2001). This fact gains importance
because the agent-oriented community is currently looking for the
adoption of method engineering practices (Brinkkemper, 1996) for
tailoring agent-oriented design processes (Chella et al., 2004;
Henderson-Sellers, 2005; Garcia-Ojeda et al., 2007; Nardini et al.,
2007). Unfortunately, the contributions regarding the assessment of the
advantages and disadvantages of tailored agent-oriented design
processes are scarce.

In this work, we present the OMaSE-based Flow Graph (OFG). OFG is a
tool for assessing the advantages and disadvantages of tailored agent-
oriented design processes in assembling time. Although the analysis of
design processes by resorting to flow graphs is not new (Cardoso, 2005;
Cardoso et al., 2006; Polyvyanyy et al., 2008a; Polyvyanyy et al.,
2008b), this work specifically advances the state of the art of the agent-
oriented software engineering in one crucial aspect: it articulates the role

95
Measurement of Tailored agent-oriented design processes by resorting to flow graphs:

A preliminary investigation

of flow graphs as a modeling, analysis, visualization, and abstraction
tool for measuring tailored agent-oriented design processes. As a
modeling tool, OFG allows both a causal and a behavioral design process
analysis. As an analysis tool, OFG can be used to verify if the design
process proceeds correctly from the beginning to the end, so process
engineers can validate the process in fact transform its inputs into the
derived output. Also, OFG can be used to derive design process metrics
(core of this work).As a visualization tool, OFG improves understanding
over the process under construction. OFG enhances the ability of process
engineers to picture the relationships between tasks in a process. This
fact not only would save time but also would improve learning, speeding
up development and saving considerable effort and expenses.Also, OFG
can be easily used to find tasks that can be executed in parallel, so process
engineers can detect critical path in the process (this feature is not
addressed in this work). Finally, as an abstraction tool, OFG provides an
abstract representation of the design process, containing only details
which provide information about the different components/modules that
can be documented at the end of the design process.

The remainder of this work is organized as follows: Section 2 briefly
introduces the OMaSE Process Framework. Section 3presents a
motivating example used to illustrate the application of OFG. In
Sections 4 and 0, this work details the formalism behind the OMaSE-
based Flow Graph and the Meta OMaSE-based Flow Graph. In Section
6, a set of metrics is defined. In Section 0, the set of metrics is
empirically validated by means of a set of experiments. Finally, Section
0 concludes the work.

2. Background

2.1 TheOMaSE ProcessFramework
The OMaSE Process Framework (OMaSE) helps process engineers to
define tailored design processes. In OMaSE, process designers can
build their own customized design processes by selecting methods
fragments from a repository and assembling them into a complete
design process. OMaSE is composed of three basic components: the
meta-model, the set of method fragments, and the set of guidelines; and,
supported by the agentTool Process Editor (Garcia-Ojeda et. al, 2009).
The OMaSE metamodel defines the key concepts needed to design and
implement multiagent systems (see). The method fragments are
operations or tasks that are executed to produce a set of work products,
which may include models, documents, or code. Finally, a set of
guidelines define how the method fragments are related to one another
(for further details refer to Garcia-Ojeda et al., 2007).

96 Juan C. García-Ojeda

Fig. 1 OMaSe Metamodel

3 MotivatingExample

Throughout this work, we use an example from the adaptive sensor
networks field to demonstrate the application of OFG in the definition of
design process metrics. The example we use is the Adaptive Sensor
Network System (ArtS). Basically, an organization is interested in the
development of a sensor network system such that its structure self-

‡adapts and overcomes possible sensor (i.e., agents) failures in running
time. Therefore,ArtS is required to be highly adaptive and robust. Based
on the requirements stated above, let assume that a process engineer
assembles two design processes: one generic agent-based design process
(see Fig 2 a); and, the other one a role-based design process (see Fig. 2b).

