Show simple item record

dc.contributor.authorPorras-Alvarez, Javierspa
dc.date.accessioned2020-10-27T14:19:24Z
dc.date.available2020-10-27T14:19:24Z
dc.date.issued2018-11-19
dc.identifier.issn2382-4603
dc.identifier.issn0123-7047
dc.identifier.urihttp://hdl.handle.net/20.500.12749/9955
dc.description.abstractIntroducción. La fatiga central en el deporte está asociada a los efectos del amonio. La principal fuente de producción de amonio durante el ejercicio es el músculo esquelético. El amonio se genera como consecuencia del metabolismo energético, debido a la oxidación de aminoácidos y a la desaminación del nucleótido de adenosin trifosfato. Objetivo. Presentar una reflexión sobre el efecto del amonio durante el ejercicio de alta intensidad y su relación con la fatiga central en atletas. Discusión. Durante el ejercicio, la concentración de amonio alcanza valores superiores a 200μM (micromolar); sin embargo, en un adulto promedio se considera que valores superiores a 60μM en sangre manifiestan un trastorno por hiperamonemia. El amonio influye en la disminución del rendimiento en atletas y está asociado con los efectos nocivos para la salud en pacientes con encefalopatía hepática. Conclusiones. La práctica del ejercicio físico genera neuroprotección contra las altas concentraciones de amonio en el cerebro, pues, durante el ejercicio con altas concentraciones de amonio, los atletas no presentan los síntomas de pacientes con encefalopatía hepática, lo que implica adaptaciones metabólicas que juegan un papel importante en el metabolismo del amonio en el cerebro. [Porras-Álvarez J. Consecuencias del amonio en la fatiga central en atletas, posible efecto neuroprotector del ejercicio. MedUNABspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.relationhttps://revistas.unab.edu.co/index.php/medunab/article/view/3394/2886
dc.relation/*ref*/Nybo L, Secher NH. Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol. 2004;72(4):223-261. doi:10.1016/j.pneurobio.2004.03.005 2. Lopéz J, Fernández A. Fisiología del ejercicio. Segunda edición. [Internet]. Madrid, España: Editorial Médica Panamericana; 2006 [citado 26 de marzo de 2018]. Recuperador a partir de: https://www.medicapanamericana.com/Libros/ Libro/3924/Fisiologia-del-Ejercicio.html 3. Entine J. Why black athletes dominate sports and why we’re afraid to talk about it. [Internet]. New York Times: Public Affairs. 2000 [citado 26 de marzo de 2018]. Recuperado a partir de: https://archive.nytimes.com/www.nytimes.com/books/ first/e/entine-taboo.html 4. Carvalho-Peixoto J, Alves RC, Cameron LC. Glutamine and carbohydrate supplements reduce ammonemia increase during endurance field exercise. Appl Physiol Nutr Me. 2007;32(6):11861190. doi:10.1139/H07-091 5. Bessa A, Nissenbaum M, Monteiro A, Gandra PG, Nunes L, Bassini-Cameron A, et al. High-intensity ultraendurance promotes early release of muscle injury markers. Brit J Sport Med. 2008;42(11):889893. doi:10.1136/bjsm.2007.043786 6. Bassini-Cameron A, Monteiro A, Gomes A, Werneck-de-Castro JP, Cameron L. Glutamine protects against increases in blood ammonia in football players in an exercise intensity-dependent way. Brit J Sport Med. 2008;42(4):260-266. doi:10.1136/bjsm.2007.040378 7. Viru A, Viru M. Análisis y control del rendimiento deportivo [Internet]. Barcelona: Paidotribo; 2003 [citado 26 de marzo de 2018]. Recuperado a partir de: http://www.paidotribo.com/ficha.aspx?cod=00695 8. Hellsten Y, Richter EA, Kiens B, Bangsbo J. AMP deamination and purine exchange in human skeletal muscle during and after intense exercise. J Physiol. 1999;520:909-920. doi:10.1111/j.14697793.1999.00909.x 9. McKee T, McKee JR. Bioquímica: las bases moleculares de la vida [Internet]. Estados Unidos: Mc Graw Hill Education; 2009 [citado 26 de marzo de 2018]. Recuperado a partir de: https://accessmedicina.mhmedical.com/Content. aspx?bookid=1960&sectionid=147707411 10. Nelson DL, Cox MM. Lehninger Principles of Biochemistry [Internet]. Alemania: Grupo editorial W. H. Freeman; 2004 [citado 26 de marzo de 2018]. Recuperado a partir de: https://onlinelibrary.wiley.com/doi/abs/10.1002/cbf.1216 11. Huizenga JR, Gips CH, Tangerman A. The contribution of various organs to ammonia formation: a review of factors determining the arterial ammonia concentration. Ann Clin Biochem. 