Show simple item record

dc.contributor.advisorCalderón Benavides, Maritza Liliana
dc.contributor.authorRodríguez Velásquez, Jesús Mario
dc.coverage.spatialColombiaspa
dc.date.accessioned2020-10-01T15:27:30Z
dc.date.available2020-10-01T15:27:30Z
dc.date.issued2019-05-31
dc.identifier.urihttp://hdl.handle.net/20.500.12749/7270
dc.description.abstractCon el auge de redes sociales, algunas plataformas como Twitter se han convertido en importantes distribuidores de información debido a la facilidad de creación y difusión de información, permitiendo a usuario postear contenidos sean de autoría o no. El problema surge cuando se desconoce el sentimiento con el que se difunde la información, pues hay que tener en cuenta que muchos usuarios de redes sociales, en su afán de obtener una popularidad efímera visualizada en retweets, likes, etc., buscan transmitir información que genere polémica y debate para que sea difundida entre los usuarios, quienes que ignoran el sentimiento con el que está transmitiendo dicha información. Adicionalmente, como la política genera ansias de poder entre los mismos líderes, estos buscan transmitir todo tipo de información- generalmente en contra de sus “rivales” políticos y a favor de sus “aliados”-, valiéndose de su influencia y sus miles de seguidores en las redes sociales generando en muchas ocasiones difamación debido a que la información que transmiten no corresponde a la realidad, esto genera polarización entre los ciudadanos debido a que el objetivo de esta información es generar una respuesta emocional en los usuarios que ignoran que la información es verídica o no. En este trabajo se analiza el sentimiento de los mensajes emitidos por líderes políticos colombianos con el fin de determinar qué tipo de influencia están emitiendo en sus seguidores.spa
dc.description.tableofcontents1. INTRODUCCIÓN .............................................................................................. 8 2. PLANTEAMIENTO DEL PROBLEMA ............................................................... 9 2.1 Árbol de problemas ................................................................................... 14 3. JUSTIFICACIÓN ............................................................................................. 15 4. PREGUNTA DE INVESTIGACIÓN ................................................................. 15 5. HIPÓTESIS ..................................................................................................... 16 6. OBJETIVOS .................................................................................................... 18 6.1 Objetivo general ........................................................................................ 18 6.2 Objetivos específicos ................................................................................ 18 7. RESULTADOS ESPERADOS ......................................................................... 19 8. MARCO TEÓRICO .......................................................................................... 20 8.1 MARCO CONCEPTUAL ........................................................................... 20 8.1.1 Sentiment Analysis [12]. ..................................................................... 20 8.1.1.1 Niveles de análisis. ...................................................................... 20 8.1.1.2 Técnicas de Análisis de Sentimiento [13]. ................................... 21 8.1.2 Text mining o minería de texto [18]. ................................................... 22 8.1.3 Opinión [12]. ....................................................................................... 22 8.1.4 Entidad [12]. ....................................................................................... 23 8.1.5 Natural Languaje Procesing [19]. ....................................................... 24 8.1.6 Twitter [20]. ........................................................................................ 24 8.1.7 Tweet [21]. ......................................................................................... 24 8.1.8 Retweet [22]. ...................................................................................... 25 8.1.9 Like o me gusta en Twitter [23]. ......................................................... 25 8.1.10 Timeline [24]. .................................................................................. 25 8.1.11 Ejemplo de un tweet. ...................................................................... 25 8.2 MARCO LEGAL ........................................................................................ 26 8.2.1 Habeas data [25][26]: ......................................................................... 