Show simple item record

dc.contributor.authorCastro, Luis Fernando
dc.contributor.authorEspitia P., Esperanza
dc.contributor.authorCardona, Sergio Augusto
dc.date.accessioned2020-10-27T00:19:58Z
dc.date.available2020-10-27T00:19:58Z
dc.date.issued2019-05-28
dc.identifier.issn2539-2115
dc.identifier.issn1657-2831
dc.identifier.urihttp://hdl.handle.net/20.500.12749/8830
dc.description.abstractLas técnicas de minería de datos se enfocan principalmente en apoyar el proceso de toma de decisiones dentro de una organización. La deserción estudiantil es un fenómeno común que agobia a las universidades tanto públicas como privadas, las cuales se afectan de manera social y económica. Diversos estudios se llevaron a cabo en esta área; sin embargo, por lo general se enfocan solo en los aspectos académicos, sociales, demográficos y económicos. Este artículo propone un método para analizar la deserción académica en el contexto de un programa de pregrado en Ingeniería de Sistemas y Computación. Proporciona una vista de esta problemática desde la perspectiva ofrecida por KDD (descubrimiento de conocimiento en bases de datos) y usa técnicas para descubrir patrones de comportamiento asociados con dicha problemática. A diferencia de otros trabajos similares, esta propuesta considera variables planteadas por las pruebas BADyG. Este trabajo proporcionará apoyo al proceso de toma de decisiones y fomentará la creación de planes de acción por parte de las instituciones de educación superior con el propósito de reducir la preocupante tasa de deserción estudiantil.
dc.format.mimetypeapplication/pdf
dc.format.mimetypeText/html
dc.language.isoeng
dc.language.isospa
dc.publisherUniversidad Autónoma de Bucaramanga UNAB
dc.relationhttps://revistas.unab.edu.co/index.php/rcc/article/view/3608/3032
dc.relationHttps://revistas.unab.edu.co/index.php/rcc/article/view/3608/3008
dc.relation/*ref*/Argote, I., & Jiménez, R. (2016). Detección de patrones de deserción en los programas de pregrado de la Universidad Mariana de San juan de Pasto, aplicando el proceso de KDD y su implementación en modelos matemáticos de predicción. In Conferencia Latinoamericana sobre Abandono en la Educación Superior. Ponencias de Congresos CLABES (pp. 1–7). Retrieved from http://revistas.utp.ac.pa/index.php/clabes/article/view/991
dc.relation/*ref*/Azoumana, K. (2013). Análisis de la deserción estudiantil en la Universidad Simón Bolívar, facultad Ingeniería de Sistemas, con técnicas de minería de datos. Revista Pensamiento Americano, 6(10), 41–51.
dc.relation/*ref*/Castaño, E., Gallón, S., Gómez, K., & Vásquez, S. (2008). Análisis de los factores asociados a la deserción estudiantil en la Educación Superior: un estudio de caso. Revista de Educación, 255–280.
dc.relation/*ref*/Castro, L. F., Espitia E., & Montilla A. (2018). Applying CRISP-DM in a KDD process for the analysis of student attrition. Communications in Computer and Information Science. Springer, 885, 386-401.
dc.relation/*ref*/Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0 Step-by-step data mining guide.
dc.relation/*ref*/Cruz O., D., & Ortega C., J. (2008). Análisis de la deserción estudiantil en la facultad de Ciencias Exactas y Naturales de la Universidad de Nariño desde la cohorte 2001-2 hasta la cohorte 2006-2 utilizando el sistema SPADIES. Retrieved from http://sired.udenar.edu.co/214/
dc.relation/*ref*/Eckert, K. B., & Suénaga, R. (2015). Análisis de Deserción-Permanencia de Estudiantes Universitarios Utilizando Técnica de Clasificación en Minería de Datos. Formación Universitaria, 8(5), 03-12. https://doi.org/10.4067/S0718-50062015000500002
dc.relation/*ref*/Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27–35.
dc.relation/*ref*/Galvis, D. (2007). Estudio sobre la deserción estudiantil en la Universidad del Quindío. Retrieved from https://catalogo.uniquindio.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=33407
dc.relation/*ref*/Hernán Cáceres, J., & González Cardona, J. C. (2011). Sistema de apoyo para la acreditación de la calidad de programas académicos de la Universidad de Caldas, aplicando técnicas en minería de datos. Universidad Autónoma de Manizales. Retrieved from http://repositorio.autonoma.edu.co/jspui/handle/11182/38
dc.relation/*ref*/Hernández Cáceres, J. (2011). Descubrimiento de conocimiento en la base de datos académica de una institución de educación superior usando redes neuronales. Vector, 7–19.
