Mostrar el registro sencillo del ítem

dc.contributor.authorZambrano, Sandraspa
dc.contributor.authorHiguera, Cristhiamspa
dc.contributor.authorVillamizar Mejía, Rodolfospa
dc.contributor.authorAgudelo, Carlosspa
dc.date.accessioned2020-10-27T00:20:33Z
dc.date.available2020-10-27T00:20:33Z
dc.date.issued2011-12-01
dc.identifier.issn2539-2115
dc.identifier.issn1657-2831
dc.identifier.urihttp://hdl.handle.net/20.500.12749/8929
dc.description.abstractEn el presente artículo se aplican y ajustan algunas técnicas y metodologías para la detección de fallos en una planta de Cracking Catalítico Fluidizado (FCC) modelo UOP, inicialmente se realiza un análisis de confiabilidad que permite definir el nivel de criticidad de cada uno de los equipos e identificar modos de fallo potenciales y su efecto sobre la operación de la planta; con la información entregada por este análisis se establecen casos de estudio, como requerimientos para un sistema de supervisión, detección y clasificación de situaciones anómalas, que pueden llevar al proceso a una condición de fallo. Para estudiar los casos se simulan las condiciones con un modelo de operación de la unidad FCC y se detectan los fallos con una herramienta basada en PCA (Análisis de componentes principales) y Lógica Fuzzy; finalmente se ajusta la herramienta utilizando datos históricos del proceso en presencia del fallo.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.relationhttps://revistas.unab.edu.co/index.php/rcc/article/view/1799/1651
dc.relation.urihttps://revistas.unab.edu.co/index.php/rcc/article/view/1799
dc.rightsDerechos de autor 2011 Revista Colombiana de Computación
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.sourceRevista Colombiana de Computación; Vol. 12 Núm. 2 (2011): Revista Colombiana de Computación; 45-63
dc.subjectAnálisis de componentes principales (PCA)
dc.subjectAnálisis de modos y efectos de falla (FMEA)
dc.subjectDetección de Fallos
dc.subjectCraqueo Catalítico Fluidizado (FCC)
dc.subjectClustering basadas en Lógica Fuzzy (CLF)
dc.subjectKnowledge Discovery in Databases (KDD)
dc.titlePCA y lógica fuzzy para la detección de eventos anormales de operación, en una planta de craqueo catalítico fluidizado FCCspa
dc.title.translatedPCA and fuzzy logic for the detection of abnormal operating events in an FCC fluidized catalytic cracking planteng
dc.type.driverinfo:eu-repo/semantics/article
dc.type.localArtículospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsPrincipal component analysis (PCA)eng
dc.subject.keywordsFailure modes and effects analysis (FMEA)eng
dc.subject.keywordsFault detectioneng
dc.subject.keywordsFluidized catalytic cracking (FCC)eng
dc.subject.keywordsClustering based on logic fuzzy (CLF)eng
dc.subject.keywordsKnowledge discovery in databases (KDD)eng
dc.subject.keywordsSystems engineereng
dc.subject.keywordsTechnological innovationseng
dc.subject.keywordsResearcheng
dc.subject.keywordsTechnology of the information and communicationeng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga UNABspa
dc.type.hasversionInfo:eu-repo/semantics/publishedVersion
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.relation.referencesV. Venkatasubramanian, R. Rengaswamy, and S. Kavuri, “A review of process fault detection and diagnosis Part II: Quantitative model and search strategies,” COMPUTERS & CHEMICAL ENGINEERING, vol. 27, pp. 313–326, MAR 15 2003.
dc.relation.referencesV. Venkatsubramanian, R. Rengaswamy, K. Yin, and S. Kavuri, “A review of process fault detection and diagnosis Part I: Quantitative model-based methods,”COMPUTERS & CHEMICAL ENGINEERING, vol. 27, pp. 293–311, MAR 15 2003.M. Misra, H. Yue, S. Qin, and C. Ling, “Multivariate process monitoring and fault diagnosis by multi-scale PCA,” COMPUTERS & CHEMICAL ENGINEERING, vol. 26, pp. 1281–1293, SEP15 2002V.
dc.relation.referencesSadeghbeigi, Reza. Fluid Catalytic Cracking Handbook Design, Operation and Troubleshouting of FCC facilities, 2Ed, Gulf Professional Publishing, Houston. 2000 2 Ed 234-275.
dc.relation.referencesJ. Acedo. Control de reactores. Repsol-YPF, S.A. Ingeniería Química., pages 168-187, octubre 2005.
dc.relation.referencesAngulo, N. Aristizabal, L. Fase I Desarrollo de un modelo de simulación dinámico de la sección de reacción, regeneración y fraccionadora principal de una unidad de craqueo catalítico. Universidad Politécnica de Valencia-Universidad Santo Tomas, 2006.
dc.relation.referencesMacGregor, J. F. Data-Based Latent Variable Methods for Process Analysis, Monitoring and Control, in European Symposium on Computer Aided Process Engineering - 14 (Barbosa Póvoa, A. y Matos, H. eds.). Elsevier, Lisbon, Portugal. 2004.
dc.relation.referencesHan, J. y M. Kamber. Data mining: concepts and techniques. Morgan Kaufmann, San Francisco, CA, USA. 2001.
dc.relation.referencesJain, A. K., M. N. Murty y P. J. Flynn. Data Clustering: AReview. ACM Computing Surveys,31(3), pp.264-323. 1999.