1996;33(1):2330. doi:10.1177/000456329603300103 12. Casey A, Greenhaff PL. Does dietary creatine supplementation play a role in skeletal muscle metabolism and performance?. Am J Clin Nutr. [Internet]. 2000 [Acceso 26 mar 2018]; 72(2):607617. Disponible en: https://doi.org/10.1093/ajcn/72.2.607S. 13. Bøyum A, Rønsen O, Tennfjord V, Tollefsen S, Haugen A, Opstad P, et al. Chemiluminescence response of granulocytes from elite athletes during recovery from one or two intense bouts of exercise. Eur J App Physiol. 2002;88(1-2):20-28. doi:10.1007/s00421-002-0705-2 14. Wagenmakers AJ, Beckers EJ, Brouns F, Kuipers H, Soeters PB, Van Der Vusse GJ, et al. Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise. Am J PhysiolEndoc M. 1991;260(6):E883-890. doi:10.1152/ajpendo.1991.260.6.E883 15. Banister EW, Cameron BJC. Exercise-induced hyperammonemia: peripheral and central effects. Int J Sport Med. 1990;11(1):29-142. doi.org/10.1055/s-2007-1024864 16. Richter EA, Ruderman BN. AMPK and the biochemistry of exercise: implications for human health and disease. Biochem J. 2009;418(2):261275. doi:10.1042/BJ20082055 17. Butterworth RF. Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis. 2002;17(4):221-227. doi:10.1023/A:1021989230535 18. Felipo V, Butterworth RF. Neurobiology of ammonia. Neurobiol. 2002;67(4):259-279. doi:10.1016/S0301-0082(02)00019-9 19. Ott P, Larsen FS. Blood–brain barrier permeability to ammonia in liver failure: a critical reappraisal. Neurochem Int. 2004;44(4):185-198. doi:10.1016/S0197-0186(03)00153-0 20. Córdoba J, Mínguez B. Hepatic encephalopathy. Semin Liver Dis. [Internet]. 2008 [Acceso 26 mar 2018]; 28(1):70-80. Disponible en: https://doi.org/10.1055/s-2008-1040322. 21. Romero-Gómez M. Role of phosphate-activated glutaminase in the pathogenesis of hepatic encephalopathy. Metab Brain Dis. [Internet]. 2005 [Acceso 26 mar 2018]; 20(4):319-325. Disponible en: https://doi.org/10.1007/s11011-005-7913-5. 22. Boron W, Boulpaep E. Medical Physiology [Internet]. USA: Elsevier Health Sciences; 2012 [citado 26 de marzo de 2018]. Recuperado a partir de: https:// www.elsevier.com/books/medical-physiology-2eupdated-edition/boron/978-1-4377-1753-2 23. Suarez I, Bodega G, Fernandez B. Glutamine synthetase in brain: effect of ammonia. Neurochem Int. 2002;41(2-3):123-142. doi:10.1016/S01970186(02)00033-5 24. Nybo L, Dalsgaard MK, Steensberg A, Møller K, Secher NH. Cerebral ammonia uptake and accumulation during prolonged exercise in humans. J Physiol. 2005; 563(1):285-290. doi:10.1113/ jphysiol.2004.075838 25. Garg SK, Banerjee R, Kipnis J. Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype. J Immunol. 2008;180(6): 3866-3873. doi:10.4049/ jimmunol.180.6.3866 26. Córdova MA. Serie Blanca. Inmunidad y ejercicio físico. Fisiología del ejercicio. [Internet]. Madrid, España: Editorial Médica Panamericana; 2006 [citado 26 de marzo de 2018]. Recuperador a partir de: https://www.medicapanamericana.com/Libros/ Libro/3924/Fisiologia-del-Ejercicio.html
dc.relation.urihttps://revistas.unab.edu.co/index.php/medunab/article/view/3394
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.sourceMedUNAB; Vol. 21 Núm. 1 (2018): Abril - julio 2018: Topografía de la Córnea, Indicadores Bibliométricos, Calidad de Vida; 115-121
dc.titleConsecuencias del amonio en la fatiga central en atletas, posible efecto neuroprotector del ejerciciospa
dc.title.translatedAmmonium consequences in athletes’ central fatigue and its possible neuroprotection effect thanks to physical activityeng
dc.publisher.facultyFacultad Ciencias de la Saludspa
dc.publisher.programPregrado Medicinaspa
dc.type.driverinfo:eu-repo/semantics/article
dc.type.localArtículospa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.subject.keywordsFatigueeng
dc.subject.keywordsQuaternary ammonium compoundseng
dc.subject.keywordsResistance trainingeng
dc.subject.keywordsExerciseeng
dc.subject.keywordsImmune systemeng
dc.subject.keywordsUric acideng
dc.subject.keywordsHepatic encephalopathyeng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga UNABspa
dc.type.hasversionInfo:eu-repo/semantics/publishedVersion
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.relation.referencesLopéz J, Fernández A. Fisiología del ejercicio. Segunda edición. [Internet]. Madrid, España: Editorial Médica Panamericana; 2006 [citado 26 de marzo de 2018].spa
