dc.contributor.author | Martínez-Toro, Gabriel Mauricio | |
dc.contributor.author | Rico-Bautista, Dewar | |
dc.contributor.author | Romero-Riaño, Efrén | |
dc.contributor.author | Romero-Riaño, Paola Andrea | |
dc.date.accessioned | 2020-10-27T00:19:55Z | |
dc.date.available | 2020-10-27T00:19:55Z | |
dc.date.issued | 2019-12-01 | |
dc.identifier.issn | 2539-2115 | |
dc.identifier.issn | 1657-2831 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12749/8823 | |
dc.description.abstract | La epilepsia es uno de los trastornos neurológicos comunes caracterizado por convulsiones recurrentes. El objetivo principal de este artículo es dar a conocer el análisis de los resultados presentados en las gráficas de simulación de los datos de entrenamiento. Los datos fueron recolectados mediante el sistema 10-20. El sistema "10-20" es un método reconocido internacionalmente, este describe la ubicación de electrodos en la cabeza para una prueba de EEG. Se muestran las diferencias obtenidas entre las pruebas generadas con las anomalías de los datos de prueba a partir de los datos de entrenamiento. Finalmente, se interpretan los resultados y se discute sobre la eficacia del procedimiento. | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | Text/html | |
dc.language.iso | eng | |
dc.publisher | Universidad Autónoma de Bucaramanga UNAB | |
dc.relation | https://revistas.unab.edu.co/index.php/rcc/article/view/3718/3155 | |
dc.relation | Https://revistas.unab.edu.co/index.php/rcc/article/view/3718/3141 | |
dc.relation | /*ref*/Aarabi, A., & He, B. (2012). A rule-based seizure prediction method for focal neocortical epilepsy. Clinical Neurophysiology, 123(6), 1111–1122. https://doi.org/10.1016/j.clinph.2012.01.014 | |
dc.relation | /*ref*/Aliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P., Zhavoronkov, A., & Albuquerque, N. (2016). HHS Public Access, 13(7), 2524–2530. https://doi.org/10.1021/acs.molpharmaceut.6b00248.Deep | |
dc.relation | /*ref*/Alshebeili, S. A., Alshawi, T., Ahmad, I., & El-samie, F. E. A. (2014). EEG seizure detection and prediction algorithms : a survey. EURASIP Journal on Advances in Signal Processing, 183(1), 1,21. https://doi.org/10.1186/1687-6180-2014-183 | |
dc.relation | /*ref*/Beatriz Pérez Salazar, Á., & Lillia Hernández López, D. (2007). Epilepsia: aspectos básicos para la práctica psiquiátrica Epilepsia: aspectos básicos para la práctica psiquiátrica Title: Epilepsy: Basic Aspects for the Practice of Psychiatry. Rev. Colomb. Psiquiat, XXXVI XXXV(1), 175–186. | |
dc.relation | /*ref*/Chang, C.-C., & Lin, C.-J. (2011). Libsvm. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–27. https://doi.org/10.1145/1961189.1961199 | |
dc.relation | /*ref*/Chisci, L., Mavino, A., Perferi, G., Sciandrone, M., Anile, C., Colicchio, G., & Fuggetta, F. (2010). Real-Time Epileptic Seizure Prediction Using AR Models and Support Vector Machines. IEEE Transactions on Biomedical Engineering, 57(5), 1124–1132. https://doi.org/10.1109/TBME.2009.2038990 | |
dc.relation | /*ref*/Cruces, H. De. (2014). Tipos de crisis epilépticas y pseudocrisis Diferencial characteristics of epileptic seizure and pseudoseizures, 105–107. | |
dc.relation | /*ref*/Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: A methodology review. Journal of Biomedical Informatics, 35(5–6), 352–359. https://doi.org/10.1016/S1532-0464(03)00034-0 | |
dc.relation | /*ref*/Dudoit, S., Fridlyand, J., & Speed, T. P. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97(457), 77–86. https://doi.org/10.1198/016214502753479248 | |
dc.relation | /*ref*/Escalona-Morán, M., Cosenza, M. G., Guillén, P., & Coutin, P. (2007). Synchronization and clustering in electroencephalographic signals. Chaos, Solitons and Fractals, 31(4), 820–825. https://doi.org/10.1016/j.chaos.2005.10.049 | |
dc.relation | /*ref*/Fuertes, B., López, R., & Gil, P. (2007). Epilepsia. Tratado de Geriatria Para Residentes, 519–530. | |
dc.relation | /*ref*/Garg, S., & Narvey, R. (2013). Denoising & feature extraction of eeg signal using wavelet transform. International Journal of Engineering Science and Technology., 5(06), 1249–1253. | |
dc.relation | /*ref*/Griffis, J. C., Allendorfer, J. B., & Szaflarski, J. P. (2016). Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans. Journal of Neuroscience Methods, 257, 97–108. https://doi.org/10.1016/j.jneumeth.2015.09.019 | |
dc.relation | /*ref*/Kuremoto, T., Kimura, S., Kobayashi, K., & Obayashi, M. (2014). Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing, 137, 47–56. https://doi.org/10.1016/j.neucom.2013.03.047 | |
dc.relation | /*ref*/Kurzynski, M., Krysmann, M., Trajdos, P., & Wolczowski, A. (2016). Multiclassifier system with hybrid learning applied to the control of bioprosthetic hand. Computers in Biology and Medicine, 69, 286–297. https://doi.org/10.1016/j.compbiomed.2015.04.023 | |