(a) (b)
Fig. 2 . OMaSE-based Compliant Processes

97

 ‡Based upon the event that occur in the environment

Measurement of Tailored agent-oriented design processes by resorting to flow graphs:
A preliminary investigation

4 OMaSE-based FlowGraph

This section introduces the OMaSE-based Flow Graph (OFG).
Formally, OFG captures OMaSE-based tailored design processes in the
form of flow graphs. In OMaSE, processes are assembled choosing the
most appropriate tasks from a common repository. These tasks are small
jobs performed by one or more producers (i.e., roles). To achieve a
particular task, steps (or actions) need to be performed. Likewise,
producers create and maintain work products. Work products (or
artifacts) are pieces of information or physical entities (e.g.,
applications, documents, models, diagrams, or code) produced and
consumed by tasks. Next, we introduce the formal definition of an OFG

Definition 1 (OFG). An OMaSE Flow Graph is a tuple OFG = <T,
Source SinkT , T , Steps, WorkProducts, Producers, F> , where:

- T is a finite set of tasks, such that ∀t T, t=<name ,producer, step,
workproduct, input, output>

Source- T T is a finite set of source tasks,
Sink- T T is a finite set of sink tasks,

- Steps is a finite set of steps, such that ∀s Steps, s
=<name,description>,

- WorkProducts is a finite set of work products, such that
∀w WorkProducts, w=<name, description>,

- Producers is a finite set of producers, such that ∀p Producers,
p=<name, workproduct>, where workproducts WorkProducts; and,

- F TxTis the flow relation

The relation F defines a directed graph with nodes Tand arcs F. Because
§OMaSE processes are validated against a set of guidelines , we must

formally define valid input tasks and output tasks for a given task in an
OFG. These constraints are captured by means of Definitions 2 and 3.

Definition 2 (Valid Predecessor Task, ⇒t). Given tasks t , t  OFG.T1 2

and f  OFG.F, a Valid Predecessor Task⇒ t is defined as ⇒ t = {t | t f t2 2 1

 t .output t .input}2 1

Definition 3 (Valid Successor Task, ⇒ t). Given t , t  OFG.T and f 1 2

OFG.F, a Valid Successor Task ⇒t is defined as ⇒t = {t | t f t 2 1 2

t .output  t .input}1 2

98

§ In OMaSE guidelines are used to describe how tasks can be combined in order to assemble tailored
processes. Guidelines are specified as a set of constraints related to tasks, and work products. These
guidelines are formally specified as a set of inputs (i.e., set of work products) that may be used in
performing a task and a set of outputs (i.e., set of work products) that may be produced from a task.

Juan C. García-Ojeda

On the other hand, Definition 1 allows for OFGs' which are
unconnected, without start/end tasks, tasks without any input and
output, etc. Therefore we need to restrict the definition to consistent
OFGs' (i.e., Definition 4).

Source SinkDefinition 4 (Consistent OFG): An OFG = <T, T , T ,
WorkProducts, Producers, Steps, F> is consistent if:

5 Meta OMaSE-based FlowGraph

Given a consistent OFG model, we can even further characterize its
structure. Basically, we can make use of the concept of abstraction to
generalize collection of tasks with similar purposes into specific
components (or modules). This fact is important because project
manager/organization can devise the different components that would
be modeled at the end of the application of the tailored design process.
Also, these components would help us to derive some useful metrics.

Definition 5 (OMaSE-based Components, OComp). A collection of
OMaSE-based components, OComp, is the union of seven different
components such that OComp = ReqComp ←OrgComp ←FuncComp
BehComp ←SocComp ←NormComp, where:
- ReqComp OFG.T, such that ∀t  ReqComp, t.output.name =

“System Description” t.output.name = “System Requirement
Specification”

- OrgComp OFG.T, such that ∀t  OrgComp, t.output.name =
“Goal Model” t.output.name = “Role Model” t.output.name =
“Agent Classes Model” t.output.name = “Model Organization
Interfaces”

- FuncComp OFG.T, such that ∀ t  FuncComp, t.output.name =
“Capability Model”}

- BehComp OFG.T, such that ∀ t  BehComp, t.output.name =
“Plan Model” t.output.name = “Action Model”

- SocComp OFG.T, such that ∀ t  SocComp, t1.output.name =
“Protocol Model”

- DomComp OFG.T, such that ∀ t  DomComp, t.output.name =
“Domain Model”

- NormComp OFG.T, such that ∀ t  NormComp, t.output.name =
“Policy Model”

99
Measurement of Tailored agent-oriented design processes by resorting to flow graphs:

A preliminary investigation

Once the set of components is defined, next, we formally define the
Meta OMaSE-based Flow Graph (MOFG).