dc.relation.referencesEntine J. Why black athletes dominate sports and why we’re afraid to talk about it. [Internet]. New York Times: Public Affairs. 2000 [citado 26 de marzo de 2018]spa
dc.relation.referencesCarvalho-Peixoto J, Alves RC, Cameron LC. Glutamine and carbohydrate supplements reduce ammonemia increase during endurance field exercise. Appl Physiol Nutr Me.spa
dc.relation.referencesBessa A, Nissenbaum M, Monteiro A, Gandra PG, Nunes L, Bassini-Cameron A, et al. High-intensity ultraendurance promotes early release of muscle injury markers. Brit J Sport Med. 2008;42(11):889-893. doi: 10.1136/bjsm.2007.043786spa
dc.relation.referencesBassini-Cameron A, Monteiro A, Gomes A, Werneck-de-Castro JP, Cameron L. Glutamine protects against increases in blood ammonia in football players in an exercise intensity-dependent way. Brit J Sport Med. 2008;42(4):260-266. doi: 10.1136/bjsm.2007.040378spa
dc.relation.referencesViru A, Viru M. Análisis y control del rendimiento deportivo [Internet]. Barcelona: Paidotribo; 2003 [citado 26 de marzo de 2018]. Recuperado a partir de: http://www.paidotribo.com/ficha.aspx?cod=00695spa
dc.relation.referencesHellsten Y, Richter EA, Kiens B, Bangsbo J. AMP deamination and purine exchange in human skeletal muscle during and after intense exercise. J Physiol. 1999;520:909-920. doi: 10.1111/j.1469-7793.1999.00909.spa
dc.relation.referencesMcKee T, McKee JR. Bioquímica: las bases moleculares de la vida [Internet]. Estados Unidos: Mc Graw Hill Education; 2009 [citado 26 de marzo de 2018]. Recuperado a partir de: https://accessmedicina.mhmedical.com/Content.aspx?bookid=1960&sectionid=147707411spa
dc.relation.referencesNelson DL, Cox MM. Lehninger Principles of Biochemistry [Internet]. Alemania: Grupo editorial W. H. Freeman; 2004 [citado 26 de marzo de 2018]. Recuperado a partir de: https://onlinelibrary.wiley.com/doi/abs/10.1002/cbf.1216spa
dc.contributor.cvlacPorras-Alvarez, Javier [0000865893]spa
dc.contributor.googlescholarPorras-Alvarez, Javier [y8WmpWsAAAAJ&hl=es&oi=ao]spa
dc.contributor.orcidPorras-Alvarez, Javier [0000-0001-5817-7982]spa
dc.subject.lembCiencias de la saludspa
dc.subject.lembMedicinaspa
dc.subject.lembCiencias medicasspa
dc.identifier.repourlrepourl:https://repository.unab.edu.co
dc.description.abstractenglishIntroduction. Central fatigue in sports training is associated with ammonium effects within the human body. The ammonium main production source during physical training is located in skeletal muscles and it is generated as a result of energy metabolism. This process is caused by amino acids oxidation and adenosine triphosphate nucleotide deamination. Objective. This article’s objective is to present an analysis regarding ammonium effects when high intensity sports are performed and its relation with central fatigue in athletes. Discussion. When high intensity sport practices are performed, ammonium concentration levels can reach values higher than 200 μM (micromolar). However, it is considered that an average adult with ammonium levels higher than 60μM evidences a hyperammonemia disorder. Ammonium has direct influence in the decline of athletic performance and it is associated with harmful effects for hepatic encephalopathy patients. Conclusions. Physical activity practice creates neuroprotection against high-quantities of ammonium in the brain. Although in physical practices athletes have high amounts of ammonium, they do not show symptoms related to hepatic encephalopathy; thus, this situation implies that metabolic adaptations have an important role within ammonium metabolism in the brain. [Porras-Álvarez J. Ammonium consequences in athletes’ central fatigue and its possible neuroprotection effect thanks to physical activity. MedUNAB.eng
dc.subject.proposalFatigaspa
dc.subject.proposalCompuestos de amoniospa
dc.subject.proposalCuaternariospa
dc.subject.proposalEntrenamiento de resistenciaspa
dc.subject.proposalEjerciciospa
dc.subject.proposalSistema inmunológicospa
dc.subject.proposalÁcido úricospa
dc.subject.proposalEncefalopatía hepáticaspa
dc.identifier.doi10.29375/01237047.3394
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia