
An Expanded and Refined Catalog of
Time Patterns for Workflows

* *
Mario Sánchez , Jorge Villalobos

Fecha de recibido: 04/10/2013 Fecha de Aprobación: 15/11/2013

‡

Resumen

Trabajos anteriores que definieron catálogos de patrones de control, recursos y datos
para workflows tuvieron un rol fundamental en la evolución de esas dimensiones
dentro de lenguajes y aplicaciones. Esos patrones han sido usados para evaluar la
expresividad de los lenguajes, guiar su evolución, y para establecer una terminología
básica que hoy en día es compartida por la mayoría de los desarrolladores de sistemas
y lenguajes para workflows. Sin embargo, aún no se han obtenido resultados
comparables en la dimensión de tiempo, a pesar de la gran importancia que esta tiene
en muchos workflows y procesos de negocio. Aunque recientemente fueron
propuestos algunos catálogos de patrones de tiempo, estas propuestas tienen varias
limitaciones en su alcance y en la precisión de las descripciones que los hacen
inadecuados para tareas como evaluar lenguajes con respecto a su capacidad para
soportar esos patrones. En este artículo se presenta una aproximación para enfrentar
este problema: por una parte, se presenta un catálogo extendido y refinado de
patrones de tiempo para workflows; por otra parte, se presenta una formalización de
dichos patrones basada en cálculo de eventos y en diagramas de estados, la cual
permite hacer una evaluación de la expresividad de los lenguajes con respecto a los
patrones y a la dimensión de tiempo.

Palabras clave: Workflows, Dimensión de tiempo, Catálogo de patrones

Abstract

Previous work on control flow, resource, and data patterns has had a fundamental
role in delineating the corresponding dimensions of workflow languages and
applications. These patterns have been used to evaluate languages'
expressiveness, and have defined a basic terminology that is now shared by most
workflow developers. Recently, some time patterns catalogs have been proposed,
but they have some limitations with respect to the spectrum that they cover and
the preciseness of the descriptions. This makes language evaluation difficult, and

* Systems and Computing Engineering Department, Universidad de los Andes, Carrera 1
Este # 19A-40, Bogotá, Colombia. Email: {mar-san1, jvillalo}@uniandes.edu.co
‡Se concede autorización para copiar gratuitamente parte o toda el material publicado en
la Revista Colombiana de Computación siempre y cuando las copias no sean usadas para
fines comerciales, y que se especifique que la copia se realiza con el consentimiento de la
Revista Colombiana de Computación

REVISTA COLOMBIANA DE COMPUTACIÓN
Volumen 14, número 2
Págs. 122 - 140

the fact stands that most workflow languages are still very limited in their capacity
to describe this dimension in spite of the important role that it plays in many
business processes. In this paper we address both these problems by proposing an
extended catalog of time patterns, and proposing a formalization for said patterns
based on event calculus and state charts.

Keywords: Workflows, Time Dimension, Pattern Catalog

1. Introduction

In many business processes, the time dimension plays a critical role. For
example, processes performed by governmental organizations usually
have limitations on their durations established not only in the process
description, but also in the law. However, in current workflow
specification languages -- WfSL and workflow management systems --
WfMS, the elements to describe the time dimension are not very
expressive and are often considered secondary. Time is not yet a first-
class citizen in BPM standards [1]. A common vocabulary to name time
structures in workflows is also lacking, and it is currently difficult to
compare the expressiveness of workflow specification languages with
respect to time.

In the recent past, the definition of patterns and the conceptualization of
elements in some workflow dimensions fostered the maturation of
WfSL and WfMS with respect to those dimensions. The most
representative example of this is the list of control flow patterns
proposed by the `Workflow Patterns Initiative' [2], and then revised in
[3]. This list has become the standard to compare WfSLs, and many
developments in the area have started as attempts to support them better.
Similarly, the `Workflow Patterns Initiative' produced lists of resource
patterns [4], data patterns [5], and exception handling patterns [6].

Recently, two catalogs of patterns that focus on the time dimension
where released ([7], [8]) and we believe that they are an important step
in the right direction. However, these catalogs are still immature and
should not be considered definitive. For example, although both
catalogs target the same concerns, they include different patterns and
there are some aspects covered in ones that are not covered in the other.
The terminology used is also different and there are several terms used
for the same concept. Furthermore, these catalogs are very informal,
thus making it difficult to evaluate whether a WfSL does really support
each pattern.