Definition 6 (Meta OMaSE-based Control Flow Graph, MOFG): A
Meta OMaSE Flow Graph is a tuple MOFG = <OComp, MF> , where

- OComp is a finite set of OMaSE-based Components
- MF  OComp x OComp is the meta flow relation

The relation MF defines a directed graph with nodes OComp and arcs
MF. Definitions 9 and 10 state the conditions for valid flows between
OMaSE-based components.

Definition 7 (Valid Meta Predecessor Component, ⇒c). Given c1, c2
 MOFG.OComp and f  MOFG.MF, a Valid Meta Predecessor
Component ⇒c is defined as ⇒c = {c2 | ∃ t1 c1, ∃ t2 c2: c2 f c1
t2.output  t1.input c1c2};

Definition 8 (Valid Meta Successor Component, ⇒c). Given c1, c2
MOFG.OComp and f  MOFG.MF, a Valid Meta Successor
Component c⇒ is defined as c ⇒ = {c2 | ∃ t1 c1, ∃ t2  c2: c1 f c2
 t1.output  t2.input c1c2}

Fig. 3 and Fig. 4 show the OFG representation for process 1 and process
2. Likewise, Fig. 5 shows the MOFG representation for process 1 and
process 2. Notice they share the same MOFG representation.

Fig. 3. Process 1 – OFG Representation

100 Juan C. García-Ojeda

Fig. 4. Process 2 – OFG Representation

Fig. 5. Process 1 and Process 2
MOFG Representation

101
Measurement of Tailored agent-oriented design processes by resorting to flow graphs:

A preliminary investigation

6 MetricsDefinition

In this section, we introduce a set of metrics derived from the OFG and
the MOFG definitions (refer to Sections 4 and0). The aim of these
metrics is to provide measurement tools for assessing the advantages
and disadvantages of tailored OMaSE-based design process. The set of
metrics includes: the size of the tailored design process; and, the
expected maintainability, flexibility, and robustness of the system to-be
designed. To derive such metrics, this work resorts to the Measurement
Information Model (McGarry et al., 2002). The measurement
Information Models provides a mechanism for linking defined
information needs to software engineering processes and products that
can be measured. Next, we explain the set metrics built upon the
Measurement Information Model.

6.1 Sizeof theDesign Process
This is the simplest set of metrics. These metrics are based upon the
question: what should be measure in order to satisfy the project
manager/organization information need regarding the size** of the
tailored design process? To address this question, we first identify the
process attributes most relevant to the measurement user's information
needs. For purposes of this metric, we identified the following attributes
of interest: (i) the number of tasks, (ii) the number of steps per task, (iii)
people involved in the process; and (iv), the number of OMaSE-based
components. Next, we identify the base measures. A base measure is a
measure of a single attribute defined by a specified measurement
method. In our case, we identify four base measures: OMaSE
Component (OC), Process Size (PS), Process Team (PT), and Process
Steps (PSt). OC is the number of OMaSE Components that can be
modeled by using a given process, PS is the number of tasks in the
process, PT is the number of people involved in the process, and PSt is
the number of steps that need to be performed in the process. Once we
have defined the base measures, the next step is to derive the indicators.
An indicator is a measure that provides an estimate or evaluation of
specified attributes derived from an analysis model with respect to
defined information needs. In our analysis, we have defined two
indicators: OMaSE Component Workload Index (OCWI) and Process
Workload Index (PWI). These two indicators will help project
managers/organization to estimate the size of the OMaSE-based
tailored process (see Table 1). Thus, by Applying the metrics defined in
this section, the project manager/organization may assume that using
process 2 in the development ofArtS would imply more money and time
than process 1 (see Table 2).