dc.relation.referencesV. Venkatasubramanian, R. Rengaswamy, S. Kavuri, and K. Yin, “A review of process fault detection and diagnosis Part III: Process history based methods,” COMPUTERS & CHEMICAL ENGINEERING, vol. 27, pp. 327–346, MAR 15 2003.
dc.relation.referencesH. Aradhye, B. Bakshi, J. Davis, and S. Ahalt, “Clustering in wavelet domain: A multiresolution ART network for anomaly detection,” AICHE JOURNAL, vol. 50, pp. 2455–2466, OCT2004.
dc.relation.referencesKrzanowski, W. J. Between-groups comparison of principal components. J. American Statistical Association, 74(367), pp.703-707. 1979.
dc.relation.referencesHwang, D. H. y C. Han. Real-time monitoring for a process with multiple operating modes. Control Engineering Practice., 7, pp.891-902. 1999.
dc.relation.referencesTona, R. V., Espuña, A., and Puigjaner, L. AHistorical Data Based Methodology to identify longer variations and optimal process operating conditions, in 51st Canadian Chemical Engineering Conference Halifax, Canada. pp.375. 2001.
dc.relation.referencesJohannesmeyer, M. C., A. Singhal y D. E. Seborg. Pattern matching in historical data. AIChE Journal, 48(9), pp.2022-2038. 2002.
dc.relation.referencesWenfu Ku, Robert H. Storer, and Christos Georgakis. Disturbance detection and isolation by dynamic principal component analysis. Chemometrics and intelligent laboratory systems, 30:179-196, November 1995.
dc.relation.referencesJackson, J. E. A User's Guide to Principal Components. John Wiley&Sons, New York.1991.
dc.relation.referencesWise, B. M. y N. B. Gallagher. The process chemometrics approach to process monitoring and fault detection. Journal of Process Control, 6(6), pp.329-348. 1996.
dc.relation.referencesJohannesmeyer, M. C., A. Singhal y D. E. Seborg. Pattern matching in historical data. AIChE Journal, 48(9), pp.2022-2038. 2002.
dc.relation.referencesZ. Li, G. Liu, R. Zhang, and Z. Zhu, “Fault detection, Identification and reconstruction for gyroscope in satellite based on independent component analysis,” ACTAASTRONAUTICA, vol. 68, pp. 1015–1023, APR-MAY2011.
dc.relation.referencesV. H. Nguyen and J.-C. Golinval, “Fault detection based on Kernel Principal Component Analysis,” ENGINEERING STRUCTURES, vol. 32, pp. 3683–3691, NOV2010.
dc.relation.referencesM. Misra, H. Yue, S. Qin, and C. Ling, “Multivariate process monitoring and fault diagnosis by multi-scale PCA,” COMPUTERS & CHEMICAL ENGINEERING, vol. 26, pp. 1281–1293, SEP15 2002.
dc.relation.referencesJ. Acedo. Control de reactores. Repsol-YPF, S.A. Ingeniería Química, pages 168-187, octubre 2005.
dc.relation.referencesTeppola, P. y P. Minkkinen. Possibilistic and Fuzzy C-means clustering for process monitoring in an activated sludge wastewater treatment plant. Journal of Chemometrics, 13(3-4), pp.445- 459. 1999.
dc.relation.referencesTeppola, P., S. Mujunen y P. Minkkinen. Adaptive Fuzzy C-means Clustering in Process Monitoring. Chemometrics and Intelligence Laboratory System, 45, pp.23-38. 1999.
dc.relation.referencesBezdek, J. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Publishing Corporation, New York, N.Y. (1981).
dc.contributor.cvlacVillamizar Mejía, Rodolfo [0000509906]spa
dc.contributor.orcidVillamizar Mejía, Rodolfo [0000-0002-5817-069X]eng
dc.subject.lembIngeniería de sistemasspa
dc.subject.lembInnovaciones tecnológicasspa
dc.subject.lembInvestigaciónspa
dc.subject.lembTecnologías de la información y la comunicaciónspa
dc.identifier.repourlrepourl:https://repository.unab.edu.co
dc.description.abstractenglishIn this article, some techniques and methodologies are applied and adjusted for the detection of faults in a Fluidized Catalytic Cracking (FCC) model UOP plant, initially a reliability analysis is carried out that allows defining the level of criticality of each of the equipment. and identify potential failure modes and their effect on plant operation; With the information provided by this analysis, case studies are established, such as requirements for a system of supervision, detection and classification of anomalous situations, which can lead the process to a fault condition. To study the cases, the conditions are simulated with an operating model of the FCC unit and faults are detected with a tool based on PCA (Principal Component Analysis) and Fuzzy Logic; Finally, the tool is adjusted using historical data of the process in the presence of the fault.eng
dc.subject.proposalAnálisis de componentes principales (PCA)spa
dc.subject.proposalAnálisis de modos y efectos de falla (FMEA)spa
dc.subject.proposalDetección de fallosspa
dc.subject.proposalCraqueo catalítico fluidizado (FCC)spa
dc.subject.proposalClustering basadas en lógica fuzzy (CLF)spa
dc.subject.proposalTécnicas estadísticas multivariables (TEM)spa
dc.type.redcolhttp://purl.org/redcol/resource_type/CJournalArticle
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-ShareAlike 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-ShareAlike 4.0 International