123
An Expanded and Refined Catalog of Time Patterns for Workflows)

124

This paper presents two main contributions. The first one is a revised
catalog of workflow time patterns, which includes a formalization that
should be useful to better evaluate whether languages support the
patterns or not. The formalization has been constructed using Event
Calculus [9] and state charts. The proposed catalog is also more
structured than the previous ones, and in the process of revising the
taxonomy we were able to discover several patterns that were
overlooked by previous proposals. Moreover, we have compared the
previous catalogs with the one we are proposing and we discovered
that every “old” pattern has been included. The second contribution of
this work is an updated ontology of time-related concepts, which
provides the vocabulary that has been used to describe the time
patterns.

The structure of the paper is as follows. Section 2 presents background
work on time management that inspired the work presented in this
paper. Section 3 presents the basic details about Event Calculus while
the following section presents a conceptual model of the time
dimension. Section 5 presents the structure of the expanded catalog of
time patterns, the criteria to classify them, and some selected patterns.

+Finally, section 6 discusses the support for the proposed patterns
offered by current WfSL, discusses the matches between the work
presented and the previous catalogs, and concludes the paper.

2. Background: workflows and time patterns

In the past, various works have addressed the time dimension in
workflows, have identified the relevance of time patterns and
constraints, and have proposed classification criteria. The classification
of time constraints presented in [11] first separates structural constraints
from explicit constraints. The former are restrictions reflecting the
control structure of the workflow. They are categorized into deadlines
and durations, and they are directly associated to tasks in a process. The
latter are constraints representing temporal relations between events
generated when tasks in a process are started or are completed. Explicit
constraints are categorized into upper-bound, lower-bound, and fixed-
date. Similar classifications of time constraints are also presented in
[12], [13], [14], [15], and [16]. All these classifications tightly couple
the time constraints and the control dimension. In particular, they
depend on the starting/ending of activities, thus making it difficult to
model time constraints based on other kinds of events or other workflow
dimensions, like resources or data.

+For reasons of space, only a handful of patterns are presented in full detail in this section,
but the specification for the rest is available in [10].

Mario Sánchez, Jorge Villalobos

Two other catalogs of patterns were published more recently and around
the same time, and they improve on those existing catalogs. The work of
Lanz, Weber and Reichert [7] presents 10 patterns that were
systematically identified with the analysis of real process models in a
number of industries. They also propose a number of questions that
serve to make each time pattern more specific. For example, in the time
pattern TP1: Time Lags Between Events they propose the questions
“What kinds of time lags are used?” and “How are time lags processed?”
They also evaluated the support for their patterns in a number of tools
such as calendar systems, project management tools, and BPM
environments, and concluded that most patterns are not supported even
though they appear in real models. However, the precise mechanism
used to evaluate the support is not clear, since their patterns are not
precisely defined.

On the other hand, the catalog of Niculae [8] was created by doing a
quantitative literature review of time constraints patterns.
Consequently, this catalog is shorter and is more focused on patterns
with a smaller granularity. Furthermore, the foundation of Niculae's
work is YAWL [17], and thus patterns are interpreted and presented
from the point of view of WF-Nets.

3. Event Calculus

Because the initial list of control flow patterns was informally described,
some patterns were frequently misinterpreted. To solve this situation,
the patterns were formalized using Pi-Calculus [18] and Petri nets [19],
resulting in unambiguous descriptions. As a result, it is now easier
(although not fail-proof) to evaluate WfSLs with respect to the control
flow patterns.

In a similar way, it would be desirable to have a formalization of the time
patterns in order to avoid all misinterpretations, and provide a solid base
for tool or language evaluation. To achieve this goal we studied some of
the available mechanisms, and we selected Event Calculus -- EC as the
language to describe with precision the intent of each time pattern. The
EC, is a logical formalism for representing action and reasoning about
their effects [9]. EC can be expressed as a first-order predicate calculus
with circumscription, and it serves to infer what is true given “what
happens when” and “what actions do.” EC is adequate for our purposes
because it offers a suitable mechanism to describe things happening at
specific points in time, given some conditions.