102

** Size implies time and cost

Juan C. García-Ojeda

Table1 . Metrics Indicator

Table 2 . Derived Process Size Metrics

6.2 Estimating Maintainability, Flexibility, and
Robustnessof theSystem to-beDesigned

One of the main goals of multiagent systems is to provide solutions for a
wide variety of problems (Jennings, 2001). However, indeterministic
environments make multiagent systems susceptible to individual
failures that can significantly reduce its ability to accomplish its overall
goal (DeLoach et al., 2008). Therefore, from the point of view of the
project manager/organization, it is extremely important that tailored
processes can cope with the development of maintainable, flexible, and
robust multiagent systems. Next, we characterize the measurement to
be carried-out with the purpose of estimating maintainability,
flexibility, and robustness of the outcome of the design processes.

6.2.1 Maintainability
In software engineering, the maintainability of software products or
design models is associated with making future maintenance easier. To
estimate the maintainability, we rely on the size of the organization. In
(Matson, 2008), the author stresses the importance of measuring the
size of the multiagent organization. For purposes of this metric, we
identify the following attributes: the number of organizational
concepts, the number of organizational relationships, the number of
functional components, and the number of organizational-functional
relationships. Next, we identify the base measures. In this case, we
identify four base measures: Organizational Concepts (OC),
Organizational Relationships (OR), Functional Concepts (FC), and
Organizational-Functional Relationships (OFR). Formula 1 states how
OC is calculated. Basically, OC is the number of organizational
concepts contained in OrgComp. Likewise, Formula 2 gives us the
relationships between organizational components. This is obtained by

103

Indicator Description Analysis Model Decision Criteria

OCWI OMaSE Component Workload Index
(OCWI). This is calculated by
establishing the proportion of OMaSE
Components and steps per producer in
the process

OWCI = (PSt / OC) *
PT

Range [0 ... ∞]The higher this
measure is, the greater the size
of the process is. (more time
and money invested)

PWI Process Workload Index (PWI) . This
is calculated by est ablishing the
proportion of steps and tasks per
producer in the process

PWI = (PSt / PS) * PT Range [0 ... ∞],The higher this
measure is, the greater the size
of the process is. (more time
and money invested)

Process Size Metrics OC PS PT PSt OCI PWI

Process 1 5 7 6 12 14.4 10.29

Process 2 5 8 7 14 19.6 12.25

Measurement of Tailored agent-oriented design processes by resorting to flow graphs:
A preliminary investigation

counting the number of links between elements in OrgComp. Also, FC
is calculated in Formula 3. In essence, FC can take either the value 0 or
1. Finally, OFR is calculated in Formula 4. Formula 4 gives us the
number of outgoing links from elements in OrgComp to elements in
FuncComp. N is the cardinality of the given set.

Once we have defined the base measures, the next step is to derive the
indicator. For maintainability, we have defined one indicator: Design
Process Maintainability Index (DPMI). This indicator will help project
managers/organization to estimate the degree of maintainability of the
system to-be (see table 3). Because of this, the project
manager/organization may assume the maintenance of process 1 would
be easier than the maintenance of process 2 (see Table 4).

Table 3. Design Process Maintainability Metrics Indicator

Table 4. Derived Design Process Maintainability Metrics

6.2.2 Flexibilityof theSystem to-beDesigned
In (Robby et al., 2006), authors provide a set of metrics for measuring
system flexibility based upon the state-spaces generated by Bogor for
particular OMaSE-based organization designs. For purposes of this
work, we propose a different approach for measuring the flexibility of
the system to-be designed. Since agents depend upon specific

104

 ∀ =

ÿ
=

otherwise,name}.tname.toutput.toutput. t:Ct,t|OrgComp{CN(C)

MOFGOrgComp,0
OC

212121

(1)

 ∃∀ =

ÿ
=

otherwise,output}.toutput.tft t:OrgCompt,tR,f|F.OFG{RN(R)

MOFGOrgComp,0
OR

212121

(2)

 ÿ

=
otherwise,1

MOFGFuncComp,0
FC (3)

∃∀ =

ÿ
=

otherwise,}ft t:FuncComptOrgComp,tR,f|OFG.F{RN(R)

MOFGOrgComp,0
OFR

2121
(4)

Indicator Description Analysis Model Decision Criteria

DPMI Design Process Maintainability Index
(DMPI). This is calculated by establishing
the nu mber of Concepts and Relationships
within the Organizational and Functional
Components, as well their relationships.

DPMI = OC + FC +
OR + OFC

Range [0 ... ∞] The
lower this measure is,
the easier to maintain.

Process Size Metrics OC OR FC OFR DPMI

Process 1 2 1 1 1 5

Process 2 3 2 1 2 8

Juan C. García-Ojeda

capabilities for accessing and modifying the environment and such
capabilities are realized upon plans and actions, we argue that the
higher the coupling of the behavioral component with other
components is, the more tools the development team would have to
model flexible (i.e., able of overcoming failures) systems. Because
flexibility is defined in terms of the BehComp (Formula 5), if BehComp
=  then the flexibility is 0; otherwise, we calculate the In-Degree
Function (IDF) value for the behavioral component (see Formula 6).
The IDF function calculates the number of incoming relationships to
BehComp. As result, flexibility's values ranges from 0 to 1. By
applying the metrics defined in this section, the project
manager/organization may expect the same degree of flexibility either
using process 1 or process 2 (see table 5).

Table 5 . Derived Design Process Flexibility Metrics

6.2.3 Robustness
In computing, the robustness of a system is associated with the ability
of performing without failure under a wide range of conditions. We
may assume that if a system that can adapt when external changes
occurs (i.e., flexible), then the robustness of the system will increase.
For purposes of this work, the robustness of the system to-be designed
is given by,

Robustness's values range from 0 to .Applying the metrics defined in
this section to the processes depicted in Section 3, the project

105

flexibility =
0 ,BehComp ÿ MOFG

1 −
1

IDF
,BehComp  MOFG

 (5)

 (6)

Process Size Metrics IDF Flexibility

Process 1 2 0.5

Process 2 2 0.5

>

=
= 0flexibility,

flexibility-1

flexibility
0flexibility,0

robustness (7)

Measurement of Tailored agent-oriented design processes by resorting to flow graphs:
A preliminary investigation

manager/organization may expect the same degree of robustness either
using process 1 or process 2 (see Table 6).

Table 6 . Derived Design Process Robustness Metrics

7. MetricsValidation

To empirically validate the metrics defined in the previous section, we
run two different set of simulations. Next we present the preliminary
results.

7.1 Sizeof theDesign Process
For the first experiment, we used a trial version of the iGrafx tool
(http://www.igrafx.com/). IGrafx is a discrete event simulator for
generic processes simulation. To measure the size of the design process,
we simulated the cost and completion time. For every model (i.e.,
design process), we simulated that for every task in the model, every
step was scheduled back to back satisfying the following conditions: (i)
service time between steps was normally distributed over an interval of
2 to 4 days, (ii) team members were paid $5.00 per hour; and, (iii) team
members used to work 8 hours/day, 5 days/week, and 22 days/month.
For empirical analysis, each design process (i.e., model) was simulated
for 50 executions. The results of the simulation are shown in table 7
.Notice that results are consistent with the measurements obtained in
Section6.1.

Table 7 . Size of the Design Process - IGrafx Simulation Results

7.2 System to-beDesigned related Metrics
For the second experiment, we designed several ArtS models using
process 1 and process 2. Worth noting that the final structure of OMaSE-
based designs takes on the form of a graph for computational purposes
(Matson, 2008). Because the different models might have goals, roles,
capabilities, and agents (each which can grow independently of the

106

Process Size Metrics Flexibility Robustness

Process 1 0.5 1

Process 2 0.5 1

Process-related
Metrics

Process Completion
(Weeks)

Total Labor Cost
($)

Process 1 2.71 $1,368.30

Process 2 3.71 $1,888.70

Juan C. García-Ojeda

others), we assume that sparse and dense graph specification might
provide us the basis for lower and upper bound approximations. Also,
for purposes of this work, a generic goal model for the ArtS system is
specified (see Fig. 6). Such model consists of four leaf goals: G1.1,
G1.2, G2, and G3. The “precedes” relation (p) provides the natural
ordering of goals achievement in the system. That is, the “precedes”
relation between goal x and goal y states that goal y cannot be pursued
until goal x has been achieved (DeLoach et al., 2008). Next we show
the preliminary results.

