
Using a RESTful messaging and registry
system to support a range a distributed

applications

Mark Baker*, Hugo Mills, Garry Smith, Matthew Grove,
Rahim Lakhoo, Carl Albing

Fecha de Recibido: 05/07/2010 Fecha deAprobación: 20/09/2010

Abstract
Tycho was conceived in 2003 in response to a need by the GridRM [1], a resource-
monitoring project for a “light-weight”, scalable and easy to use wide-area distributed
registry and messaging system. Since Tycho's first release in 2006 a number of
modifications have been made to the system to make it easier to use and more flexible.
Since its inception, Tycho has been utilised across a number of application domains
including wide-area resource monitoring, distributed queries across archival databases,
providing services for the nodes of a Cray supercomputer, and as a system for transferring
multi-terabyte scientific datasets across the Internet. This paper provides an overview of
the initial Tycho system describes a number of applications that utilise Tycho, discusses a
number of new utilities, and how the Tycho infrastructure has evolved in response to
experience of building applications with it.

Keywords: Restful, HTTP, PUT/GET, Transactions, Web 2.0, Peer-to Peer, Virtual
Registry.

REVISTA COLOMBIANA DE COMPUTACIÓN
Volumen 11, número 2
Págs. 24 - 63

* School of Systems Engineering, University of Reading, Reading, UK, E-mail:
mark.baker@computer.org
‡ Se concede autorización para copiar gratuitamente parte o todo el material publicado
en la Revista Colombiana de Computación siempre y cuando las copias no sean usadas
para fines comerciales, y que se especifique que la copia se realiza con el
consentimiento de la Revista Colombiana de Computación.

1. Introduction

The Tycho project [2] focuses on the design and development of a
system for binding together distributed applications with the aid of a
combined messaging and registry system. Tycho provides application
developers with a means of securely integrating distributed systems
using a single software package. One aim is to simplify the process of
assembling distributed applications by reducing the number of libraries
or tools required by the application developer. A second aim is to
produce a system that is more scalable and has higher performance than
the combinations of registry and messaging software previously
available.

Tycho has a Service-Oriented Architecture (SOA), where there are
consumers, producers and mediators. The services provided by these
components are:

�Mediators, which allow producers and consumers to discover each
other and establish remote communications.

�Consumers typically subscribe to receive information or events
from producers.

�Producers gather and publish information for consumers.

The design philosophy for Tycho was to keep its core relatively small,
simple and efficient, so that it has a minimal memory foot-print, is easy
to install, and is capable of providing robust and reliable services. More
sophisticated services can then be built on this core and are provided via
libraries and tools to applications. This enables Tycho to be flexible and
extensible so that it will be possible to incorporate additional features
and functionality.

In Tycho, producers and/or consumers publish their existence in a
directory service known as the Virtual Registry (VR), which is a
distributed peer-to-peer service provided by the network of mediators.
Aclient uses the VR to locate other clients, which act as a source or sink
for the data they are interested in. Normally, clients communicate
directly, however, for clients that do not have direct access to the
Internet, the mediator provides wide-area connectivity by acting as a
gateway or proxy into a localised Tycho installation. The Tycho VR is
made up of a collection of services that provides the management of
client information and facilitates locating and querying remote Tycho
installations.

Aconsumer (the client) registers with a local mediator, as part of the VR
when it starts-up. The VR provides a locally unique name for each client

25Using a RESTful messaging and registry system to support a range a distributed applications

(e.g. a URI) and periodically checks registered entities to ensure their
liveliness, the system removes stale entries if necessary. Tycho's
architecture is designed to support both encryption and access control to
provide a secure environment. Encryption is provided at the transport
handler level using SSL to encrypt messages sent via the HTTP and
Socket handlers.

1.1 RESTful Systems
The Representational State Transfer (REST) is a style of software
architecture for distributed hypermedia systems such as the World Wide
Web. The term Representational State Transfer was introduced and
defined in 2000 by Roy Fielding in his doctoral dissertation [3]. Fielding
is one of the principal authors of the Hypertext Transfer Protocol
(HTTP) specification versions 1.0/1.1. REST defines a set of
architectural principles that focuses on system resources, including how
the resource state is addressed and transferred over HTTP by a wide
range of clients, which can be written in different languages.

The REST-style architecture consists of clients and servers. Clients
initiate requests to servers; servers process requests and return
appropriate responses. Requests and responses are built around the
transfer of "representations" of "resources". A resource can be
essentially any meaningful resource that may be addressed. A
representation of a resource is typically a document that captures the
current or intended state of a resource. At any particular time, a client
can either be transitioning between application states. A client in a rest
state is able to interact with its user, but creates no load and consumes no
per-client storage on the set of servers or on the network. The client
begins by sending requests, when it is ready to transition to a new state.
While one or more requests are outstanding, the client is considered to
be in a transitioning state.

REST did not attract much attention when Roy Fielding first introduced
it in 2000. The analyses of this software architecture that uses the Web as
a platform for distributed computing is now used a lot. Years after its
introduction, a major frameworks for REST has appeared and is used
because it provides a useful communication protocol, which is used via
various systems, including Java JSR-311 [4].

The REST architectural style describes the following six constraints
applied to the architecture, while leaving the implementation of the
individual components:

�Client–server: The clients are separated from servers by a uniform
interface. This separation of concerns means that clients are not

26
Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,

Rahim Lakhoo, Carl Albing

concerned with data storage, which remains internal to each server,
so that the portability of client code is improved. Servers are not
concerned with the user interface or user state, so that servers can be
simpler and more scalable. Servers and clients may also be replaced
and developed independently, as long as the interface is not altered.

�Stateless: The client–server communication is constrained by client
context, which is stored on the server between requests. Each
request from any client contains all of the information necessary to
service the request, and any state is held in the client. This not only
makes servers more visible for monitoring, but also makes it more
reliable in the face of partial or network failures, as well as further
enhancing system scalability.

�Cacheable: On the Web, clients are able to cache responses.
Responses must therefore, implicitly or explicitly, define
themselves as cacheable or not to prevent clients reusing stale or
inappropriate data in response to further requests. Well-managed
caching eliminates some client–server interactions, further
improving scalability and performance.

�Layered system: A client cannot ordinarily tell whether it is
connected directly to the end server, or to an intermediary along the
way. Intermediary servers may improve system scalability by
enabling load balancing and by providing shared caches. They may
also enforce security policies.

�Codeon demand (optional): Servers are able to temporarily extend
or customise the functionality of a client by transferring logic to it
that it can execute. Examples of this may include compiled
components such as Java applets, AJAX, and client-side scripts,
such as JavaScript.

�Uniform interface: The uniform interface between clients and
servers simplifies and decouples the architecture, which enables
each part to evolve independently.

Resource

Collection URI, such as http://example.com/resources/
Element URI, such as http://example.com/resources/MARK

GET

List the members of the collection, complete with their member
URIs for further navigation. For example, list all the cars for sale.
Retrieve a representation of the addressed member of the
collection expressed in an appropriate MIME type

PUT

Meaning defined as "replace the entire collection with another
collection".
Update the addressed member of the collection or create it with
the specified ID.

Using a RESTful messaging and registry system to support a range a distributed applications 27

POST

Create a new entry in the collection where the ID is assigned
automatically by the collection. The ID created is usually included
as part of the data returned by this operation.
Treats the addressed member as a collection in its own right and
creates a new subordinate of it.

DELETE
Meaning defined as "delete the entire collection".
Delete the addressed member of the collection.

Fig. 1: RESTful Service HTTP methods [5]

Figure 1 shows the characteristics of resources, GET, PUT, POST and
DELETE. One of the key characteristics of a RESTful system is the
explicit use of HTTP methods in a way that follows the protocol as
defined by RFC 2616 [6]. HTTP GET, for instance, is defined as a data-
producing method that intends to be used by a client application to
retrieve a resource, to fetch data from a server, or to execute a query with
the expectation that the server will look for and respond with a set of
matching resources. REST uses HTTP methods explicitly and in a way
it is consistent with the protocol definition. This basic REST design
principle establishes a one-to-one mapping between create, read,
update, and delete (CRUD) operations and HTTP methods. According
to this mapping:

�To create a resource on the server, use POST.
�To retrieve a resource, use GET.
�To change the state of a resource or to update it, use PUT.
�To remove or delete a resource, use DELETE.

The request URI in an HTTP GET request, for example, usually
identifies one specific resource. Or the query string in a request a URI
includes a set of parameters that defines the search criteria used by the
server to find a set of matching resources. If the Web API uses GET to
invoke remote procedures, it looks like this in Table 1.