26 8.3 ESTADO DEL ARTE................................................................................. 27 8.3.1 Ámbito internacional ........................................................................... 28 8.3.2 Ámbito regional .................................................................................. 45 9. PLAN DE ACTIVIDADES ................................................................................ 49 10. CRONOGRAMA ........................................................................................... 50 11. PRESUPUESTO .......................................................................................... 50 11.1 Presupuesto global ................................................................................ 50 11.1.1 Descripción de los gastos de personal. .......................................... 51 11.1.2 Descripción y cuantificación de los equipos de equipos y software de uso. 51 11.1.3 Descripción de materiales, suministros y bibliografía. .................... 51 12. ANÁLISIS DE SENTIMIENTO EN TWITTER [38] ........................................ 53 12.1. Corpus de entrenamiento ......................................................................... 53 12.2. Algoritmos de clasificación ........................................................................ 54 12.2.1. Original Naives Bayes [39] .................................................................. 54 12.2.2. Bernoulli Naives Bayes [39] ................................................................. 54 12.2.3. Linear Support-Vector Machine [40] .................................................... 54 12.2.4. Logistic Regression [41] ...................................................................... 54 12.2.5. Multinomial Naive Bayes [39] .............................................................. 55 12.2.6. SGDC Classifier [42] ........................................................................... 55 12.3 Proceso de entrenamiento de los algoritmos ......................................... 56 12.3.1 Pre-procesamiento de los datos ..................................................... 56 12.3.2 Tokenización ................................................................................... 57 12.3.3 Extracción de las características ..................................................... 57 12.3.4 Reducción de las características .................................................... 58 13. DISEÑO Y DESARROLLO DE LA HERRAMIENTA .................................... 59 13.1. Herramientas para hacer Análisis de Sentimiento. ................................... 59 13.2. Diseño y desarrollo de la herramienta. ..................................................... 60 14. RESULTADOS ............................................................................................. 64 14.1. Juan Manuel Santos .............................................................................. 64 14.2. Álvaro Uribe Vélez ................................................................................. 66 14.3. Gustavo Petro ........................................................................................ 66 14.4. Antanas Mockus .................................................................................... 67 14.5. Claudia López [51]: ................................................................................ 68 14.6. Conclusiones de los resultados ............................................................. 69 15. CONCLUSIONES ........................................................................................ 71 16. REFERENCIAS BIBLIOGRÁFICAS ............................................................. 72spa
dc.format.mimetypeapplication/pdf
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleAnálisis de la opinión de personalidades influyentes de la política colombiana a través de técnicas de análisis de sentimientospa
dc.title.translatedAnalysis of the opinion of influential personalities in Colombian politics through sentiment analysis techniquesspa
dc.degree.nameIngeniero de Sistemasspa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingeniería
dc.publisher.programIngeniería de Sistemas
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsSystems engineerspa
dc.subject.keywordsTechnological innovationsspa
dc.subject.keywordsSocial networksspa
dc.subject.keywordsInformation distributorsspa
dc.subject.keywordsSentiment analysisspa
dc.subject.keywordsHuman relationsspa
dc.subject.keywordsSocial behaviorspa
dc.subject.keywordsSocial participationspa
dc.subject.keywordsCommunity actionspa
dc.subject.keywordsPublic opinionspa
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponamereponame:Repositorio Institucional UNAB
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.relation.references[1] C. Grosvenor, “Social Networking Boom,” 2017. [Online]. Available: https://socialnetworking.lovetoknow.com/Social_Networking_Boom.spa