Fig. 6. ArtS Goal Model

7.2.1 Process1: OMaSE-based GenericModel
For process 1, we documented four generic models (see table 8). Every
model consists of four agents, four capabilities, and four leaf goals
(i.e., G1.1, G1.2, G2, and G3). For instance, in Model 1 (see Table 7),
every agent possesses one capability and every capability fulfills every
leaf goal (via a plan). The size of every model ranges from 32 (i.e.,
lower) to 44 (i.e., higher). In the case of Model 1 its size is 32. That is,
Model 1 contains four agents, four capabilities, and four goals, and 20
relationships (i.e., relationships between them). To empirically
evaluate the flexibility of designs M1 – M4, we developed a simulation
that stepped through the ArtS application. To measure the flexibility,
we simulated capability failure (i.e., plans or actions failure rates
ranging from 0 to 100%). At each step in the simulation, a randomly
assigned goal was achieved. Then, one agent (i.e., sensor) capability
was randomly selected and then tested to see whether or not it had
failed. We assumed once a capability failed (i.e., plan or action), a
capability remained failed for the life of the system. Then,
reorganization was performed to assign available sensors to available
goals and to de-assign sensors if their capability had failed, and they
were no longer able to fulfill their goal.Also to measure the robustness,
we calculate the expected functionality of the system under capability

107
Measurement of Tailored agent-oriented design processes by resorting to flow graphs:

A preliminary investigation

108

failures. For empirical analysis, each model was simulated for 500
executions. To compare the flexibility and robustness of the models,
we looked at the results using each of the models. The results in Fig. 8
and Fig. 9 show that Models 2 and 3 provides more flexibility and
robustness than Models 1 and 4.

Table 8. Process 1 – Generic Models

Fig. 7. Process 1 – Model 1

Fig. 8. Process 1 – Expected System Flexibility

Juan C. García-Ojeda

Fig. 9. Process 2 – Robustness under Capability Failure

7.2.2 Process2: Role-based Model
For process 2, we documented eight generic models (see Table 9).
Unlike Process 1, every model in Process 2 consists of four agents, four
roles, four capabilities, and four leaf goals (i.e., G1.1, G1.2, G2, and
G3). For example, in Model 1 (see Figura 10) every agent possesses one
capability, every role requires one capability and every role achieves
one leaf goal. The size of every model ranges from 28 (i.e., lower) to 64
(i.e., higher). In the case of Model 1 its size is 28. That is, Model 1
contains four agents, four roles, four capabilities, and four goals, and
12 relationships (i.e., links between them). To empirically evaluate the
flexibility and robustness of designs M1 – M8, we used the same
approached introduced before (see Section 7.1). That is, to measure the
flexibility and robustness, we simulated capability failure (i.e., i.e.,
plans or actions) and we calculated the expected functionality of the
system under capability failures, respectively. However, for every
model build using process 2, we simulate the roles played by agents
(i.e., sensors). For empirical analysis, each model was simulated for
500 executions. To compare the flexibility and robustness of the
models, we looked at the results using each of the models. The results in
Figure 11 and Figure 12 show that Models 2 and 6 provides more
flexibility and robustness than Models 1, 3, 4, 5, 7, and 8. Also, the
reader can notice the expected flexibility and robustness for Models 5
and 7 is 0. This is due to the assumption that if an agent does not possess
the set of required capabilities by a given role, then the role cannot
achieve its goals (see DeLoach et al., 2008; DeLoach, 2009b). In the
simulation, if an agent's capability fails and the role played by the agent
requires such capability, the role is no longer able to achieve the
assigned goal.

109
Measurement of Tailored agent-oriented design processes by resorting to flow graphs:

A preliminary investigation

Table 9. Process 2 – Generic Models

Fig. 10. Process 2 – Model 1

Fig. 11. Process 2 – Expected System Flexibility

110 Juan C. García-Ojeda

Fig. 12. Process 2 – Robustness under Capability Failure

7.3 ComparingProcess1and Process2
In terms of the design process size, we would expect process 1 to be a
less expensive and time-consuming process than process 2 (results
shown in Section 7.1). In terms of maintainability, flexibility, and
robustness (results shown in Section 0), we would expect process 1 to be
more maintainable than process 2. Also, we would expect flexible and
robust systems either following process 1 or process 2 (see Figure 13
and Figure 14).