Table 1: The use of GET

If successfully processed, the result of the request is to add a new user, in
this example, Mark - to the underlying data store. The problem here is
mainly semantic. Web servers are designed to respond to HTTP GET
requests by retrieving resources that match the path (or the query
criteria) in the request URI. They return these or a representation in a
response, which may not add a record to a database. From the
standpoint of the intended use of the protocol method, and from the

28

GET /adduser?name=Mark HTTP/1.1

Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,
Rahim Lakhoo, Carl Albing

standpoint of HTTP/1.1 - servers use GET in a inconsistent way.
Beyond the semantics, the other problem with GET is to trigger the
deletion, modification, or addition of a record in a database, or to
change server-side state in some way. This is where it invites Web
caching tools and search engines to make server-side changes simple by
crawling a link. A simple way to overcome this common problem is to
move the parameter names and values on the request URI into XML
tags. The resulting tags, an XML representation of the entity to create,
may be sent in the body of an HTTP POST whose request URI is the
intended parent of the entity (see Table 1 and Table 2).

The methods shown in Table 2 and Table 3 describe a RESTful request.
The use of HTTP POST shows the payload in the body of the request.
On the receiving end, the request may be processed by adding a
resource contained in the body as a subordinate of the resource
identified in the request URI; in this case the new resource should be
added as a child of /users. This relationship between the new entity and
its parent, as specified in the POST request, is analogous to the way a
file is subordinate to its parent directory. The client sets up the
relationship between the entity and its parent; it defines the new entity's
URI in the POST request. A client application may then get a
representation of the resource using the new URI, noting that at least
logically the resource is located under /users, as shown in Table 4.

Table 4: HTTP GEt quest

Using GET in this way is explicit because GET is for data retrieval only.
GET is an operation that should be free of side effects, a property also
known as idempotence. A similar refactoring of a Web method also

29

GET /adduser?name=Mark HTTP/1.1

Table 2: Listing 1 – Before

POST /users HTTP/1.1

Host: myserver

Content-Type:

application/xml

<?xml version="1.0"?>

<user>

<name>Mark</name>

</user>

Table 3: Listing - After

GET /users/Robert HTTP/1.1 Host: myserver Accept: application/xml

Using a RESTful messaging and registry system to support a range a distributed applications

PUT /users/Mark HTTP/1.1

Host: myserver

Content-Type: application/xml

<?xml version="1.0"?>

<user> <name>Bob</name> </user>

needs to be applied in cases where an update operation is supported over
HTTPGET, as shown in Table 5.

This changes of the name attribute (or property) of the resource. While
the query string can be used for such an operation, and Table 5 is a
simple one, this query-string-as-method-signature pattern tends to
break down when used for more sophisticated operations. Because the
goal is to make explicit use of HTTP methods, a more RESTful
approach is to send an HTTP PUT request to update the resource,
instead of HTTPGET, for the same reasons stated above (see Table 6).

Table 6: HTTP PUT Request

Using PUT to replace the original resource provides a much cleaner
interface that is consistent with REST principles and with the definition
of HTTP methods. The PUT request in Table 6 is explicit, in the sense
that it points at the resource to be updated. It identifies it in the request
URI and in the sense that it transfers a new representation of the resource
from client to server in the body of a PUT request instead of transferring
the resource attributes as a loose set of parameter names and values on
the request URI. Table 6 also has the effect of renaming the resource
from Mark to Bob, and in doing so changes its URI to /users/Bob. In a
REST service, subsequent requests for the resource using the old URI
would generate a standard 404 Not Found error. As a general design
principle, it helps to follow REST guidelines for using HTTP methods
explicitly by using nouns in URIs instead of verbs. In a RESTful service,
the verbs - POST, GET, PUT, and DELETE - are already defined by the
protocol. Ideally, to keep the interface generalised and to allow clients to
be explicit about the operations they invoke, the service that should not
define more verbs or remote procedures, such as /adduser or /updateuser.
This general design principle also applies to the body of an HTTP
request, which is used to transfer the resource state, but not to carry the
name of a remote method or remote procedure to be invoked.

RESTful services need to scale to meet increasingly high performance
demands. Clusters of servers with load-balancing and failover capabilities,
proxies, and gateways are typically arranged in a way that forms a service

30

GET /updateuser?name=Mark&newname=Bob HTTP/1.1

Table 5: Update over HTTP GET

Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,
Rahim Lakhoo, Carl Albing

topology, which allows requests to be forwarded from one server to
another, as needed to decrease the overall response time of a service call.
Using intermediary servers to improve scale; which requires a RESTful
service client to send complete, independent requests. That is, to send
requests that include all data needed to be fulfilled so that the components
in the intermediary servers may forward, route, and load-balance without
any state being held locally in between requests. A complete, independent
request does not require the server, while processing the request, to retrieve
any kind of application context or state. A RESTful service application (or
client) includes within the HTTP headers and body of a request all of the
parameters, context, and data needed by the server-side component to
generate a response. Statelessness in this sense improves service
performance and simplifies the design and implementation of server-side
components because the absence of state on the server, which removes the
need to synchronise session data with an external application.

Figure 2 illustrates a stateful service, which an application may request
the next page in a multi-page result set, assuming that the service keeps
track of where the application leaves off while navigating the set. In this
stateful design, the service increments and stores a previousPage
variable somewhere to be able to respond to requests for next.

Fig. 2: Stateful Design

The stateless server-side components are less complicated to design,
write, and distribute across load-balanced servers. A stateless service not
only performs better, it shifts most of the responsibility of maintaining
state to the client application. In a RESTful service, the server is
responsible for generating responses and for providing an interface that
enables the client to maintain application state on its own. For example, in
the request for a multi-page result set, the client should include the actual
page number to retrieve instead of simply asking for next (see Figure 3).

Fig. 3: Stateless Design

31Using a RESTful messaging and registry system to support a range a distributed applications

A stateless service generates a response that links to the next page
number in the set, and lets the client do what it needs to do, in order to
keep this value around. This aspect of RESTful service design can be
broken down into two sets of responsibilities, as a high-level separation
that clarifies just how a stateless service can be maintained.

The server generates responses that include links to other resources,
which allow applications to navigate between related resources. This
type of response embeds links. Similarly, if the request is for a parent or
container resource, then a typical RESTful response might also include
links to the parent's children or subordinate resources, so that these
remain connected. It also generates responses that indicate whether
they are cacheable or not to improve performance by reducing the
number of requests for duplicate resources and by eliminating some
requests entirely. The server does this by including a Cache-Control and
Last-Modified (a date value) via an HTTPresponse header.

The client application uses the cache-control response header to
determine whether to cache the resource (make a local copy of it) or not.
The client also reads the Last-Modified response header and sends back
the date value in an If-Modified-Since header to ask the server if the
resource has changed. This is called Conditional GET, and the two
headers go hand-in-hand so that the server's response is a standard 304
code (Not Modified) and omits the actual resource requested if it has not
changed since that time. A 304 HTTP response code means the client
can safely use a cached, local copy of the resource representation as the
most up-to-date, in effect bypassing subsequent GET requests until the
resource changes. It sends complete requests that can be serviced
independently of other requests. This requires the client to make full use
of HTTP headers as specified by the service interface, and to send
complete representations of resources in the request body. The client
sends requests that make very few assumptions about prior requests, the
existence of a session on the server. The ability of the server to add a
context to a request, or regarding the application state, is kept in
between requests. This collaboration between client application and
service is essential to being stateless in a RESTful service. It improves
performance by saving bandwidth and minimising server-side
application state.