Simple EC is based on four elements: fluents, actions or events, time
points, and some basic predicates. A fluent is a value that can vary over

125

An Expanded and Refined Catalog of Time Patterns for Workflows)

time such as a number (e.g. the number of users connected to a system)
or a truth value (e.g., the maximum number of users has been reached).
Actions are things that occur at some time point and may change the
value of fluents. The basic predicates of EC are the following:

· Initiates(α, β, τ): Fluent β starts to hold after action α at time τ.
· Terminates(α, β, τ): Fluent β ceases to hold after action α at

time τ.
· InitiallyP(β): Fluent β holds from time 0.
· τ1 < τ2: Time point τ1 is before time point τ2.
· Happens(α, τ): Action α occurs at time τ.
· HoldsAt(β, τ): Fluent β holds at time τ.
· Clipped(τ1,β, τ2): Fluent β is terminated between times τ1 and

τ2.

In EC, the evolution of a fluent is formalized with formulae that indicate
which actions, and given which conditions, can alter its value. For
example, the formulae

Initiates(EnableActivity,activityIsEnabled,τ)
HoldsAt(processCompleted,τ) [Happens(ActivityEnabled,τ)]

expresses that the fluent activityIsEnabled becomes true after action
EnableActivity, provided that the fluent processCompleted was not
holding at the time. In order to simplify some of the formulae and be able
to work with time and time lapses, we complemented the basic elements
of EC with variables and functions about time.

We used EC to formalize the time patterns for workflows. For each
pattern, we defined a set of fluents that reflect the possible states of the
constraint; then, we wrote the set of formulae that establish the initial
conditions of these fluents and the conditions to alter their value.
Furthermore, we specified an algorithm to convert these EC definitions
into equivalent statecharts, which are more succinct and greatly
improve communication.

4. Modeling the time dimension

Based on some of the works previously discussed ([7], [8]), the proposal
made by Allen in [20], and on the Event Calculus, we have created a
model of the time dimension in workflows (see figure 1). This model
identifies and names the concepts that belong in this dimension, while
establishing relations between them.

126 Mario Sánchez, Jorge Villalobos

Fig. 1. A model of the time dimension in workflows.

There are four central elements in the proposed time dimension
model: Event, Interval, Time Point, and Time
Constraint. A Time Point (or fixed date) represents a precise
moment of time that can be reached (e.g. 15:30:00 of November 14,
2013), and it should have a meaning within a Time Frame (e.g., the
Gregorian Calendar, or a calendar with the workable hours of a
specific company). In the catalog of Lanz et al., this is also a very
important concept because employing a different reference system
can modify each pattern.

An Interval (or time lag) represents the amount of time between two
Time Points. Intervals are usually specialized using a Time
Point and a duration (e.g., an interval of 25 minutes that starts in
15:30:00 of November 14, 2013). Relative Intervals do not
depend on a specific Time Point, but depend on the occurrence of an
Event (e.g. an interval of 25 minutes that starts after activity A1 is
completed).

Events occur at some Time Point. In this dimension, there are
three relevant kinds of Events. The first kind, Time Point
Reached, indicates that a certain previously specified Time Point
was reached. The second one, Interval Elapsed, indicates that a
specified Interval was completed. Furthermore, there are
External Events, which represent other events that occur in a
workflow but are outside of the time domain.

127

An Expanded and Refined Catalog of Time Patterns for Workflows)

128

Time Constraints are also represented in this model and each one
of them can depend on the occurrence of several events of any of the
three kinds. The elements responsible for generating Time Point
Reached events are Alarms, and they do so at a certain Time
Points specified in the Time Constraint. Similarly, Timers
generate Interval Elapsed events, after a specified Interval.
External Events are produced by External Events
Generators, which are found outside of the time domain.

At last, Time Constraints have Actions associated, which
define what to do if the constraints are violated or not. In this model,
there are no restrictions to what an Action can do: its effects could
have an impact on the workflow itself, or on the time constraint, or they
could interact with other applications.

5. Extended Time Patterns

This section introduces the catalog of patterns that we have developed.
For simplicity, we have grouped them in 11 coarse patterns, but they can
be further decomposed into 42 small granularity patterns. The patterns
listed in table 1 are the result of: i) analyzing the background work
presented in section 2 (in particular the classifications introduced in
[11], [12], [13], [14], [15], [16], [7], and [8]) and several current
workflow specification languages; ii) analyzing processes from the
industry and from process frameworks; iii) and refining and
complementing a selected subset of patterns in order to have them
classified in a meaningful taxonomy with as much symmetry as
possible. Similarly to previous attempts, this catalog is not intended to
be definitive and we expect it to be grown and improved in the same
fashion as the list of control flow patterns.

