Mostrar el registro sencillo del ítem

dc.contributor.authorSalas, Alvaro H.spa
dc.contributor.authorGómez, Cesar A.spa
dc.date.accessioned2020-10-27T00:20:48Z
dc.date.available2020-10-27T00:20:48Z
dc.date.issued2009-06-01
dc.identifier.issn2539-2115
dc.identifier.issn1657-2831
dc.identifier.urihttp://hdl.handle.net/20.500.12749/8971
dc.description.abstractTres ecuaciones diferenciales parciales no lineales, a saber, el estándar KdV ecuación, la ecuación de Boussinesq y el KdV generalizado de quinto orden ecuación se consideran aquí desde el punto de vista de la construcción exacta soluciones para ellos. Las ecuaciones que consideramos aquí son en su forma más general. formulario. Nuevas soluciones exactas que incluyen soluciones periódicas y de solitones son derivado formalmente usando el método tanh. El lenguaje de programación Se utiliza Mathematica.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.relationhttps://revistas.unab.edu.co/index.php/rcc/article/view/1140/1173
dc.relation.urihttps://revistas.unab.edu.co/index.php/rcc/article/view/1140
dc.rightsDerechos de autor 2009 Revista Colombiana de Computación
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.sourceRevista Colombiana de Computación; Vol. 10 Núm. 1 (2009): Revista Colombiana de Computación; 120-137
dc.subjectEcuación diferencial parcial no lineal
dc.subjectEcuación de KdV
dc.subjectEcuación de Boussinesq
dc.subjectEcuación FKdV
dc.titleCálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanhspa
dc.title.translatedSymbolic computation of solutions for three generalized nonlinear partial differential eQuations by using the tanh methodeng
dc.type.driverinfo:eu-repo/semantics/article
dc.type.localArtículospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsNonlinear partial differential equationeng
dc.subject.keywordsKdV equationeng
dc.subject.keywordsBoussinesq equationeng
dc.subject.keywordsFKdV equationeng
dc.subject.keywordsTechnological innovationseng
dc.subject.keywordsComputer's scienceeng
dc.subject.keywordsTechnological developmenteng
dc.subject.keywordsSystems engineereng
dc.subject.keywordsResearcheng
dc.subject.keywordsTechnology of the information and communicationeng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.relation.referencesWAZWAZ A., The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Applied Mathematics and Computation, Elsevier, 84-2 (2007), 1002-1014.
dc.relation.referencesGÓMEZ C. A., Special forms of the fifth-order KdV equation with new periodic and soliton solutions, Appl. Math and Comp, 189(2007) 1066-1077.
dc.relation.referencesGÓMEZ C. A. & SALAS ALVARO H., The generalized tanh-coth method to special types of the fifth-order KdV equation Applied Mathematics and Computation, Elsevier, 203(2008) 873-880.
dc.relation.referencesSALAS S. ALVARO H. & C.A. GÓMEZ, Computing exact solutions for some fifth KdV equations with forcing term, Appl. Math and Comp, 204(2008) 257-260.
dc.relation.referencesSALAS S. ALVARO H., C.GÓMEZ & ESCOBAR L. JOSÉ G., Exact solutions for the general fifth order KdV equation by the extended tanh method, Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol.1, 2(2008), 305-310.
dc.relation.referencesGÓMEZ C. A. & SALAS S. ALVARO H., Special forms of SawadaKotera equation with periodic and soliton solutions, Int. J. of Appl. Math. Analysis. and Appl.,2(2007), 85-91.
dc.relation.referencesHIROTA R., Direct Methods in Soliton Theory, Berlin 1980.
dc.relation.referencesABLOWITZ M.J., CLARKSON P.A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University press, Cambridge,1991.spa
dc.relation.referencesBALDWIN D., GOKTAS U., HEREMAN W., HONG L., MARTINO R.S. & MILLER J.C., Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDFs, J. Symbolic Comp. 37(2004), no. 6, 669-705; Prepint version: nlin.SI/0201008(arXiv.org)
dc.relation.referencesFAN F. & HON Y. C., Generalized tanh Method Extended to Special Types of Nonlinear Equations, Z. Naturforsch. A, 57(2002), no. 8, 692-700.
dc.relation.referencesGÓMEZ C. A., Exact solutions for a new fifth-order integrable system, Revista Colombiana de Matemáticas, Universidad Nacional de Colombia, Bogotá, 40(2006), 119-125.
dc.relation.referencesGÓMEZ C. A. & SALAS S. ALVARO H., Exact solutions for reaction diffusion equation by using the generalized tanh method, Scientia Et Technica, Universidad Tecnológica de Pereira, 13(2007),409- 410.
dc.relation.referencesGÓMEZ C. A. & SALAS S. ALVARO H., Solutions for a class of fifth-order nonlinear partial differential system, Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol.3, 1(2009), p.p. 121-128. Preprint version available at http://www.arXiv.org 0809-2870.
dc.relation.referencesGÓMEZ C. A. & SALAS S. ALVARO H., New periodic and soliton solutions for the Generalized BBM and Burgers–BBM equations, Applied Mathematics and Computation, Elsevier, (2009) xxx-xx.