1.2 Exposure of directory structure-like URIs
From the standpoint of client application addressing resources, the
URIs determines how intuitive the REST service is going to be, and
whether the service is going to be used in ways that the designers can
anticipate. A third RESTful service characteristic is all about the
URIs. The RESTful service URIs should be intuitive to the point

32
Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,

Rahim Lakhoo, Carl Albing

where they are easy to understand. One thinks of a URI as a kind of
self-documenting interface that requires little, if any, explanation or
reference for a developer to understand what it points to and to derive
related resources. To this end, the structure of a URI should be
straightforward, predictable, and easily understood. One way to
achieve this level of usability is to define directory structure-like
URIs. This type of URI is hierarchical, rooted at a single path, and
branching from it are sub-paths that expose a service's main areas.
According to this definition, a URI is not merely a slash-delimited
string, but rather a tree with subordinate and super-ordinate branches
connected at nodes. For example, you might define a structured set of
URIs like this:

http://www.myservice.org/discussion/topics/{topic}

The root, /discussion, has a /topics node beneath it. Underneath that
there are a series of topic names, such as gossip, technologies, and so on.
In some cases, the path to a resource lends itself especially well to a
directory-like structure. The resources organised by date, for instance,
which are a match for using a hierarchical syntax. This example is
intuitive because it is based on rules:

http://www.myservice.org/discussion/2008/12/10/{topic}

The first path fragment is a four-digit year, the second path fragment is a
two-digit day, and the third fragment is a two-digit month. It may seem a
little complicated to explain, but this is the level of simplicity we are
after. Humans and machines can easily generate structured URIs like
this because they are based on rules. Filling in the path parts in the slots
of a syntax makes them good because there is a definite pattern from
which to compose them:

http://www.myservice.org/discussion/{year}/{day}/{month}/{topic}

Some additional guidelines about a URI structure for a RESTful service
are:

�Hide the server-side scripting technology file extensions if any, so
you can port to something else without changing the URIs.

�Keep everything lowercase.
�Substitute spaces with hyphens or underscores (one or the other).
�Avoid query strings as much as you can.
�Instead of using the 404 Not Found code, if the request URI is for a

partial path, always provide a default page or resource as a response.

33Using a RESTful messaging and registry system to support a range a distributed applications

URIs should also be static, so that when the resource changes or the
implementation of the service changes, the link stays the same. This
allows bookmarking. It is important that the relationship between
resources, are encoded in the URI, which remains independent of the
way the relationships are represented where they are stored.

As examined in the so-called principles of RESTful interface design,
XMLover HTTPis a interface that allows internal applications, such as
Asynchronous JavaScript + XML (AJAX)-based custom user
interfaces, to easily connect, address, and consume resources. In fact,
the fit between AJAX and REST has increased the amount of attention
about REST these days. Exposing a system's resources through a
RESTful API is a flexible way to provide different kinds of
applications with data formatted in a standard way. It helps to meet
integration requirements that are critical to building systems, where
data can be easily combined (mashups) and to extend or build a set of
base, where RESTful services are much bigger.

1.3 State of the Art.
Peer-to-peer architectures have been employed for a variety of
different application categories, which include the following:

�Communication and Collaboration: This category includes
systems that provide the infrastructure for facilitating direct,
usually real-time, communication and collaboration between peer
computers. Examples include chat and instant messaging
applications, such as Chat/IRC Instant Messaging (Skype, AOL,
ICQ,Yahoo, and MSN), and Jabber [7].

�Distributed Computation: This category includes systems whose
aim is to take advantage of the available peer computer processing
power. This is achieved by breaking down computer-intensive
tasks into small work units and distributing them to different peer
computers, which execute their corresponding work unit and return
the results. Central coordination is invariably required, mainly for
breaking up and distributing the tasks and collecting the results.
Examples of such systems include projects such as Seti@home
[11][13], genome@home [14][16], and others.

�Internet Service Support: A number of different applications
based on peer-to-peer infrastructures have emerged for supporting
a variety of Internet services. Examples of such applications
include peer-to-peer multicast systems [10][11], Internet
indirection infrastructures [12], and security applications
providing protection against denial of service or virus attacks
[17][18][19].

34
Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,

Rahim Lakhoo, Carl Albing

�Database Systems: Considerable work has been done on designing
distributed database systems based on peer-to-peer infrastructures.
Bernstein et al. [20] propose the Local Relational Model (LRM), in
which the set of all data stored in a peer-to-peer network is assumed
to be comprised of inconsistent local relational databases
interconnected by sets of "acquaintances" that define translation
rules and semantic dependencies between them. PIER [14] is a
scalable distributed query engine built on top of a peer-to-peer
overlay network topology that allows relational queries to run across
thousands of computers. The Piazza system [22] provides an
infrastructure for building Semantic Web [23] applications
consisting of nodes that can supply source data (e.g. from a
relational database), schemas (or ontologies) or both. Piazza nodes
are transitively connected by chains of mappings between pairs of
nodes, allowing queries to be distributed across the Piazza network.
Finally Edutella [24] is an open-source project that builds on the
W3C metadata standard Resource Description Framework (RDF),
to provide a metadata infrastructure and querying capability for
peer-to-peer applications.

�Content Distribution: Most of the current peer-to-peer systems fall
within the category of content distribution, which includes systems
and infrastructures designed for the sharing of digital media and
other data between users. Peer-to-peer content distribution systems
range from relatively simple direct file sharing applications, to more
sophisticated systems that create a distributed storage medium for
securely and efficiently publishing, organising, indexing, searching,
updating, and retrieving data. There are numerous systems and
infrastructures, some examples of which are: Napster [25], Publius
[26], Gnutella [27], Kazaa [28], Freenet [29], MojoNation [30],
Oceanstore [31], PAST [33], Chord [34], Scan [36], FreeHaven [37],
Groove [38], and Mnemosyne [39].

A distributed hash table (DHT) framework, allows a peer-to-peer
system to maintains a global key-to-document index. The approach is
characterised by the following ideas. It can carefully select the indexing
keys so that they consist of terms and sets that are discriminative with
respect to a global document collection. They appear in a limited
number of documents, thus limiting the size of the posting lists
associated with the keys in the global inverted index. This directly
addresses the main problem identified in for structured peer-to-peer
Web search, namely the processing and transmission of extremely large
posting lists. The achieved key-based indexing procedure results in the
retrieval because the posting lists associated with the keys in the global
index are short and correspond to pre-computed and therefore readily
available results for potential multiple term queries. The advance of

35Using a RESTful messaging and registry system to support a range a distributed applications

Tycho, over a DHT, is that it has a virtual registry that can hold not only
metadata, but also potentially Semantic Web information. So, this
means that rather than having distributed hash table, it is much easier to
search across Tycho to find a peer that has the correct data and
information that may be needed.

1.4 TychoImplementation
Tycho is a Peer-to-Peer (P2P) framework for developing
distributed applications. It consists of a core communications
component, the mediator, and a lightweight client API, which
provides an asynchronous interface for sending messages to
other clients via the mediator interface. The mediators contain a
distributed database, based on Hypersonic, which can be queried
as a single entity.

Tycho's implementation is based on REST [3] in order to provide
standardised services without the need to follow long and complicated
Web Services or Grid standards that were and are constantly in flux.
Tycho was designed to be easy to deploy and as a result only requires an
installed Java Virtual Machine (JVM) in order to execute the single Java
JAR file that consists of the complete Tycho download (all Tycho
dependencies such as the mediator's internal database and
communications libraries for the virtual registry (VR) are included
within this file).

Tycho was intentionally designed around a minimal core that only
provides essential services. The idea is that the core should be fast and
unencumbered by features that are not essential to Tycho's roles as a
distributed registry and messaging system. This approach differs from
the method used by other middleware, such as NaradaBrokering (NB)
[42] and the Globus Monitoring and Discovery System [43], where new
functionality is typically added to the core implementation. In Tycho,
new functionality is packaged as optional utilities that sit above the core
services.

1.5 TheStructureofa Tychonetwork
The core of a Tycho communications network consists of one or more
mediators (see the diamonds marked M in Figure 4). Each mediator
knows the addresses of all of the other mediators, through the action of a
boot-strapper mechanism. It is the job of the mediators to distribute
queries, commands, replies and error reports to the appropriate
destination(s) within the network. Communication between mediators
is by means of HTTP or HTTPS traffic, running (by convention) on
TCPusing port 8080.

36
Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,

Rahim Lakhoo, Carl Albing

Each mediator may have any number of Tycho clients associated with it
(see the circles marked C in Figure 4).Aclient communicates to the rest of
the Tycho network by sending messages to its local mediator. The
mediator can then decide where to send the message – to a specific
mediator, or as a broadcast to all mediators. Replies to the message are
routed back to the client. Typically, the client - mediator communications
are across raw TCPsockets, or using SSL/TLS sockets.

Finally, each mediator also maintains a virtual registry component,
which is a simple distributed database (see the squares marked in VR in
Figure 4), containing basic information about every client registered
with that mediator. One of the fields contained in the virtual registry is
“client data” field that can be filled with any [text] data the client desires.
This can be used to store additional data or metadata about the services
that the client is offering to the network.

Fig. 4 : Top-Level View of Tycho

Since synchronous communications typically have a higher overhead
than asynchronous (due to the need to track messages and the time spent
blocking and waiting for responses) a decision was made early in
Tycho's development that its core should only support asynchronous
communication patterns. This means that applications must either be
written following an asynchronous programming model, or utilise a
higher-level blockingAPI potentially implemented as a Tycho utility.