The main criterion of classification within the catalog distinguishes
between time constraints and patterns where time is embedded in
control. The first group includes patterns that put constraints over the
execution of a process, without conceptually intervening the control
flow. For example, a rule specifying that a certain process should not
last more than 30 days is a constraint. On the other hand, there are
patterns that intervene in the control flow, for example by delaying the
execution of some tasks. Moreover, this does not mean that the former
patterns never interact with the control flow: when most constraints are
violated, Actions are taken to correct or inform about the situation, or
even enforce compliance, which could be considered an intromission
into the control flow.

Mario Sánchez, Jorge Villalobos

The 11 coarse patterns can be briefly described as follows:

1. Deadline limit: constraints about when certain events should
happen with respect to a Time Point.

2. Duration limit: constraints about the duration of time lapses
between events (Interval)

3. Periodicity Time Limit: constraints on the frequency of
recurrent events, that is the Interval elapsed between
subsequent occurrences of said events.

4. Periodic Task Cardinality Limit: constraints on the number
of times recurrent events may happen within a time lapse.

5. Simple Event Sequence: constraints on the ordering of events
that do not depend on specific intervals.

6. Timed Event Sequence: constraints on time lapses between
the occurrences of events.

7. Periodic Task: control over how recurrent tasks should be
executed, especially the Interval elapsed between
subsequent executions of said tasks.

8. Periodic Task Enforce Cardinality: control over how
recurrent tasks should be executed, especially the number of
executions.

9. Delay For: control over when to execute some tasks, based on
an Interval.

10. Delay Until: control over when to execute some tasks, based
on a Time Point.

11. Schedule: control over the precise Time Points where
tasks should be executed.

Within these patterns, we have introduced further decompositions.
The first one distinguishes between static and dynamic patterns. In
the former, the allowed intervals or deadlines are all known and set
before the execution is started. In the latter, both intervals and
deadlines depend on what happens during the execution of the
processes and cannot be completely established before hand.
Another kind of decomposition deals with how limits for the
constraints are established and how are violated (e.g., before a time
point, after a time point, or between two time points). The catalog of
Lanz et al. considers such decompositions simple design choices;
however, we believe that they have such an important impact that
the constraints “Deadline Limit: Lower, Static” and “Deadline
Limit: Excluded, Dynamic” should be considered two different
patterns.

129An Expanded and Refined Catalog of Time Patterns for Workflows)

Table 1. Time Constraint Patterns

The rest of the section describes in detail five of the patterns. We cannot
describe the full catalog in this paper, but the specification of each one of
them can be found in [10]. We only include the Event Calculus
specification for one of the patterns; for the rest, we provide the
statechart diagrams which are equivalent and much more readable.

5.1. Deadline Limit: Inter, Static

Overview: This constraint pattern describes a situation where an event
e must occur between two time points d1 and d2, given that d1 < d2.

Motivation: This pattern captures the situations where the occurrence of an
event has both lower and upper bounds. As an example, consider a process
where a monthly report is always produced within the first two workable
days of the following month. Therefore, the activity that produces the
report has a lower bound (the first of the month) as well as an upper bound
(the second day), which is precisely the situation that this pattern models.

Specification:
Parameters: This is a static pattern, which requires six parameters to be
fully defined:

· e: the event of interest for the pattern.
· d1, d2: two time points, with d1 < d2.
· A1, A2, A3: three actions to perform depending on whether the

constraint is fulfilled or not, and how is not fulfilled.

Event Calculus: We now present the EC specification of the pattern,
which uses three kinds of fluents. Firstly, there are those that are true
when it is not yet known whether the constraint is going to be fulfilled or
not (S and S). Then, there are those that are true while actions 0 1

130 Mario Sánchez, Jorge Villalobos

associated to the constraint are being executed (Exec.A1, Exec.A2,
Exec.A3). Finally, there are those that are true when the constraint has
been resolved (EarlyEnd, TimeOutEnd, Ok End). On the other hand,
there are three kinds of events: e, which is the event of interest for the
pattern; e_d1 and e_d2, which are the events that indicate that the time
points d1 and d2 have been reached; and end.A1, end.A2, and end.A3
which are the events that indicate that the respective actions have
completed their execution.

Table 2 presents the formulae that model this pattern. They have been
grouped to improve readability and to better relate them to the ensuing
statechart diagram.

Table 2. Formulae to formalize Deadline Limit pattern.

Statechart diagram: Figure 2 shows the statechart for the Deadline
Limit pattern. The expression T(d1) represents the event of reaching the
time point d1. The actions A1, A2, and A3 represent the execution of the
corresponding actions associated to the time constraint.

Fig. 2. Statechart for the Deadline Limit pattern.

131An Expanded and Refined Catalog of Time Patterns for Workflows)

5.2. Duration Limit: Inter, Static

Overview: This pattern describes a situation where the interval
between two events e1 and e2 must be longer than i1, but shorter than
i2. It is assumed that e1 always occurs before e2 and that i1 < i2.

Motivation: All the duration patterns make reference to two events.
For example, when the duration of an activity's execution has to be
limited, the first event is used to indicate the start of the execution, and
the second event is used to indicate its completion. In this case, the
duration (or the lapse between the two events), has both lower and upper
bounds. In a concrete process, this kind of time constraint can serve to
ensure the quality of a tasks: if not enough time is put into it, it can be as
bad as if too much time is expended in it.

Specification:
Parameters: This is a static pattern, which requires seven parameters to
be fully defined:

· e1, e2: the two events of interest for the pattern.
· i1, i2: two intervals, with i1 < i2.
· A1, A2, A3: three actions to perform depending on whether the

constraint is fulfilled or not, and how is not fulfilled.

Statechart diagram:

Fig. 3. Statechart for the Duration Limit pattern.

5.3. Periodic Tasks: Until Event, Static

Overview: This pattern describes a situation where some tasks have to
be executed periodically, leaving intervals of length i between each
execution. The recurrent execution of the tasks begins after an event e1
occurs, and continues until the occurrence of the event e2.

Motivation: Although control flow languages typically have the
capabilities to describe recurrent task sets, it is not usually possible to

132 Mario Sánchez, Jorge Villalobos

characterize the recurrence from the perspective of time. If such thing is
desired, extraneous elements similar to sleeps have to be introduced in
order to pause the execution until the task set has to be executed again.
This pattern attempts to correct this situation by making explicit the
rules that control the recurrence of the task set. As an example of the
application of this pattern, one can consider a long process where
someone has to receive periodical updates on its status. In this situation,
the recurrent task set sends the status report, the first event signals the
beginning of the process execution, the second event signals the ending
of the process execution, and the interval depends on the frequency
required for the updates.

Specification:
Parameters: This is a static pattern, which requires the following
parameters to be fully defined:

· e1, e2: the two events of interest for the pattern.
· TS: the task set that is to be executed recurrently.
· i: an interval to leave between executions of the task set.

Statechart diagram: This statechart has an additional element with
respect to the previous one: variables. In particular, the meaning of the
expression t=T+i is that variable t is initialized with the current time (T)
increased by the interval i. Similarly, the expression T(t) represents the
event of reaching the time point referenced by the variable t.

Fig. 4. Statechart for the Periodic Tasks - Stop Event pattern.

5.4. Delay Until: Static

Overview: This blocking pattern describes a situation where the
execution of a task k should not begin before a certain time point d. If the
task starts before that, its execution is blocked and is only allowed to
continue after the point is reached.

Motivation: The control flow dimension of a process determines when
a task becomes enabled to be executed, depending on the completion of
other tasks. However, the conditions to enable a task sometimes include

133An Expanded and Refined Catalog of Time Patterns for Workflows)

factors related to time, which have to be enforced just as control flow
restrictions are enforced. This pattern serves to describe this kind of
situations.

With respect to the previously described patterns, this one has major
differences in being blocking. This means that the execution of this
pattern has concrete consequences on the execution of the control flow.
As it will be shown bellow, the specification of this pattern includes the
operations Block k and Continue k, which respectively block the
execution of task k, and enable it to continue.

Specification:
Parameters: This is a static pattern, which requires the following
parameters to be fully defined:

k: the task of interest for the pattern.
d: a time point that should pass before the task is allowed to be executed.
A1, A2: actions to perform depending on whether k is enabled before or
after the time point d.

Statechart diagram:

 Fig. 5. Statechart for the Delay Until pattern.

5.5. Delay For: Dynamic

Overview: This blocking pattern describes the situation where the
execution of task k has to be delayed for an amount of time i, that
depends on the lapse between the occurrence of two events e1 and e2.
After the amount of time has passed, task k can continue its execution.
This pattern assumes that the execution of k begins after both e1 and e2
have occurred, and that e1 occurs before e2.

The execution of this pattern has concrete consequences on the
execution of the control flow, and for this its specification includes the
operations Block k and Continue k, which respectively block the
execution of task k, and enable it to continue.

134 Mario Sánchez, Jorge Villalobos

Motivation: There are two motivations behind this pattern. The first one
is the idea of blocking the execution of a task for certain lapse of time,
instead of blocking it until a certain time point as in Delay Until patterns.
The second idea is that of making the interval unknown before
execution, that is making the pattern dynamic. As an example of the
application of this pattern, consider the case where a certain document
has to be made available for a certain time before a process can continue.
This is something that occurs very frequently in government-related
processes, where the law itself establishes that to guarantee some
fairness the amount of time used by some party sets the amount of time
that another party can use.

Specification:
Parameters: This is a dynamic pattern, and thus not all of its parameters
have to be known prior to execution. However, the parameters that must
be known are the following:

k: the task of interest for the pattern.
e1, e2: the events of interest for the pattern, which define the interval to
delay task k.
A1, A2: actions to perform.

Statechart diagram:

Fig. 6. Sta techart for the Dynamic Delay For pattern.

6. Time in workflow languages

Up to a certain level, the time dimension has been incorporated in both
process specification languages and workflow management systems.
However, there is still a lot of room to improve in this area and provide
more comprehensive support [21], [15]. In particular, languages and
tools currently support only a subset of the time patterns proposed in this
paper, and in the other catalogs that we have mentioned already.

135An Expanded and Refined Catalog of Time Patterns for Workflows)

136

We performed an evaluation of BPMN with respect to our catalog in order
to establish how many of the patterns can be described using this standard
language for process description. The final conclusion that we reached is
that only 6 patterns are fully supported, for 27 patterns there is partial
support, and for 9 patterns there is no support. In the first group we put
those patterns that can be trivially introduced in a process and have a
minimal impact on the control flow. This means that it is not necessary to
add complex control structures in order to support the pattern. For all the
patterns in this group it is also possible to trace the execution of the process
and match it to the behavior outlined in the state machine. The second
group of patterns, those that are partially supported, are those where more
profound changes are required on the control flow. These changes tend to
increase its complexity and obfuscate the intention of the process
designers, and thus are seen as undesirable. Also, some of these patterns
also require relatively simple extensions to BPMN. Finally, there is a group
of patterns that is not supported at all and requires the introduction of
complex ad hoc extensions to the language in order to be fully supported.

There are several factors that explain why BPMN performs so poorly
with respect to time patterns. The first and foremost is that the language
mixes control and time, and makes the latter secondary to the first (more
on this later). The second factor is that BPMN does not have an inherent
way to manage variables. Therefore, dynamic patterns are difficult to
represent, as well as those that require counting the number of
repetitions. Finally, a third factor is that all expressions in BPMN
related to time are fuzzy, as they have to be expressed using natural
language. Therefore, expressions such as “After two hours” or “For
twice the time of the original activity'” are perfectly valid although they
decidedly lack precision.

The results that we obtained in the evaluation of BPMN against our
catalog of time patterns are consistent with the results presented by
Lanz et al. [7]. They evaluated several tools and languages, including
project management and calendar systems, and both commercial and
academic process languages, and found the following results: out of 10
patterns, BPMN supports only 6 and just partially. This includes the fact
that, according to them, some of the patterns require a “formalism used
for specifying time parameters” which is not part of BPMN, and thus
“no definite conclusion can be made”.

Considering that the catalog of Lanz et al. is a subset of our own catalog,
we did not replicate all the evaluations that they performed. Our
hypothesis is that the results would be even worse than theirs, especially
because of the additional patterns dealing with dynamicity. There has
not been an evaluation of the patterns proposed by Niculae, but only one
of her patterns is not included in our catalog. Therefore, we expect that

Mario Sánchez, Jorge Villalobos

any evaluation would arrive to results similar to those that have already
been discussed.

The lack of capacity found in tools and languages to express time is
especially caused by treating time as a secondary concern, and mixing it
with the control flow. For example, BPEL [22] has a handful of
elements that can be related to time, which are normal control elements,
but are qualified for time using specific attributes and the element
<onAlarm>. BPMN [23] provides three types of events to manage
time in a process: a start event controlled by a timer mechanism; an
intermediate event associated to the process flow and controlled by a
timer; and an intermediate event associated to exception paths and
controlled by a timer. In YAWL [17], the only aspect that allows the
expression of time is the inclusion of an attribute in tasks to indicate a
timeout. SAPWorkflow offers a similar support: tasks can have upper
and lower deadlines, which the runtime system can monitor. These
deadlines are defined relative to a reference point that can be the start
time of a workflow or a specific date. The approach of jBPM is very
different because it is based on the declaration of timers that execute
actions (pieces of Java code), or enforce a process transition if a
duration or date has been reached. However, this solution is very
technical in its nature, and does not make it easy to do things such as
reasoning about the time constraints.

There are some efforts such as [24], [1] that are trying to extend the
capacity of workflow languages to express the time dimension. Also,
there are tools that offer some advanced means to express and check time
constraints. Among them, there is the case of ADEPT [25], which offers
sophisticated modeling concepts and advanced features for temporal
constraint management. It uses Temporal Constraint Networks for
representing time constraints and checking their consistency. In this
way, duration time constraints and deadlines can be modeled for
activities and their consistency can be checked at the specification level.

7. Conclusion

Up to this point, the definition of time constraints in workflows has been
secondary to the definition of control for most workflow specification
languages. In some cases it is simply not possible to express, with the
necessary level of detail, time requirements of the workflows; in other
cases, the definition of time follows control and thus makes it very
difficult to express time constraints in a way that does not depend too
much on the control elements. Because of this, when a specific time
pattern has to be expressed, the control structure has to be modified in
such a complex way that its original purpose is lost.

137An Expanded and Refined Catalog of Time Patterns for Workflows)

138

The catalog of time patterns presented in this paper, and other similar
catalogs of patterns, are intended to be an important step in the direction
of offering powerful support for time in mainstream workflow
languages. We expect to see, in the very near future, the evolution of
languages towards supporting time in a better way, just as has happened
after the introduction of catalogs of patterns for other dimensions (e.g.,
control, data).

The catalog presented in this paper has been developed by analyzing
process catalogs as well as existing catalogs of time constraints in
workflows. What we have presented here subsumes all previous work in
the area and offers a further advantage: by providing a formalization of
the patterns it is possible to make a more accurate evaluation about the
support offered by languages or tools for each pattern. Furthermore, the
mechanisms used to formalize the patterns currently in the catalog can
be used as well to specify patterns that could be later included.

References

[1] D. Gagne and A. Trudel, “Time-bpmn,” in Proceedings of the 2009
IEEE Conference on Commerce and Enterprise Computing.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 361–367.

[2] W. M. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and
A. Barros, “Workflow Patterns,” BPMcenter.org, Tech. Rep.
BPM-03-06, 2003.

[3] N. Russell, A. H. M. ter Hofstede, W. M. P. van der Aalst, and N.
Mulyar, “Workflow Control-Flow Patterns: A Revised View,”
BPMcenter.org, Tech. Rep. BPM-06-22, 2006.

[4] Russell, Nick, van der Aalst, Wil M. P., ter Hofstede, Arthur H. M.,
and Edmond, David, “Workflow Resource Patterns:
Identification, Representation and Tool Support,” in Lecture
Notes in Computer Science, ser. LNCS, O. Pastor and J. Falcao,
Eds., vol. 3520. Springer Berlin, 2005, pp. 216–232–232.

[5] N. Russell, A. ter Hofstede, D. Edmond, and W. M. P. van der
Aalst, “Workflow Data Patterns: Identification, Representation
and Tool Support,” in Conceptual Modeling – ER 2005, ser.
Lecture Notes in Computer Science, L. Delcambre, C. Kop, H.
Mayr, J. Mylopoulos, and O. Pastor, Eds., vol. 3716. Springer
Berlin / Heidelberg, 2005, pp. 353–368.

Mario Sánchez, Jorge Villalobos

[6] N. Russell, W. M. P. van der Aalst, and A. H. M. ter Hofstede,
“Exception Handling Patterns in Process-Aware Information
Systems,” BPMcenter.org, Tech. Rep. BPM-06-04, 2006.

[7] A. Lanz, B. Weber, and M. Reichert, “Workflow time patterns for
process-aware information systems,” in 11th International
Workshop BPMDS and 15th International Conference EMMSAD
at CAiSE 2010, ser. LNBIP, vol. 50. Springer, 2010, pp. 94–107.

[8] C. Niculae, “Time Patterns in Workflow Management Systems,”
Eindhoven University of Technology, Tech. Rep., 2010.