Fig. 13. Process 1 (P1) and Process 2 (P2) - Flexibility (Combined Chart)

Fig. 14. Process 1 (P1) and Process 2 (P2) – Robustness (Combined Chart)

111
Measurement of Tailored agent-oriented design processes by resorting to flow graphs:

A preliminary investigation

8 Conclusions

This work presented a flow graph based approach – OFG, MOFG – for
assessing the advantages and disadvantages of tailored design
processes. In this work, the OFG and the MOFG models were used as a
modeling, analysis, visualization, and abstraction tool for measuring
tailored design processes. Although this work is a starting point, one
interesting question to address is when is a role-based design process a
better choice over a generic agent-based design process? From the
simulated results, it is clear that the re-organization of the system relies
on how well agents and capabilities are coupled.

9 References

[1] [Brinkkemper, 1996] Brinkkemper, S. (1996). Method
Engineering: Engineering of information Systems Development
Methods and Tools. Information and Software Technology 38,
pages 275 – 280. Elsevier Science B.V.

[2] [Cardoso, 2005] Cardoso, J. (2005) Control-flow Complexity
thMeasurement of Processes and Weyuker's Properties. In 6

International Enformatica Confererence, Transactions on
Enformatica, Systems Sciences and Engineering, Vol 8, (2005),
pages 213 – 218.

[3] [Cardoso et al., 2006] Cardoso, J., Mendling, J., Neuman, G., and
Reijers, H.A. (2006). A Discourse on Complexity of Process
Models. Business Process Management Workshops (2006), pages
117 – 128.

[4] [Cernuzzi and Rossi, 2002] Cernuzzi, L., and Rossi, G. (2002). On
the Evaluation of Agent-Oriented Modeling Methods.
Proceedings of the OOPSLA 2002 Workshop on Agent-Oriented
Methodologies, pages 21 – 30, Seattle, USA.

[5] [Chella et al., 2004] Chella, A., Cossentino, M., Sabatucci, L.,
Seidita, V. (2004). From PASSI to Agile PASSI: tailoring a design
process to meet new needs. Proceedings of the IAT 2004, pages
471 – 474.

[6] [Dam and Winikoff, 2003] Dam, K. H.., and Winikoff, M. (2003).
Comparing Agent-Oriented Methodologies. Giorgini, P., and

thWinikoff, M. (Eds.) Proceedings of the 5 International Bi-
Conference Workshop on Agent-Oriented Information Systems,
pages 52 – 59.

112 Juan C. García-Ojeda

113

[7] [DeLoach et al., 2008] DeLoach, S.A., Oyenan, H.W., and
Matson, E.T. (2008). A capabilities-based model for adaptive
organizations. Autonomous Agents and Multi-Agent Systems
16(1): 13-56 (2008)

[8] [DeLoach, 2009a] DeLoach, S.A. (2009). Moving Multiagent
Systems from Research to Practice. Special Section on Future of
Software Engineering and Multiagent Systems. International
Journal of Agent-Oriented Software Engineering (IJAOSE). (in
Press).

[9] [DeLoach, 2009b] DeLoach, S.A. (2009). OMACS: a Framework
for Adaptive, Complex Systems. In Virginia Dignum (ed.) Multi-
Agent Systems: Semantics and Dynamics of Organizational
Models. IGI Global: Hershey, PA. ISBN: 1-60566-256-9 (March
2009).

[10] [Garcia-Ojeda et al., 2007] Garcia-Ojeda, J.C., DeLoach, S.A.,
Robby, Oyenan, W.H., and Valenzuela, J.L. (2008) OMaSE: A
Customizable Approach to Developing Multiagent Development

thProcesses. In Proceedings of the 8 International Workshop on
Agent-Oriented Software EngineeringAOSE 2007.

[11] [Garcia-Ojeda et al., 2009] Garcia-Ojeda, J.C., DeLoach, S.A.,
and Robby. (2009) agentTool Process Editor: Supporting the
Design of Tailored Agent-based Processes. In Proceedings of the
2009ACM Symposium onApplied Computing SAC 2009.

[12] [Henderson-Sellers, 2005] Henderson-Sellers, B. (2005) Creating
a Comprehensive Agent-Oriented Methodology: Using the
Method Engineering and the OPEN Metamodel. Henderson-
Sellers, B., and Giorgini, P. (Eds.) Agent-Oriented
Methodologies, pages 368 - 386.

[13] [Jennings, 2000] Jennings, N.R. (2000). On Agent-Based
Software Engineering.Artificial Intelligence, 117(2), pages 277 –
296.

[14] [Jennings and Wooldridge, 2001]. Agent-Oriented Software
Engineering (2001). Bradshaw, J. (Ed.) Handbook of agent
technology,AAAI Press /MIT Press.

[15] [Matson, 2008] Matson, E.T. (2008). Transition in Multiagent
Organizations. Ph.D. Disseration, University of Cincinnati, pages
209.

Juan C. García-Ojeda

114

[16] [McGarry et al., 2002] McGarry, J., Card, D., Jones, C., Layman,
B., Dean, J., and Hall, F. (2002). Practical Software Measurement:
Objective Information for Decision Makers. Addison-Wesley
Longman Publishing Co., Inc. 2002.

[17] [Nardini et al. 2008] Nardini, E., Molesini, A., Omicini, A., and
Denti, E. (2008). SPEM on test: the SODA case study. In
Proceedings of the 2008ACM Symposium onApplied Computing
SAC '08, pages 700-706.

[18] [Polyvyanyy et al., 2008a] Polyvyanyy, A. and Weske, M. (2008).
Flexible Process Graph: A Prologue. In Proceedings of the OTM
2008 Confederated international Conferences R. Meersman and
Z. Tari, Eds. Lecture Notes in Computer Science, vol. 5331.
Springer-Verlag, Berlin, Heidelberg, 427-435

[19] [Polyvyanyy et al., 2008b] Polyvyanyy, A. and Weske, M.
(2008b). Hypergraph-based Modeling of Ad-Hoc Business
Processes. In Proceedings of the 1st International Workshop on
Process Management for Highly Dynamic and Pervasive
Scenarios, (Sep 2008).

[20] [Robby et al., 2006] Robby, DeLoach S.A., and Kolesnikov, V.A.
(2006). Using Metrics for Predicting System Flexibility. In
Proceeding of the Fundamental Approaches of Software
Engineeering (FASE'06). 2006.

[21] [Shehory and Sturm, 2001] Shehory, O., and Sturm, A. (2001).
Evaluation of Modeling Techniques for Agent-Based Systems.

thProceedings of the 5 International Conference on Autonomous
Agents, pages 624 – 631.ACM Press.

[22] [Sturm and Shehory, 2003] Sturm, A., and Shehory, O. (2003). A
Framework for Evaluating Agent-Oriented Methodologies.

thGiorgini, P., and Winikoff, M. (Eds.) Proceedings of the 5
International Bi-Conference Workshop on Agent-Oriented
Information Systems, pages 60 – 67.

[23] [Sturm and Shehory, 2004] Sturm, A., and Shehory, O. (2004). A
Comparative Evaluation of Agent-Oriented Methodologies.
Bergenti, F., Gleizes, M-P., and Zambonelli, F. (Eds.)
Methodologies and Software Engineering for Agent Systems. The
Agent-Oriented Software Engineering Handbook, pages 127 -
149. KluwerAcademic Publisher.

Measurement of Tailored agent-oriented design processes by resorting to flow graphs:
A preliminary investigation

115

[24] [Yu and Cysneiros, 2002] Yu, E., and Cysneiros, L. M. (2002).
Agent-Oriented Methodologies – Towards a Challenge Exemplar.
Giorgini, P., Lesperance, Y., Wagner, G., and Yu, E. (Eds.)

thProceedings of the 4 International Bi-Conference Workshop on
Agent-Oriented Information Systems, pages 47 – 63.

[25] [Zambonelli and Omicini, 2004] Zambonelli, F., and Omicini, A.
(2004) Challenges and Research Directions in Agent-Oriented
Software Engineering. Autonomous Agents and Multi-Agent
Systems 9, 3 (Nov. 2004), pages 253 – 283.

Juan C. García-Ojeda