37Using a RESTful messaging and registry system to support a range a distributed applications

38

1.6 Networking protocol
The Tycho network protocol consists of two logical layers:

�A transport layer, which governs the structure of the data packets
exchanged between members of the Tycho network.

�The control layer specifies a set of message types and interactions
that implement the functionality of a Tycho network.

The transport layer is very simple, consisting of single data packets
passed between the client and mediator, or between two mediators in
the core of the network. For the client, each mediator message is sent as
“raw” data via a TCPsocket interface. For mediator messages, the basic
Tycho protocol message is wrapped up as data in an HTTP request, the
HTTP response being simply an indicator that the message was
successfully received and parsed.

Table 7: The Structure of the Tycho Packet Protocol

Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,
Rahim Lakhoo, Carl Albing

Position
(Octets)

Length
(Octets)

Description

0 4 m= Complete message length (in
octets)

4 4 Sequence number of this message

8 4 Command number

12 4 f = From length (in characters)

16 4 t = To length (in characters)

20 4 p = Payload length*

24 2f The URL of the source of the
message, in UTF16-BE form.

24+2f 2t The URL of the destination of the
message, in UTF16-BE form.

24+2f+2t p or 2p† The payload of the message.

* The payload length may be either the count of string length (if the payload is internally a
string), or the number of octets (if the payload is internally a byte array). This ambiguity is a
primary reason for the development of the V2 transport protocol mentioned in section n,
below.

The actual length of the payload in octets, and its content type, can be determined from
the overall message length, m (at offset 0 of the header), and the values of f, t and p:
If m = 24 + 2f + 2t + 2p, then the content type is String, and the length of the payload in
octets is 2p.
If m = 24 + 2f + 2t + p, then the content type is an array of octets, and the length of the
payload in octets is simply p.
In any other case, the header is probably malformed, and should be ignored.

†

The structure of a Tycho protocol packet is shown in Table 7. All
numbers are encoded in big-endian form (“network order”), and all
strings are encoded as big-endian UTF-16. The use of UTF-16 means
that where string lengths appear (e.g. the f and t values), the length of the
data in octets is twice the length of the string, as each character is
encoded as two octets.

Table 8: The list of Tycho commands

In general, the command number for a response to a message with
command number n is n+100. A message forwarded from one mediator
to another on behalf of a client has command number n+20.

1.7 Security
Security is an essential requirement for any distributed system. Tycho's
architecture is designed to support both encryption and access control to
provide a secure environment. Encryption is provided at the transport
handler level using SSL to encrypt messages sent via the HTTP, Socket

39Using a RESTful messaging and registry system to support a range a distributed applications

Code Name Description

1 Ping Ping request. Sent from mediator to client.

101 Pong Ping reply. Sent from client to mediator.

11 Register Client registration with mediator and VR.

33 VR Query Mediator-to-mediator VR query made on
behalf of a client.

133 VR response Response to a message 33 query, which is
returned to a mediator.

113 VR response Response to a message 13 query, which is
returned to the originating client.

1 Error An error occurred within the Tycho network. -
This message indicates the fault type.

21 Message A message intended for receipt by another
client in the network. Payload is application-
specific.

12 Unregister Client un-registration from mediator and VR.

15 Update VR Client update of virtual registry with new
details.

115 Update reply Response from VR to indicate success.

13 VR Query Request from client to mediator to query the
VR.

handlers. Access control is provided using a layered approach. In
keeping with the design philosophy of Tycho, we use existing
infrastructure. Access control is can be via the use of a proxy server, or
the security features of a firewall. For instance, when deploying Tycho
on a cluster, a common configuration uses a proxy server on the head
node to control access to mediators running on compute nodes. An
alternative mechanism for access control is provided by a pluggable
authentication library, which could interface with existing security
protocols and solutions such as WS-Security or the Java Authentication
andAuthorization Service (JAAS).

1.8 Tycho Client Internals
The Tycho client interface is deliberately very simple. The API consists
of a single Java interface, which must be implemented by any Tycho
client to receive messages, plus a connector object used to construct and
send messages. Helper classes for managing timeouts and embedding a
mediator within the client are also supplied. Here we briefly describe
the main methods of the ClientAPI:

�Class TychoConnector: provides the core client functionality. It
contains fourteen methods that provide a high-level API for the
Tycho functionality. The API handles interaction with other clients
and the Tycho mediator transparently. For example, to perform a
distributed Tycho query across the entire VR a single method is used
with one parameter.

�Class EmbeddedMediator: starts an instance of a Tycho mediator
within the same JVM as the client. It provides an additional three
methods to retrieve settings from the mediator (such as its URL) and
allows the verbosity of the debug output to be set.

�Class Message: contains fourteen methods for manipulating Tycho
messages. It provides a high-level interface for users to read and
alter parts of a binary message without having to directly manipulate
the binary data.

�Finally a single Java interface is provided - Interface
IeventInterface: which defines five methods that are implemented
by all Tycho clients. It allows asynchronous messages to be
delivered to the client.

ATycho client must create a TychoConnector object, which connects to
a specific mediator (i.e. to a specific IP address and port number). The
TychoConnector offers methods for constructing and sending messages
to other parts of the Tycho network, plus methods for updating and
querying the virtual registry.

40
Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,

Rahim Lakhoo, Carl Albing

Tycho is an asynchronous system: when a message is sent via the
TychoConnector object, control is returned immediately to the sender,
which must wait for the reply or replies to come back to it at some later
time. When a message is sent, the sender is given a message ID, which is
unique within that client instance, and that can be used to identify
incoming replies marked with the same ID.

To receive messages, the client must implement the IEventInterface
interface. This consists of five methods which are called when specific
types of message or event is received: Initial registration, VR update of
records held on behalf of this client, responses to a VR query, messages
from other clients, and error messages. The IEventInterface is thus
implemented as a construction parameter for the TychoConnector
described above.

Behind the client API, there is a simple server, running in its own thread,
which listens for incoming connections on a TCPsocket, reads the message
sent by each connection, and injects that message into a blocking message
queue. The main thread of the connector then takes messages out of the
queue and calls the appropriate method of the IEventInterface to pass the
message to application control. The latest Tycho APIs can be found on this
URL (http://acet.reading.ac.uk/bin/projects/tycho/software/1.2/doc/user/).
TheAPIs have been changed and simplified as we have worked on various
applications.

1.9 Tycho Mediator Internals
The Tycho mediator is very simple from anAPI point of view. It is used to
start a Tycho service. However, internally a mediator is considerably
more sophisticated than the client-side software. The general structure of
a mediator is shown in Figure 5.

The primary function of a mediator is to route incoming messages to
their intended destination. Incoming messages enter the mediator,
either from other mediators (via HTTP or HTTPS), or from clients (via
raw sockets, TLS, or a shared memory mechanism in the case of an
embedded mediator). The incoming messages are placed in a queue,
and processed in sequence by a CommsManager thread, which inspects
the command number of each message to decide where that message
should be routed to, and forwards it on. The possible internal
destinations for messages are:

�An internal ping processor,
�The local part of the VR store,
�Adispatcher to forward queries on to other mediators
�Local clients,

Using a RESTful messaging and registry system to support a range a distributed applications 41

�A handler for forwarding returned responses from other mediators
or clients.

The internal ping processor (ClientPinger) simply returns a “pong”
message immediately to the originating component, such as the client
or mediator. This mechanism can be used to ensure that the local list of
mediators and clients is kept up to date, by removing non-responsive
peers.

The local part of the virtual registry (the LocalStore) is simply an SQL
database to which virtual registry queries are first sent. If the query
specified a limit to the number of records to be returned, and that limit is
reached from the local store, the query stops immediately. If that limit is
not reached, or none was given, the VR core will also pass on the query
to all of the other mediators in the network to find additional records.
Currently, three SQL database engines are supported: MySQL,
Hypersonic SQL, and H2. The latter two are embedded within the
mediator, and thus function as a single stand-alone process.

Fig. 5: Tycho Mediator Internals

Finally, messages may be received by a mediator for forwarding on to
other components of the system. If a message is not a part of a VR
transaction or a ping message, it is either sent directly to the client, in
the case that the destination client is registered with this mediator, or
sent on to the relevant mediator. Figure 5 shows the high-level
architecture of Tycho, where there are consumers and producers

42
Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,

Rahim Lakhoo, Carl Albing

discovering each other and communicating via a LAN and across the
Internet.