[9] M. Shanahan, Artificial intelligence today: recent trends and
developments. Berlin, Heidelberg: Springer-Verlag, 1999, ch. The
Event Calculus explained, pp. 409–430.

[10] Cumbia, “Time Patterns,” http://cumbia.uniandes.edu.co/
wikicumbia/ doku.php?id=trp:referencestimepatterns, 2013.

[11] [11] J. Eder, E. Panagos, and M. Rabinovich, “Time constraints in
Workflow Systems,” in Advances Information Systems Engineering:
11th International Conference, CAiSE99, ser. Lecture Notes in
Computer Science, vol. 1626. Springer-Verlag, 1999, pp. 286–300.

[12] O. Marjanovic and M. E. Orlowska, “On Modeling and Verification
of Temporal Constraints in Production Workflows,” Knowledge
and Information Systems, vol. 1, no. 2, pp. 157–192, 1999.

[13] C. Combi and G. Pozzi, “Temporal Conceptual Modelling of
Workflows,” in Proceedings of the 22nd Int. Conference on
Conceptual Modeling ER2003, ser. Lecture Notes in Computer
Science, I.-Y. Song, S. Liddle, T.-W. Ling, and P. Scheuermann,
Eds., vol. 2813. Springer, 2003, pp. 59–76.

[14] W. Sadiq, O. Marjanovic, and M. E. Orlowska, “Managing
Change and Time in Dynamic Workflow Processes,”
International Journal of Cooperative Information Systems, vol. 9,
no. 1-2, pp. 93–116, 2000.

[15] H. Zhuge, T.-y. Cheung, and H.-K. Pung, “A timed workflow
process model,” Journal of Systems and Software, vol. 55, no. 3,
pp. 231–243, 2001.

[16] C. Bettini, X. S. Wang, and S. Jajodia, “Temporal Reasoning in
Workflow Systems,” Distributed and Parallel Databases, vol. 11
no. 3, pp. 269–306, 2002.

139An Expanded and Refined Catalog of Time Patterns for Workflows)

140

[17] W. M. van der Aalst and A. H. M. ter Hofstede, “YAWL: Yet
Another Workflow Language (Revised Version),” Queensland
University of Technology, Brisbane, Tech. Rep. FIT-TR-2003-04,
2006.

[18] F. Puhlmann and M. Weske, “Using the pi-calculus for
formalizing workflow patterns,” in Proceedings of 3rd
International Conference on Business Process Management,
BPM'05, ser. Lecture Notes in Computer Science, van der Aalst,
Wil M. P., B. Benatallah, F. Casati, and F. Curbera, Eds., vol. 3649.
Springer Berlin / Heidelberg, 2005, pp. 153–168–168.

[19] L. Zhang, S. Yao, and J. Li, “Formalizing workflow patterns with
Extended Petri-Net,” in Proceedings of the Sixth International
Conference on Natural Computation (ICNC'2010). IEEE, 2010,
pp. 3164–3168.

[20] J. F. Allen, “Maintaining knowledge about temporal intervals,”
Communications of the ACM, vol. 26, pp. 832–843, 1983.

[21] J. Eder, H. Pichler, and S. Vielgut, “Avoidance of deadline-
violations for inter-organizational business processes,” in 7th
International Baltic Conference on Databases and Information
Systems, 2006, pp. 33–40.

[22] OASIS Technical Committee, “Web Services Business Process
Execution Language, Version 2.0,” http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf, 2005.

[23] Object Management Group, “Business Process Model and
N o t a t i o n (B P M N) , B e t a 1 f o r Ve r s i o n 2 . 0 , ”
http://www.omg.org/spec/BPMN/2.0, August 2009. [Online].
Available: http://www.omg.org/spec/BPMN/2.0

[24] D. Gagne ì and A. Trudel, 2009 BPM & Workflow Handbook
Methods, Concepts, Case Studies and Standards in Business
Process Management and Workflow. Future Strategies Inc., 2009,
ch. Extending XPDL with the Temporal Perspective.

[25] M. Reichert, S. Rinderle, and P. Dadam, “ADEPT workflow
management system: flexible support for enterprise-wide
business processes,” in Proceedings of the 2003 International
Conference on Business Process Management - BPM03, ser.
Lecture Notes in Computer Science, vol. 2678. Springer-Verlag,
2003, pp. 370–379.

Mario Sánchez, Jorge Villalobos