dc.relation.referencesGÓMEZ C. A. & SALAS S. ALVARO H., Exact solutions for a new integrable system (KdV6), Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol.1, 2(2008), 401-413.
dc.relation.referencesGÓMEZ C. A. & SALAS S. ALVARO H., New exact Solutions to Special KdV6 and to Jaulient-Miodek Equations Using the Generalized tanh-coth Method, Int. Journal of Computer, Symbolic Computation of Solutions for Three Generalized Nonlinear Partial Differential Equations by Using the Tanh Method 135 Mathematical Sciences and Applications , Vol. 2 4,(2008), p.p. 271-280.
dc.relation.referencesGÓMEZ C. A., A new travelling wave solution of the Mikhailov– Novikov–Wang system using the extended tanh method, Boletin de Matematicas, Vol. XIV 1(2007), 38-43.
dc.relation.referencesGÓMEZ C. A. & SALAS S. ALVARO H., The variational iteration method combined with improved generalized tanh-coth method applied to Sawada-Kotera equation, Applied Mathematics and Computation, Elsevier, (2009) doi:10.1016/j.amc.2009.05.046.
dc.relation.referencesGÓMEZ C. A. & SALAS S. ALVARO H., The Cole Hopf transformation and improved tanh-coth method applied to new integrable system (KdV6), Applied Mathematics and Computation, Elsevier, 204(2008) 957-962.
dc.relation.referencesHE J.H. & ZHANG L.N., Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the Exp-function method, Phys.Lett. A (2007), doi:10.1016/j.physleta.2007.08.059.
dc.relation.referencesSALAS S. ALVARO H., GÓMEZ C. A. & CASTILLO H. JAIRO E. New abundant solutions for the Burgers equation , Computers and Mathematics with Applications, Elsevier, 58(2009), 514-520.
dc.relation.referencesCONTE R. & MUSETTE M., Link betwen solitary waves and projective Riccati equations, J. Phys. A Math. 25 (1992), 5609- 5623.
dc.relation.referencesYAN Z., The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear differential equation, Comput. Phys. Comm. 152(2003), no. 1, 1- 8. Prepint version available at http://www.mmrc.iss.ac.cn/pub/mm22.pdf/20.pdf
dc.relation.referencesGÓMEZ C. A. & SALAS ALVARO H., Exact solutions for the generalized shallow water wave equation by the general projective Riccati equations method, Boletín de Matemáticas, Universidad Nacional de Colombia, Bogotá, XIII-1(2006), 50- 56.
dc.relation.referencesGÓMEZ C. A. & SALAS S. ALVARO H., New exact solutions for the combined sinh-cosh-Gordon equation, Lecturas Matemáticas, Sociedad Colombiana de Matemáticas, special issue (2006), 87- 93.
dc.relation.referencesGÓMEZ C. A., New exact solutions of the Mikhailov–Novikov– Wang System, Int. J. of Comp. Math. Sciences and Appl. , 1 (2007), 137-143.
dc.relation.referencesABLOWITZ M. J., AND CLARKSON P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series 149, Cambridge Univ. Press, London (1991).
dc.relation.referencesGARDNER C. S., AND MARIKAWA G. K., Courant Inst. Math. Sci.Res. Rep. NYO-9082, N.Y. University, New York (1960).
dc.relation.referencesJEFFREY A., AND KAKUTANI T., SIAM Rev. 14, 582-643 (1972).
dc.relation.referencesSCOTT A. C., CHU F. Y., AND MCLAUGHLIN D. W., Proc. IEEE 61, 1443-1483 (1973).
dc.relation.referencesMIURA R. M., SIAM Rev. 18, 412-459 (1976).
dc.relation.referencesABLOWITZ M. J., AND SEGUR H., Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).
dc.relation.referencesLAMB G. L., Elements of Soliton Theory, John Wiley, New York (1980).
dc.relation.referencesCALOGERO F., AND DEGASPERIS A., Spectral Transforms and Solitons I, Amsterdam, Holland (1982).
dc.relation.referencesDODD R. K., EILBECK J. C., GIBBON J. D., AND MORRIS H. C., Solitons and Nonlinear Wave Equations, Academic Press, New York (1982).
dc.relation.referencesNOVIKOV S. P., MANAKOV S. V., PITAEVSKII L. P., AND ZAKHAROV V. E., Theory of Solitons. The Inverse Scattering Method, Plenum, New York (1984).
dc.relation.referencesZHAO XUEQUIN AND OTHERS, A new Riccati equation expansion method with symbolic computation to construct new traveling wave solution of nonlinear differential equations, Applied Mathematics and Computation, 172 (2006) 24-39.
dc.relation.referencesWAZWAZ A., Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method, Chaos Solitons Fract. 12 (2001) 1549.
dc.relation.referencesLIU S. K., FU Z. T., LIU S. D., ZHAO Q., Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations, Acta. Phys. Sin. 50 (2001) 2068.