dc.relation.references[2] H. Wiesenhofer, M. Ebner, and I. Kamrat, “Is Twitter an Individual Mass Communication Medium?,” C. Crawford al. (Eds.), Proc. Soc. Inf. Technol. Teach. Educ. Int. Conf. 2010, pp. 1712–1717, 2010.spa
dc.relation.references[3] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a Social Network or a News Media?,” Proceedings of the 19th international conference on World wide web, 2010. [Online]. Available: http://an.kaist.ac.kr/~haewoon/papers/2010-www-twitter.pdf.spa
dc.relation.references[4] G. Greenwald, “How Twitter Degrades Discourse and Encourages Distortions: Illustrated by Ex-Pentagon Official Ryan Goodman,” The Intercept, 2018. [Online]. Available: https://theintercept.com/2018/07/15/how-twitter-degrades-discourse-and-encourages-distortions-illustrated-by-ex-pentagon-official-and-nyu-law-professor-ryan-goodman/.spa
dc.relation.references[5] B. Caplan, “Political Power-Lust Thrives in a Democracy,” Foundation for Economic Education, 2017. [Online]. Available: https://fee.org/articles/political-power-lust-thrives-in-a-democracy/.spa
dc.relation.references[6] C. Weller, “Here’s why Trump can legally get away with saying things that aren’t true,” Business insiders, 2016. [Online]. Available: https://www.businessinsider.com/why-politicians-dont-get-sued-over-ads-2016-11.spa
dc.relation.references[7] U. Ecker, “Where does misinformation come from, and what does it do?,” The Conversation, 2012. [Online]. Available: https://theconversation.com/where-does-misinformation-come-from-and-what-does-it-do-9885.spa
dc.relation.references8] G. Jacob and S. Bronda, “How social media can distort and misinform when communicating science,” The Conversation, 2016. [Online]. Available: http://theconversation.com/how-social-media-can-distort-and-misinform-when-communicating-science-59044spa
dc.relation.references[9] S. Bakers, “Social Bakers.” [Online]. Available: www.socialbakers.comspa
dc.relation.references[10] A. York, “Alcance versus impresiones: entendiendo los términos de engagement,” Sproutsocial, 2018. [Online]. Available: https://sproutsocial.com/insights/alcance-versus-impresiones/.spa
dc.relation.references[11] TweetReach, “TweetReach.” [Online]. Available: https://tweetreach.com/.spa
dc.relation.references[12] B. Liu, “Sentiment analysis and opinion mining,” Synth. Lect. Hum. Lang. Technol., vol. 5, no. 1, pp. 1–167, 2012.spa
dc.relation.references[13] J. A. Manrique Hernández, “Identificación de la intención de consultas del usuario en búsquedas Web,” 2016.spa
dc.relation.references[14] S. B. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learning: A review of classification techniques,” Emerg. Artif. Intell. Appl. Comput. Eng., vol. 160, pp. 3–24, 2007spa
dc.relation.references15] C. Quan and F. Ren, “Unsupervised product feature extraction for feature-oriented opinion determination,” Inf. Sci. (Ny)., vol. 272, pp. 16–28, 2014.spa
dc.relation.references[16] X. Zhu, “Semi-supervised learning literature survey,” Comput. Sci. Univ. Wisconsin-Madison, vol. 2, no. 3, p. 4, 2006spa
dc.relation.references[17] W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis algorithms and applications: A survey,” Ain Shams Eng. J., vol. 5, no. 4, pp. 1093–1113, 2014.spa
dc.relation.references[18] A.-H. Tan, “Text Mining: The state of the art and the challenges,” Proc. PAKDD 1999 Work. Knowl. Disocovery from Adv. Databases, 1999.spa
dc.relation.references[19] G. G. Chowdhury, “Natural language processing,” Annu. Rev. Inf. Sci. Technol., vol. 37, no. 1, pp. 51–89, 2003.spa
dc.relation.references[20] D. Zeevi, “Twitter 101: What is Twitter Really About?,” Social Media Today, 2013. [Online]. Available: https://www.socialmediatoday.com/content/twitter-101-what-twitter-really-about.spa
dc.relation.references[21] D. Nations, “What Is a Tweet on Twitter?,” Lifewire, 2017. [Online]. Available: https://www.lifewire.com/what-is-a-tweet-3486211spa
dc.relation.references[22] Twitter, “Retweet FAQs,” Twitter. [Online]. Available: https://help.twitter.com/en/using-twitter/retweet-faqspa
dc.relation.references[23] Twitter, “How to like a Tweet or Moment,” Twitter. [Online]. Available: https://help.twitter.com/en/using-twitter/liking-tweets-and-momentsspa
dc.relation.references[24] Twitter, “About your Twitter timeline,” Twitter. [Online]. Available: https://help.twitter.com/en/using-twitter/twitter-timelinespa
dc.relation.references[25] L. F. Cote Peña, “Hábeas data en Colombia, un trasplante normativo para la protección de la dignidad y su correlación con la NTC/ISO/IEC 27001:2013,” XIX Edición del Premio Protección Datos Pers. Investig. la Agencia Española Protección Datos, 2015spa