dc.relation/*ref*/Hernández Cáceres, J., & Gallego Gallego, M. (2014). Descubrimiento de conocimiento en una empresa de outsourcing de TI de la ciudad de Medellín aplicando técnicas de minería de datos que permita identificar potencialidades en el éxito de los proyectos de desarrollo de software. Universidad Autónoma de Manizales. Retrieved from http://repositorio.autonoma.edu.co/jspui/handle/11182/51
dc.relation/*ref*/Hernández Cáceres, J., & Gutiérrez, J. E. (2012). Descubrimiento de conocimientos en la base de datos académica de la Universidad Autónoma de Manizales aplicando redes neuronales. Universidad Autónoma de Manizales. Retrieved from http://repositorio.autonoma.edu.co/jspui/handle/11182/39
dc.relation/*ref*/Linoff, G., & Berry, M. (2011). Why and What is Data Mining? In Data Mining Techniques.
dc.relation/*ref*/Paramo, G. J., & Correa Maya, C. A. (1999). Deserción estudiantil universitaria. Conceptualización. Revista Universidad EAFIT, 35(114), 65–78. Retrieved from http://publicaciones.eafit.edu.co/index.php/revista-universidad-eafit/article/view/1075
dc.relation/*ref*/Salazar, A., Gosalbez, J., Bosch, I., Miralles, R., & Vergara, L. (2004). A case study of knowledge discovery on academic achievement, student desertion and student retention. In ITRE 2004. 2nd International Conference Information Technology: Research and Education (pp. 150–154). IEEE. https://doi.org/10.1109/ITRE.2004.1393665
dc.relation/*ref*/Santhanakumar, M., & Christopher Columbus, C. (2015). Web Usage Based Analysis of Web Pages Using RapidMiner. WSEAS Transactions on Computers, 14, 455–464.
dc.relation/*ref*/Sotomonte-Castro, J. E., Rodríguez-Rodríguez, C. C., Montenegro-Marín, C. E., Gaona-García, P. A., & Castellanos, J. G. (2016). Hacia la construcción de un modelo predictivo de deserción académica basado en técnicas de minería de datos - Towards the construction of a predictive model of academic desertion based on data mining techniques. Revista Científica, 3(26), 35. https://doi.org/10.14483/23448350.11089
dc.relation/*ref*/Timarán Pereira, S. R., & Jiménez Toledo, J. (2015). Extracción de perfiles de deserción estudiantil en la institución universitaria CESMAG. InvestigiumIre: Ciencias Sociales y Humanas, 6(1), 30–44. https://doi.org/10.15658/CESMAG15.05060103
dc.relation/*ref*/Vélez Bedoya, J. I., & Salcedo Toro, D. F. (2015). Tendencias y características de los viajeros que visitan la ciudad de Pereira por medio de técnicas de minería de datos. Universidad Autónoma de Manizales. Retrieved from http://repositorio.autonoma.edu.co/jspui/handle/11182/59
dc.relation/*ref*/Yuste Hernanz, C., & Martínez Arias, M. del R. (2005). BADyG S batería de aptitudes diferenciales y generales. (CEPE, Ed.).
dc.relation.urihttps://revistas.unab.edu.co/index.php/rcc/article/view/3608
dc.rightsDerechos de autor 2019 Revista Colombiana de Computación
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.sourceRevista Colombiana de Computación; Vol. 20 Núm. 1 (2019): Revista Colombiana de Computación; 72-82
dc.subjectMinería de datos
dc.subjectDeserción estudiantil
dc.subjectPatrones
dc.subjectCRISP-DM
dc.subjectAnálisis
dc.titleAnálisis de deserción estudiantil en un programa de pregrado en Ingeniería de Sistemas y Computación
dc.title.translatedAnalysis of Student Desertion in a Systems and Computing Engineering Undergraduate Program
dc.type.driverinfo:eu-repo/semantics/article
dc.type.localArtículospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsData mining
dc.subject.keywordsStudent desertion
dc.subject.keywordsKDD
dc.subject.keywordsPatterns
dc.subject.keywordsCRISP-DM
dc.subject.keywordsAnalysis
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga UNAB
dc.type.hasversionInfo:eu-repo/semantics/publishedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.identifier.repourlrepourl:https://repositorio.unbosque.edu.co
dc.description.abstractenglishData mining techniques are mainly focused on supporting the decision makers in a specific organization. Student attrition is a common phenomenon that worries public and private universities, which are affected financially and socially. Several studies have addressed this issue. However, they have mainly focused on academic, social, demographic, and economic aspects. In this paper, we propose a method for analyzing academic desertion in the context of a Systems and Computing Engineering undergraduate program by providing a view of this issue from a KDD (knowledge discovery in databases) perspective and using techniques for identifying students’ behavioral patterns. Unlike other proposals, we also consider variables provided by the BADyG test. This proposal is important because it will support higher education institutions in decision-making and creating action plans to reduce the high rate of student attrition.
dc.identifier.doi10.29375/25392115.3608
dc.type.redcolhttp://purl.org/redcol/resource_type/CJournalArticle
dc.rights.creativecommonsAttribution-NonCommercial-ShareAlike 4.0 International*


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 4.0 International