dc.relation | /*ref*/Langkvist, M., Karlsson, L., & Loutfi, A. (2014). A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 42(1), 11–24. https://doi.org/10.1016/j.patrec.2014.01.008 | |
dc.relation | /*ref*/López-meraz, M. L., Rocha, L., Miquel, M., Hernández, M. E., Cárdenas, R. T., Coria-ávila, G. A., … Manzo, J. (2009). Conceptos básicos de la epilepsia. Revista Medica de La Universidad Veracruzana, 9(2), 31–37. | |
dc.relation | /*ref*/Mirowski, P., Madhavan, D., LeCun, Y., & Kuzniecky, R. (2009). Classification of patterns of EEG synchronization for seizure prediction. Clinical Neurophysiology, 120(11), 1927–1940. https://doi.org/10.1016/j.clinph.2009.09.002 | |
dc.relation | /*ref*/Mirowski, P. W., Lecun, Y., Madhavan, D., & Kuzniecky, R. (2008). Comparing SVM and Convolutional Networks for Epileptic Seizure. | |
dc.relation | /*ref*/Mirowski, P. W., Madhavan, D., & Lecun, Y. (2007). Time-delay neural networks and independent component analysis for eeg-based prediction of epileptic seizures propagation. Advancement of Artificial Intelligence Conference, 1892–1893. | |
dc.relation | /*ref*/Soleimani-B., H., Lucas, C., N. Araabi, B., & Schwabe, L. (2012). Adaptive prediction of epileptic seizures from intracranial recordings. Biomedical Signal Processing and Control, 7(5), 456–464. https://doi.org/10.1016/j.bspc.2011.11.007 | |
dc.relation | /*ref*/Tsai, C. F. (2014). Combining cluster analysis with classifier ensembles to predict financial distress. ACM Transactions on Intelligent Systems and Technology, 16(1), 46–58. https://doi.org/10.1016/j.inffus.2011.12.001 | |
dc.relation | /*ref*/Valencia, J. F., Melia, U. S. P., Vallverdú, M., Borrat, X., Jospin, M., Jensen, E. W., … Caminal, P. (2016). Assessment of nociceptive responsiveness levels during sedation-analgesia by entropy analysis of EEG. Entropy, 18(3). https://doi.org/10.3390/e18030103 | |
dc.relation | /*ref*/Wang, D., & Shang, Y. (2014). Modeling Physiological Data with Deep Belief Networks. International Journal of Education Technology, 3(5), 505–511. https://doi.org/10.7763/IJIET.2013.V3.326.Modeling | |
dc.relation | /*ref*/Wulsin, D., Blanco, J., Mani, R., & Litt, B. (2010). Semi-supervised anomaly detection for EEG waveforms using deep belief nets. Proceedings - 9th International Conference on Machine Learning and Applications, ICMLA 2010, (April 2016), 436–441. https://doi.org/10.1109/ICMLA.2010.71 | |
dc.relation | /*ref*/Wulsin, D. F., Gupta, J. R., Mani, R., Blanco, J. A., & Litt, B. (2011). Modeling electroencephalography waveforms with semi-supervised deep belief nets: Fast classification and anomaly measurement. Journal of Neural Engineering, 8(3). https://doi.org/10.1088/1741-2560/8/3/036015 | |
dc.relation.uri | https://revistas.unab.edu.co/index.php/rcc/article/view/3718 | |
dc.rights | Derechos de autor 2019 Revista Colombiana de Computación | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | * |
dc.source | Revista Colombiana de Computación; Vol. 20 Núm. 2 (2019): Revista Colombiana de Computación; 20-27 | |
dc.subject | Epilepsia | |
dc.subject | Aprendizaje profundo | |
dc.subject | Aprendizaje automático | |
dc.subject | Auto codificación | |
dc.title | Aprendizaje no supervisado: aplicación en epilepsia | |
dc.title.translated | Unsupervised learning: application to epilepsy | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.local | Artículo | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.subject.keywords | Epilepsy | |
dc.subject.keywords | Deep learning | |
dc.subject.keywords | Automatic learning | |
dc.subject.keywords | Auto-encoding | |
dc.identifier.instname | instname:Universidad Autónoma de Bucaramanga UNAB | |
dc.type.hasversion | Info:eu-repo/semantics/publishedVersion | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.identifier.repourl | repourl:https://repositorio.unbosque.edu.co | |
dc.description.abstractenglish | Epilepsy is a neurological disorder characterized by recurrent seizures. The primary objective is to present an analysis of the results shown in the training data simulation charts. Data were collected by means of the 10-20 system. The “10–20” system is an internationally recognized method to describe and apply the location of scalp electrodes in the context of an EEG exam. It shows the differences obtained between the tests generated and the anomalies of the test data based on training data. Finally, the results are interpreted and the efficacy of the procedure is discussed. | |
dc.identifier.doi | 10.29375/25392115.3718 | |
dc.type.redcol | http://purl.org/redcol/resource_type/CJournalArticle | |
dc.rights.creativecommons | Attribution-NonCommercial-ShareAlike 4.0 International | * |