dc.relation.referencesBRATSOS A. G., The solution of the Boussinesq equation using the method of lines, Comput. Methods. Appl. Mech. Eng. 157 (1998) 33.
dc.relation.referencesTODA M., WADATI M., A soliton and two solitons in an exponential lattice and related equations, J. Phys. Soc. Jpn. 34 (1973) 18.
dc.relation.referencesAMEINA N., SYMBOLIC COMPUTATION OF EXACT SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS USING DIRECT METHODS. (THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (MATHEMATICAL AND COMPUTER SCIENCE)) COLORADO SCHOOL OF MINES.
dc.relation.referencesSALAS S. ALVARO H., New solutions for the KdV equation by the exp-function method, Visión Electrónica, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, septiembre, 2009, Año 2, No. .3.
dc.relation.referencesSALAS S. ALVARO H., GÓMEZ C. A. & CASTILLO H. JAIRO E. , Exact solutions for the Generalized Modified Degasperis--Procesi equation, Symbolic Computation of Solutions for Three Generalized Nonlinear Partial Differential Equations by Using the Tanh Method 137 Applied Mathematics and Computation, Elsevier, september 2009, article in press.
dc.relation.referencesCASTILLO H. JAIRO E. , SALAS S. ALVARO H. & ESCOBAR L. JOSÉ G., Exact solutions for a nonlinear model , Applied Mathematics and Computation, september 2009, article in press.
dc.relation.referencesSALAS S. ALVARO H., GÓMEZ C. A., A practical approach to solve coupled systems of nonlinear PDE's, Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol. 3, No. 1(August, 2009), 101-107, http://scientificadvances.org/journals1P5.htm
dc.relation.referencesSALAS S. ALVARO H., Exact solutions for the general fifth-order KDV, EqWorld – The world of Mathematical Equations, 19th may, 2008, Russia. web site : http://eqworld.ipmnet.ru/eqarchive/view.php?id=314
dc.relation.referencesSALAS S. ALVARO H., Exact solutions for the general fifth-order KDV, EqWorld – The world of Mathematical Equations, January, 2009, Russia.
dc.relation.referencesSALAS S. ALVARO H., CASTILLO H. JAIRO E., & ESCOBAR L. JOSÉ G., About the seventh-order Kaup-Kupershmidt equation and its solutions, 2008, http://arxiv.org
dc.relation.references] SALAS S. ALVARO H. & ESCOBAR L. JOSÉ G., A New solutions for the modified generalized Degasperis-Procesi equation, 2008, http://arxiv.org
dc.relation.referencesSALAS S. ALVARO H., & ESCOBAR L. JOSÉ G., A New solutions for the modified generalized Degasperis-Procesi equation, 2008, http://arxiv.org
dc.relation.referencesWAZWAZ A., ANALYTIC STUDY FOR FIFTH-ORDER KDV-TYPE EQUATIONS WITH ARBITRARY POWER NONLINEARITIES, COMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, , 12-6 (2007), 904-909.
dc.relation.referencesSALAS S. ALVARO H.,Two standard methods for solving the Ito equation, http://arxiv.org
dc.relation.referencesSALAS S. ALVARO H., Some exact solutions for the CaudreyDodd-Gibbon equation, 2008, http://arxiv.org
dc.relation.referencesSALAS S. ALVARO H., GÓMEZ C. A. & ESCOBAR L. JOSÉ G., Exact solutions for the general fifth order KdV equation by the extended tanh method , 2008, http://arxiv.org
dc.relation.referencesSALAS S. ALVARO H., GÓMEZ C. A , El software Mathematica en la búsqueda de soluciones exactas de ecuaciones diferenciales no lineales en derivadas parciales mediante el uso de la ecuación de Riccati, Memorias del Primer Seminario Internacional de Tecnologías en Educación Matemática, Universidad Pedagógica Nacional, Santafé de Bogotá, Colombia 1 (2005) 379-387.
dc.contributor.orcidGómez, Cesar A. [0000-0002-0285-5649]spa
dc.contributor.researchgateSalas, Álvaro H. [Alvaro-Salas-2]spa
dc.subject.lembInnovaciones tecnológicasspa
dc.subject.lembCiencias de la computaciónspa
dc.subject.lembDesarrollo tecnológicospa
dc.subject.lembIngeniería de sistemasspa
dc.subject.lembInvestigacionesspa
dc.subject.lembTecnologías de la información y la comunicaciónspa
dc.identifier.repourlrepourl:https://repository.unab.edu.co
dc.description.abstractenglishThree nonlinear partial differential equations, namely, the standard KdV equation, the Boussinesq equation and the generalized fifth-order KdV equation are considered here from of point the view of construct exact solutions for them. The equations that we consider here are in its most general form. New exact solutions which include periodic and soliton solutions are formally derived by using the tanh method. The programming language Mathematica is used.eng
dc.subject.proposalEcuación diferencial parcial no linealspa
dc.subject.proposalEcuación de KdVspa
dc.subject.proposalEcuación de Boussinesspa
dc.subject.proposalEcuación fKdVspa
dc.type.redcolhttp://purl.org/redcol/resource_type/CJournalArticle
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International