2 Tycho Plugins

Tycho provides a plug-in mechanism that allows different technologies
to be used for the VR communications. The reference implementation
provided HTTPS and Internet Relay Chat (IRC) [44] support. IRC
networks provide a communications overlay that is configured to
provide fault tolerant messaging. Tycho allows applications developers
to make use of this existing Internet infrastructure without the need to
deploy their own messaging services, daemons, or even change the
configuration of Tycho from the default options.

Fig. 6: The high-level architecture of Tycho, showing consumers and
producers discovering each other and communicating via a LAN and across

the Internet.

2.1 Tycho's Performance
When using a distributed registry to store data for an application, one
task was to configure the registry to handle the necessary data. For
example to configure Globus MDS [43] and the Relational Grid
Monitoring Architecture (R-GMA) [45] to accept user-defined
application specific data, all instances of R-GMA or MDS must be
configured with the same data schema. In contrast, Tycho allows the
clients to dynamically describe the data they publish into the VR by
using the schema field, which means that VRs do not need to be
reconfigured. Both the automatic configuration and the ability to
dynamically publish ad-hoc information into the VR, reduces the
administrative overheads of deploying and using Tycho, compared to
these other systems.

43Using a RESTful messaging and registry system to support a range a distributed applications

Unlike related systems, such as NaradaBroker (NB), MDS, R-GMA,
Jini [46] and Apache Axis [47], Tycho is distributed with security
enabled by default and does not require the developer to install
additional packages. The reference implementation of Tycho supports
transport-level encryption using HTTPS and access control (using
MD5 hashes), which prevents access to the Virtual Registry.
Furthermore, these systems have multiple software dependencies that
must be satisfied as part of the installation process; Tycho on the other
hand only requires a JVM to operate.

Related systems require some manual configuration before they could
be bootstrapped. They also need additional effort to arrange their
components into a scalable hierarchy. The Tycho mediator
automatically discovers and connects to other Tycho instances by using
the bootstrapping functionality of the Virtual Registry (VR)-
interconnects.
Various performance tests have been made to measured registry's
performance and capability of Tycho, against MDS, and R-GMA. This
revealed that Tycho had better performance than the other systems.
During these tests the other systems failed due to memory management
issues. As part of a peer-to-peer file-sharing test, Tycho successfully
transferred files of up to 80 Gbytes to 60 peers.

2.2 Tycho Utilities and Applications
Tycho was first released in 2006, since then a number of updates to the
software have been made to make it more functional, so that it can
support a greater number of distributed applications. This section first
briefly describes the range of applications that use Tycho, and then we
discuss extensions to Tycho that have been made to better support a
range of applications.

2.3 Cross-Database Search - XDB
The UK JISC-funded VERAproject [48] investigated the development
of a virtual environment for research in archaeology. The project was
based around the archaeological excavation at Silchester, a Roman
town that was abandoned in the fifth century. The excavation has been
running for twelve years, and has accumulated a large database of
information, stored in the IADB (IntegratedArchaeological Database).
One challenge within the project was to provide integrated search
facilities across multiple archival databases.

The test system searches for records from the Silchester IADB, held in
an ordinary relational database, and a classics-oriented collection of
Roman-era inscriptions found in Vindolanda database [49], which is
based on a RDF store. The cross-database search engine, XDB [50], see

44
Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,

Rahim Lakhoo, Carl Albing

Figure 7, was developed to investigate some of the issues arising from
searching across multiple and highly disparate databases.

Fig. 7: The XBD Architecture

2.4 DNWay
The DNway project is attempting to create a generic framework that
uses a master-worker paradigm to distribute work (idempotent tasks)
across the computational resources of very large supercomputers and
clusters. DNway is shown in Figure 8, which provides immediate, not
queued, access to compute cycles and therefore must be:

�Adaptable - using processors and networks of varying speeds,
�Robust - adapt to changing response times, including the failure of

remote workers,
�Accessible through firewalls,
�Able to cope with different network topographies.

In order to use DNway, the “work units” that are to be distributed must
be defined, and the logic that will be used to process each unit of work
must be written. Resource discovery, work distribution, result delivery,
timeouts, and retry mechanisms are built on top of Tycho.

45
Using a RESTful messaging and registry system to support a range a distributed applications

Fig. 8: The DNway Architecture

2.5 Necho
The Necho project [51] is creating a multi-tiered peer-to-peer system,
which is akin to BitTorrent, for distributing multi-terabyte scientific
datasets across the Internet. The concepts for this project first appeared
when working with the Sloan Digital Sky Survey [52], where it was
necessary to download the original dataset and use a modified version of
WGET [53] to split it up, transfer the chunks across the Internet, then join
the chunks together and update the database.

The Necho architecture is shown in Figure 9. It consists of a hierarchical
Peer-to-Peer (P2P) system that is based around shared-portal services and
unique peers donated by participating individuals and organisations. The
goal of the project is to combine P2P, using volunteer computing and
social networks to provide a way to distribute, contribute to, and manage
very large datasets. Necho uses Tycho to distribute, index and retrieve
chunks of data that from the original each overall dataset. We are currently
testing Necho against other BitTorrent systems, such as Azureus [54], and
our single tier version of Necho is proving to be much faster.

Fig. 9: A Schematic of the Necho Architecture

46 Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,
Rahim Lakhoo, Carl Albing

2.6 VOTechBroker
The VOTechBroker (VOTB) [55] is a system for submitting parameter
sweeps to the Grid, and other distributed resources, in a transparent
way. The VOTB aims to interoperate with a wide range of job
submission systems using a plug-in component, and to protect the user
from middleware details (see Figure 10).

A key aim of the VOTB is to support an extensible range of (Grid)
middleware, hide heterogeneity, and ease the complexity associated
with job submission/execution. Tycho is used to dynamically locate
available computational resources at remote sites that were appropriate
to a particular user's requirements (e.g. with appropriate CPU
architecture, libraries and services installed, account authorisation,
availability, not over loaded, and sufficient free memory). This means
that when a job is submitted to VOTB, the system can find the most
appropriate system to schedule the task on.

2.7 GridRM
GridRM [20] is an extensible, wide-area, monitoring system that
specialises in combining data from existing components and
monitoring systems so that a consistent view of the underlying
resources and services can be achieved, regardless of heterogeneity.
Gateways (see Figure11) provide access to local resource information
at each site. Clients connect to gateways to perform resource queries
and to subscribe for events. GridRM uses Tycho in a number of ways to

Fig. 10: The VOTechBroker Architecture

47
Using a RESTful messaging and registry system to support a range a distributed applications

bind together clients and Gateways for wide-area communications, and
to provide the basis of an event mechanism (both wide-area events to
clients, and events from local monitoring systems).

Fig. 11: The GridRM Architecture

2.8 The SORMA Project
The Self-organizing ICT Resource Management (SORMA) [57] is a
European project developing methods and tools for efficient market-
based allocation of resources. It uses a self-organising resource
management system and market-driven models, which are supported by
extensions to existing Grid computing infrastructure. Unlike many
existing Grid environments, tasks submitted to SORMA are matched
with available resources according to the economic preferences of both
resource providers and consumers, and the current market conditions.
This means that the classic job scheduler, which is based on performance
rules, is replaced by a set of self-organising market-aware agents that
negotiate service level agreements (SLAs), to determine resource
allocation that best fulfils both performance and business goals. In
SORMA, an economically enhanced resource manager (EERM) [21]
exists at each resource provider's site and acts as a centralized resource
allocator to support business goals and resource requirements.

The overall aim of the EERM is to isolate SORMA economic layers
from the technical ones and orchestrate both economic and technical
goals to achieve maximum economic profit and resource utilisation.
The main goals of the EERM are:

�To combine technical and economic aspects of resource
management,

�To perform resource price calculations, taking into account current
market supply and demand,

�Create performance estimations, and business policies;
�To strengthen the economic feasibility of the Grid.

48
Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,

Rahim Lakhoo, Carl Albing

To provide a general solution that supports different scenarios and
business policies, the EERM should provide flexibility in defining user
(administrator) configurable rule-based policies, to support:

�Individual rationality:An important requirement for a system is that
it is individually rational on both sides, i.e. both providers and
clients have to have a benefit from using the system. This is a
requirement for the whole system, including features such as client
classification or dynamic pricing.

�Revenue maximisation: A key characteristic for SORMA providers
is revenue (utility) maximization. The introduced mechanisms can
indeed improve the utility of both the provider and the client.

�Incentive compatibility: Strategic behaviour of clients and
providers can be prevented if a mechanism is incentive compatible.
Incentive compatibility means that no other strategy results in a
higher utility than reporting the true valuation.

�Efficiency: There are different types of efficiency. The first one
considered here is Pareto efficiency: no participant can improve its
utility without reducing the utility of another participant. Also the
EERM must maximise the sum of individual utilities.

The EERM utilises GridRM to obtain resource information for system
and per-process monitoring in order to determine if Service Level
Agreements (SLAs) have been violated. The EERM is composed as a
confederation of loosely bound components for scalability and
availability reasons. Tycho provides messaging and event mechanisms
within the SORMAsystem.

Fig. 12: The SORMA EERM Architecture

49
Using a RESTful messaging and registry system to support a range a distributed applications

2.9 Slogger
Slogger [58] utilises various emerging Semantic Web technologies to gather
data from heterogeneous log files generated by the various layers in a
distributed system and unify them in common data store. The logs are ones
generated by the operating system, middleware (e.g. Apache Tomcat or
MPI) and applications themselves). Once unified, the log data can be
queried and visualised in order to highlight potential problems or issues that
may be occurring in the supporting software or the application itself.
Slogger uses Tycho (see Figure 13) to first process, e.g. determine what data
is need from the logs, and then gather data from the distributed resources and
push this into a centralised RDF store. Once the data is in the store, SPARQL
queries are issued in order analyse the RDF log data in order to identify
problem and errors in the software executing over the distributed resources.

Fig. 13: The Slogger Framework

Fig. 14: A SVG Diagram showing CPU ad Memory Use

50
Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,

Rahim Lakhoo, Carl Albing

3 Map Service

Geographical maps are used to describe the Earth's surface and its
contours. These maps are hosted on servers called “map servers” [59]
around the globe and can be used by scientists in many ways. For
example, to find the temperature of specific area, examine the wind
pressure of particular place or study the state of oceans around the
world. The environmental science community lacks a searchable
registry of available Map Services. As a result, scientists cannot
discover the data that may be most valuable for their work or they may
spend a lot of time searching for the right data. Most of the time, the
scientists manage to find the service, but this may be problematic and
does not give access to data needed.

Fig. 15: The Map ServiceFramework

The Web contains a large number of valuable environmental datasets
hosted on map servers. These datasets follow different specifications
such as the Open Geospatial Consortium (OGC) Web Map Service.
Users access these datasets to retrieve maps of desired functionality.
The demand for maps has increased in recent years, especially with the
environmental science community, who are facing difficulties in
finding the right map service. As a result, scientists cannot discover the
data that may be useful for their research work. Often, even if the
scientist finds the correct map service, the service can be unreliable and
fails to provide the required data. In this project, we have developed a
framework that provides a searchable database for map services.

This project uses Tycho to search for map services, and find those that
are most appropriate, based on the search data initiated by the user. A
remote producer gathers keywords and metadata from each map server,
and stores this into the VR; this data is collocated with the location of
the server itself. When a user wants to find map data, it sends a query via

51Using a RESTful messaging and registry system to support a range a distributed applications

a consumer that is embedded into a Web browser; the query uses the
OGC standards. The query is sent off, and first searches though the VR
to find matching metadata or keywords, once this has been established,
then the full OGC query is sent to the matching map server. The map
server will then return the appropriate map to the client were it is
displayed for the user.

3.1 Web 2.0 and Portlets
Tycho has been used with JSR-168 portlets in GridRM and SORMA.
Furthermore, Web 2.0 interfaces that use Tycho to provide data to
sliders have been implemented. JSR-168 portlets provide an
opportunity to create user interfaces that are portable across different
portal containers. We have created a number of JSR-168 portlets so that
clients can remotely administer gateways and query resources from a
Web browser. The portlets are currently hosted in a Gridsphere portal
[31] and provide a modular approach for building a user interface; each
portlet provides one type of functionality, and multiple portlets are
combined (in the portal container) in order to provide the overall user
interface. The portlets are categorised as those for performing gateway
administration and those for querying resources and
subscribing/receiving events. The portlets all utilise the client
monitoring API (as a portlet service), which they use to communicate
with gateways over the Global Layer. The front ends of the portlets are
constructed using Java Server Pages (JSPs) that present XHTML
controls and data to the client.

Fig. 16: The Structure of the Web 2.0 Interface

Although events are passed to the portlet code (via the monitoringAPI)
in real-time,AJAX is required to refresh data in the portlet JSPs, so that
events propagate to the user asynchronously. Alternatively the user is
required to interact with the portlet user interface in order to be notified
of new event data (e.g. by causing the portlet to enter its doView mode).

52
Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,

Rahim Lakhoo, Carl Albing

The structure of the Web 2.0 interface is shown on Figure 16.

Web 2.0 mashups provide an alternative way of displaying monitoring
data. We have experimented with Web 2.0 to produce an interface that
contains:
�Charts and gauges that display monitoring data dynamically in near

real-time, for multiple resources registered with a gateway,
�A map that represents gateways according to their geographical

location and displays their metadata, e.g. status, registered drivers,
administrator information and network links between remote sites.

�A registry browser, that displays entries from Tycho's distributed
registry in a graph and allows users to expand and collapse nodes as
they browse registry meta data – this feature is useful to system
developers and administrators.

It was interesting to compare and contrast the use of Flash-based Web
2.0 tools versus those based on simple technologies, which were less
intrusive. We found that the Flash-based system contained a memory
leak and would repeatedly crash the Web browser. Plus it was clear, even
if the memory leak was solved, that if there were hundreds of resources
being monitored, huge amount of CPU and memory would be used to
monitor these resources.

As an alternative we looked at using simple slider icons, as shown in
Figure 16, these were based on JavaScript and Cascading Style Sheets
(CSS); they used small amount of memory and CPU, and could monitor
hundreds of resource without being too intrusive.

4. Tycho Utilities

Utilities are software components that give the Tycho infrastructure
greater functionality so that it can more robustly and reliably support
distributed applications. In this section we describe some of the
utilities that have been created.

4.1 Synchronous Monitoring API
By default, Tycho provides asynchronous messaging, however, many
applications, such as the GridRM client requires a mix of blocking calls
(e.g. for resource queries) and non-blocking calls (e.g. for event
notifications). To achieve this we have created a Tycho utility that
provides blocking communication operations. The Tycho method used
by a client to transmit data is non-blocking and returns a unique message
ID, which is used to key the semaphore into a hash table. When a
message arrives at the client, the Tycho event handler passes the

53Using a RESTful messaging and registry system to support a range a distributed applications

message content to a method that matches the response to a request ID
and performs a lookup in the hash table. If a match is found, a release is
called on the semaphore and the blocked call continues. If a match is not
found then the Tycho message is converted into an event of a given type
and sent to the client's event listener. If the client has not subscribed to
receive events of the given type, then the event is silently dropped.

AclientAPI based on Tycho has been created that consists of seventeen
calls for performing common operations such as:
�Registering and un-registering interest in receiving events from

particular gateways and resources,
�Registering, un-registering and listing registered resources within a

particular gateway,
�Querying “core” attribute values (e.g. memory utilisation, and

system load),
�Controlling “resource watches”, whereby a gateway is instructed to

periodically capture resource data, which it saves to its internal
database for later inspection,

�Controlling “job watches”, whereby a gateway instructs a capable
agent to monitor process resource utilisation at defined intervals.
The gateway retrieves data from the agent and stores it in an internal
database for later inspection.

4.2 HTTP pipelining
Currently every message sent by Tycho is via a separate HTTP
message. In order to optimise the communication performance of
Tycho, it requires us to open multiple parallel HTTP pipes, with
buffering, when sending data to a remote destination, instead of
reopening the single HTTP pipe every time. This project is still
underway, but effectively provides the same functionality as
GlobusFTP [41]. The system being developed has one HTTP control
channel, and “N” parallel HTTP channels that are used to send data
between Tycho components. This pipelining helps maximise
communication performance between various end-points.

4.3 Lightweight Transactions
We needed to create lightweight transactions via the Tycho system, so
that events sent around the system will be reliable and recoverable in
case a failure occurs. Although transactions are valuable and provide
atomicity, persistency, and recoverability, they are not widely used in
programming environments today, due to their high overheads that
have been driven by the latency of saving data to disks. A major
challenge in transaction-based systems is to remove disk usage from the
critical path of transactions. In this project, the so-called “lightweight
transactions” will be created. Here there will be a transaction manager,

54
Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,

Rahim Lakhoo, Carl Albing

which uses main memory that decouples the performance of
transactions from the disk.

Fig. 17: The RESTful Transaction System

Figure 17 shows the RESTful transaction framework embedded in
Tycho, where the Transaction Coordinator is embedded inside the
Tycho Mediator. In this case Resource Managers and a Transaction
Initiator could be with either the Producer or Consumer. They are
connected to a Tycho Mediator and thus automatically connected to the
Transaction Coordinator. The Mediator manages transactions along
with the core functionality of the Tycho system and returns the result to
the Transaction Initiator. Implementing the Transaction Coordinator
inside the Tycho Mediator creates additional functionality to the core of
the system, but results in slower performance. However, it allows
logging in the internal Mediator database and as a result having a Log
service and Transaction Coordinator in one node in the system, creates
better persistence for all messages.

Once a distributed system maintains lightweight transactions, it can be
used for various applications, such as computational steering or
supporting events, when it is imperative to guarantee that a remote
component receives the event. Principally, whenever an application is
using multiple transactional and persistent resources, it may need
distributed transactions.

4.4 Added VR Functionality
Our experience using Tycho's VR with various applications has shown
us that it necessary to add greater functionality to the system. The
original VR was designed to store the URLs of end points (producers or
consumers) and also hold various XML documents that contained
useful metadata related to the end-points. One extension for Tycho that
came out of the XDB work is a results store, which manages the
handling of query results from this interaction method in a thread-safe
way. It does so by keeping track independently of results, which were
"expected", and results, which were not. When the results store is told of

55Using a RESTful messaging and registry system to support a range a distributed applications

a message ID that has been sent, it checks the set of "unexpected"
results, and matches up the ID with any result that may have come in.

The other obvious drawback of using Tycho for the XDB system is the
limited storage space and search capability within the Tycho registry.
Extending the registry to support arbitrary data tables (e.g. as in Necho)
would make the implementation of the XDB's "master index"
functionality much easier. Going even further than that, implementing
storage of RDF [29] metadata within the registry, and searching through
that distributed metadata using SPARQL [30] would be highly useful
too. It is not immediately obvious to us how a full SPARQL
implementation would work to find RDF fragments split across several
mediators' registry stores, but even being able to search within each
mediator's store for matching fragments could offer significant benefits
to the XDB.

4.5 AdditionalCaching
One way to further improve performance is altering caching in the
mediator to include local data-store queries in addition to remote
responses. Adding indexing to the simple store would improve its
performance when searching for records. In addition, the message-
passing performance could be improved by changing the socket
transport handler to use thread pooling to further reduce the cost of
sending messages.

5. Summaryand Conclusions

Tycho is a RESTful asynchronous messaging system with an integrated
peer-to-peer virtual registry. Since, Tycho was first released at the end
of 2006, we have increasingly used the system to support a range of
distributed applications. We have used Tycho, rather than other
systems, such as the Grid, because the RESTful services are easy to
install and use. In addition, since Tycho was first designed, the overall
standards used have not changed. Tycho uses HTTP (HTTPS) and
Sockets (SSL) for communications. Internally, it uses SQL as the query
language and uses LDAP LDIF to mark up responses from the VR.
None of these standards have changed, and it ensures that applications,
based on Tycho, will continue to work for the foreseeable future.
Tycho's core is stable, but as we have pointed out in this paper, there are
a number of features that need implementing to better support a wider
range of applications. Some of the additional functionality needed by
Tycho can be implemented by creating utilities and services on top of its
generic API. An example of this is the Synchronous Monitoring API
described earlier.

Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,
Rahim Lakhoo, Carl Albing56

5.1 FutureWork
Aproject is underway to develop the appropriate hardware and software
to support remote monitoring of the environment via wireless sensor
networks [27]. The project is using Sun SPOTs [28], which are small
hardware platforms, battery operated, with a wireless device running
the Squawk Java Virtual Machine (VM) without an underlying OS. This
VM acts as both operating system and software application platform.
We have been investigating the current software used, and we feel that
using the Tycho producer/mediator on SPOT, and using HTPP
communication will make the overall network more reliable and easier
to program. For example, when the network starts up, each SPOT will
gather data about all the SPOTs in the network. This information will be
shown in the mediator and be used to calculate the optimal route to send
result data back to the base station, and also, if there is a mote failure, it
will be possible to calculate alternative routes back the base station.

Another project that we are considering is creating a system that
provides “service mashups”. Here Tycho components will be created,
based on producers and consumers, which are registered in the VR. We
will then build a graphical interface that can be used to discover and
orchestrate the components together. An example of a useful service
mashup could be some type of workflow system, where the various
Tycho components would include parts of a workflow and they can be
put together in a pipeline.

Bonjour, also known as zero-configuration networking, enables
automatic discovery of computers, devices, and services on IP
networks. Bonjour uses industry standard IP protocols to allow devices
to automatically discover each other without the need to enter IP
addresses or configure DNS servers. At present, a client must be given
an explicit name or IP address and port number for talking to a local
mediator. We plan on extending the client library to support Zeroconf
networking protocols (mDNS and DNS-SD) to discover suitable
mediators locally.

The current boot-strapper assumes a simple HTTP-based protocol for
mediators to discover the other peers within a Tycho network. This
introduces a single point of failure into the system, as the boot-strapper
is required in order for the mediator to find its peers. Alternative
mechanisms should be configurable at runtime. Possibilities include the
use of global-area DNS-SD; IRC bots; PEX (peer exchange protocol, as
used by BitTorrent); fixed sets of endpoints distributed through a file or
URL; and self-bootstrapping (i.e. tell the mediator of the location of one
other mediator, and it can obtain the full list of mediators in the network
from there).

57Using a RESTful messaging and registry system to support a range a distributed applications

The VR implementation only maintains a single relational table within
each mediator's local store, containing basic information about the
clients connected to that mediator. It is possible for clients to store a
limited amount of arbitrary textual data in a single field within that table,
but more complex data relations are not feasible within the current
framework. Allowing the creation of additional tables within the local
store would offer much greater flexibility.

The VR is built around the use of SQL for its main functions, and thus
assumes a traditional relational data model. However, there are many
applications for which other data models are potentially more useful.
For example, having the ability to store client metadata in RDF in the
VR would assist the development of many applications. For example, in
the Linksphere cross-database search facility, where multiple databases
with incompatible schemas and metadata vocabularies are to be
searched, the publication of RDF can be used to deal with the diverse
sets and structures of the data.

Some of the bootstrap mechanisms use their own list of the mediators
forming a given Tycho network. However, this can lead to very long
start-up times for a mediator, if a high proportion of the entries in the list
are stale, as the mediator attempts to contact each one in turn. Adding a
timed leasing mechanism to the protocol would ensure that the set of
stale entries is kept small.

5.2 Network performance
There are still a number of bottlenecks within the networking code of
Tycho. Ameliorating these will require, amongst other things, a new
version of the network protocol, laying out the packet headers
differently, and a refactoring of the socket handling code to reduce the
number of internal copies of message data.

References

[1] GridRM, http://gridrm.org

[2] Tycho, http://acet.rdg.ac.uk/projects/tycho/

[3] Roy Thomas Fielding. Architectural Styles and the Design of
Network-based SoftwareArchitectures, Ph.D. Thesis. University of
C a l i f o r n i a , I r v i n e , I r v i n e , C a l i f o r n i a , 2 0 0 0 .
http://www.ics.uci.edu/~fielding/pubs/dissertation/

[4] JSR 311 - https://jsr311.dev.java.net/

58
Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,

Rahim Lakhoo, Carl Albing

[5] RESTful Wiki - http://en.wikipedia.org/wiki/Representational_
State_Transfer

[6] RFC 2616 - http://www.ietf.org/rfc/rfc2616.txt

[7] Jabber web site - http://www.jabber.org/

[8] W.T. Sullivan III, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye,
and D. Anderson. A new major seti project based on project
serendip data and 100,000 personal computers. In Proceedings of
the 5th International Conference on Bioastronomy, 1997.

[9] K. Lai, M. Feldman, I. Stoica, and J Chuang, Incentives for
cooperation in peer-to-peer networks. In Proceedings of the
Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA,
June 2003.

[10] R. VanRenesse, K.P. Birman, A. Bozdog, D. Dimitriu, M. Singh,
and W. Vogels, Heterogeneity-aware peer-to-peer multicast. In
Proceedings of the 17th International Symposium on Distributed
Computing (DISC 2003), Sorrento, Italy, October 2003.

[11] M. Castro, P. Druschel,A.M. Kermarree, andA. Rowstron. Scribe:
A large-scale and decentralized application-level multicast
infrastructure. IEEE Journal on Selected Areas in
Communications, 20(8), October 2002.

[12] I. Stoica, D.Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet
indirection infrastructure. In Proceedings of the ACM
SIGCOMM'02 Conference, Pittsburgh, PA,August 2002.

[13] seti@home project web site. http://setiathome.ssl.berkeley.edu

[14] R. Huebsch, J.M. Hellerstein, N. Lanham, and B. Thau Loo.
Querying the Internet with pier. In Proceedings of the 29th VLDB
Conference, Berlin, Germany, 2003.

[15] S.M. Larson, C. Snow, and V.S. Pande. Modern Methods in
Computational Biology,, chapter Folding@Home and
Genome@Home: Using distributed computing to tackle previously
intractable problems in computational biology. Horizon Press, 2003.

[16] genome@home project web site. http://genomeathome.
stanford.edu/

59Using a RESTful messaging and registry system to support a range a distributed applications

[17] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure overlay
services. In Proceedings of the ACM SIGCOMM'02 Conference,
Pittsburgh, PA,August 2002.

[18] R. Janakiraman, M. Waldvogel, and Q. Zhang. Indra: A peer-to-
peer approach to network intrusion detection and prevention. In
Proceedgings of 2003 IEEE WET ICE Workshop on Enterprize
Security, Linz,Austria, June 2003.

[19] V. Vlachos, S. Androutsellis-Theotokis, and D. Spinellis. Security
applications of peer-to-peer networks. Computer Networks
Journal, 45(2):195-205, 2004.

[20] P. Bernstein, F. Giunchiglia,A. Kementsietsidis, J. Mylopoulos, L.
Serafini, and I. Zaihrayeu. Data management for peer-to-peer
computing: A vision. In Proceedings of the Workshop on the Web
and Databases, WebDB 2002.

[21] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and I.
Stoica. Complex queries in dht-based peer-to-peer networks. In
Proceedings of the 1st International Workshop on Peer-to-Peer
Systems (IPTPS '02), MIT Faculty Club, Cambridge, MA, USA,
March 2002.

[22] A.Y. Halevy, Z.G. Ives, P. Mork, and I. Tatarinov. Piazza: Data
management infrastructure for semantic web applications. In
Proceedings of the twelfth international conference on World
Wide Web, pages 556-567, Budapest, Hungary, 2003.

[23] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.
ScientificAmerican, May 2001.

[24] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M.
Nilsson, M. Palmer, and T. Risch. Edutella: A P2P networking
infrastructure based on RDF. In Proceedings of the twelfth
international conference on World Wide Web, Budapest, Hungary,
2003.

[25] Napster Web Site - http://www.napster.co.uk/

[26] M. Waldman, A.D. Rubin and L.F. Cranor. Publius: A robust,
tamper-evident, censorship-resistant web publishing system. In
Proceedings of the 9th USENIX Security Symposium, August
2000.

60
Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,

Rahim Lakhoo, Carl Albing

[27] Gnutella web site - http://gnutella.wego.com

[28] Kazaa web site - http://www.kazaa.com

[29] I. Clarke, O. Sandberg, and B. Wiley. Freenet: A distributed
anonymous information storage and /etrieval system. In
Proceedings of the Workshop on Design Issues in Anonymity and
Unobservability, Berkeley, California, June 2000.

[30] MojoNation web site - http://www.mojonation.net

[31] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, S.R.
Gummadi, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
Oceanstore: architecture for global-scale persistent storage. In
Proceedings ofACMASPLOS.ACM, November 2000.

[32] M. Khambatti, K. Ryu, and P. Dasgupta. Structuring peer-to-peer
networks using interest-based communities. In Proceedings of the
International Workshop On Databases, Information Systems and
Peer-to-Peer Computing (P2PDBIS), Berlin, Germany,
September 2003.

[33] P. Druschel and A. Rowstron. Past: A large-scale, persistent peer-
to-peer storage utility. In Proceedings of the Eighth Workshop on
Hot Topics in Operating Systems, May 2001.

[34] M. Shaw and D. Garlan. Formulations and formalisms in software
architecture. In Jan van Leeuwen, editor, Computer Science
Today: Recent Trends and Developments, pages 307-323. Lecture
Notes in Computer Science 1000. Springer Verlag, 1995.

[35] A.B. Stubblefield and D.S. Wallach. Dagster:censorship-resistant
publishing without replication. Technical Report Technical Report
TR01-380, Rice University, Dept. of Computer Science, July
2001.

[36] Y. Chen, R.H. Katz, and J.D. Kubiatowicz. Scan: A dynamic,
scalable and efficient content distribution network. In Proceedings
of International Conference on Pervasive Computing, 2000.

[37] R. Dingledine, M.J. Freedman, and D. Molnar. The FreeHaven
project: Distributed anonymous storage service. In Workshop on
Design Issues in Anonymity and Unobservability, pages 67-95,
July 2000.

[38] Groove web site. http://www.groove.net

61Using a RESTful messaging and registry system to support a range a distributed applications

[39] S. Hand and T. Roscoe. Mnemosyne: Peer-to-peer steganographic
storage. In Proceedings of the 1st International Workshop on Peer-
to-Peer Systems (IPTPS '02), MIT Faculty Club, Cambridge, MA,
USA, March 2002.

[40] M.A. Baker, and Matthew Grove, Tycho: A Wide-area Messaging
Framework with an Integrated Virtual Registry, Special Issue on
Grid Technology of the International Journal of Supercomputing,
(eds) GeorgeA. Gravvanis, John P. Morrison and Geoffrey C. Fox,
Springer, Volume 42, pp 83-106, ISSN: 1573-0484, March 23,
2007.

[41] GridFTP, http://www.globus.org/grid_software/data/gridftp.php

[42] NaradaBrokering, http://www.naradabrokering.org/

[43] Globus, http://globus.org

[44] IRC, http://en.wikipedia.org/wiki/IRC

[45] R-GMA, http://www.r-gma.org/

[46] Jini, http://www.jini.org/

[47] ApacheAXIS, http://ws.apache.org/axis/

[48] VERA, http://vera.rdg.ac.uk

[49] Vindolanda, http://vindolanda.csad.ox.ac.uk/

[50] XDB, http://xdb.vera.rdg.ac.uk/

[51] Necho, http://acet.rdg.ac.uk/projects/necho/

[52] Sloan Digital Sky Survey, http://www.sdss.org/

[53] WGET, http://www.gnu.org/software/wget/

[54] Azureus, http://azureus.sourceforge.net/

[55] VOTechBroker, https://portals.rdg.ac.uk/votb

[56] M.A. Baker and G. Smith, GridRM: An Extensible Resource
Monitoring System, the proceedings of IEEE International
Conference on Cluster Computing (Cluster 2003), Hong Kong,

62
Mark Baker, Hugo Mills, Garry Smith, Matthew Grove,

Rahim Lakhoo, Carl Albing

IEEE Computer Society Press, ISBN 0-7695-2066-9. 207-215,
2003,

[57] Self-Organizing ICT Resource Management (SORMA),
http://www.iw.uni-karlsruhe.de/sorma.

[58] M.A. Baker and R. Boakes, Slogger: A Profiling and Analysis
System based on Semantic Web Technologies, Special Issue of
Scientific Programming on Large-Scale Programming Tools and
Environments, (editors) Barbara Chapman and Dieter
Kranzlmuller, International Journal of Scientific Programming,
IOS Press, Vol. 16 (Number 2-3) 183-204, ISSN 1058-9244, 2008

[59] Map Server, http://mapserver.org/

[60] JSR-000168 Portlet Specification, http://jcp.org/aboutJava/
communityprocess/review/jsr168.

[61] Gridsphere Portal Framework, http://www.gridsphere.org/grids
phere/gridsphere.

[62] G.M Smith, M.A. Baker and Javier Diaz Montes, A Web 2.0 User
Interface for Wide-area Resource Monitoring, 15th Mardi Gras
Conference, Baton Rouge, Louisiana, 30 January - 2 February
2008, , ISBN 978-1595930-835-0.

[63] RESN, http://acet.rdg.ac.uk/projects/resn/

[64] Sun SPOT, http://www.sunspotworld.com/

[65] RDF, http://www.w3.org/RDF

[66] SPARQL, http://www.w3.org/TR/rdf-sparql-query/

63Using a RESTful messaging and registry system to support a range a distributed applications