dc.relation.references[26] P. Palazzi, “What is habeas data?,” Habeasdata.org, 2011. [Online]. Available: 74 http://www.habeasdata.org/wp/2011/06/11/what-is-habeas-data/.spa
dc.relation.references[27] Z. Zhai, B. Liu, J. Wang, H. Xu, and P. Jia, “Product feature grouping for opinion mining,” IEEE Intell. Syst., vol. 27, no. 4, pp. 37–44, 2012spa
dc.relation.references[28] A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M. Welpe, “Predicting elections with twitter: What 140 characters reveal about political sentiment.,” Icwsm, vol. 10, no. 1, pp. 178–185, 2010.spa
dc.relation.references[29] A. Ceron, L. Curini, S. M. Iacus, and G. Porro, “Every tweet counts? How sentiment analysis of social media can improve our knowledge of citizens political preferences with an application to Italy and France,” New Media Soc., vol. 16, no. 2, pp. 340–358, 2014.spa
dc.relation.references[30] F. Pla and L.-F. Hurtado, “Political Tendency Identification in Twitter using Sentiment Analysis Techniques,” in Proceedings of the 25th International Conference on Computational Linguistics, COLING, 2014, pp. 183–192.spa
dc.relation.references[31] J. E. Chung and E. Mustafaraj, “Can collective sentiment expressed on twitter predict political elections?,” in AAAI, 2011, vol. 11, pp. 1770–1771spa
dc.relation.references[32] M. Choy, M. L. F. Cheong, M. N. Laik, and K. P. Shung, “A sentiment analysis of Singapore Presidential Election 2011 using Twitter data with census correction,” arXiv Prepr. arXiv1108.5520, 2011spa
dc.relation.references[33] K. Singhal, B. Agrawal, and N. Mittal, “Modeling Indian general elections: sentiment analysis of political Twitter data,” in Information Systems Design and Intelligent Applications, Springer, 2015, pp. 469–477spa
dc.relation.references[34] A. Bermingham and A. Smeaton, “On using Twitter to monitor political sentiment and predict election results,” in Proceedings of the Workshop on Sentiment Analysis where AI meets Psychology (SAAIP 2011), 2011, pp. 2–10spa
dc.relation.references[35] C. Arcila-Calderón, F. Ortega-Mohedano, J. Jiménez-Amores, and S. Trullenque, “Análisis supervisado de sentimientos políticos en español: clasificación en tiempo real de tweets basada en aprendizaje automático,” El Prof. la Inf., vol. 26, no. 5, pp. 973–982, 2017spa
dc.relation.references[36] F. Agulló, A. Guillén, Y. Gutiérrez, and P. Martínez-Barco, “ElectionMap: una representación geolocalizada de intenciones de voto hacia partidos políticos sobre la base de comentarios de usuarios de Twitter,” Proces. del Leng. Nat., no. 55, 2015.spa
dc.relation.references[37] J. A. A. Valencia, A. Carrillo, J. Forero, L. Caicedo, and J. C. Urueña, “Análisis de sentimiento político en twitter para las elecciones de la alcaldía de Bogotá 2015,” 2016spa
dc.relation.references[38] J. C. Sobrino Sande, “Análisis de sentimiento en Twitter,” 2018.spa
dc.relation.references[39] A. McCallum, “A Comparison of Event Models for Naive Bayes Text Classification,” 1998.spa
dc.relation.references[40] “Support Vector Machines.” [Online]. Available: https://scikit-learn.org/stable/modules/svm.html.spa
dc.relation.references[41] “Logistic Regression.” [Online]. Available: https://www.saedsayad.com/logistic_regression.htmspa
dc.relation.references[42] “SGD Classifier.” [Online]. Available: https://stackoverflow.com/questions/45455209/is-stochastic-gradient-descent-a-classifier-or-an-optimizerspa
dc.relation.references[43] K. Rogalski, “The 17 Best Sentiment Analysis Tools,” 2019. [Online]. Available: https://brand24.com/blog/best-sentiment-analysis-tools/.spa
dc.relation.references[44] K. Hornik, “R FAQ,” 2018. [Online]. Available: https://cran.r-project.org/doc/FAQ/R-FAQ.html#What-is-R_003fspa
dc.relation.references[45] VanguardiaLiberal, “‘Nosotros no elegimos a Santos para que consintiera a las Farc’: Uribe,” 2013. [Online]. Available: https://www.vanguardia.com/colombia/nosotros-no-elegimos-a-santos-para-que-consintiera-a-las-farc-PYVL206889spa
dc.relation.references[46] ElTiempo, “Los hechos que marcaron los ocho años de Santos en la Casa de Nariño,” 2018. [Online]. Available: https://www.eltiempo.com/politica/gobierno/los-hechos-que-marcaron-los-ocho-anos-de-santos-en-la-casa-de-narino-25207spa
dc.relation.references[47] ElTiempo, “Juan Manuel Santos anunció que se retira de la política,” 2018. [Online]. Available: https://www.eltiempo.com/politica/gobierno/juan-manuel-santos-dice-que-se-retira-de-la-politica-248220.spa
dc.relation.references[48] C. Rodríguez, M. Romero, L. R. Navarro, A. Saenz, L. Hernández, and O. Páez, “Medios de Redes Sociales y Polarización en Colombia. Uso de Twitter durante el Proceso de Paz Colombiano.,” 2015.spa
dc.relation.references[49] RadioCaracol, “Petro es el personaje del año en redes sociales,” 2018. [Online]. Available: https://caracol.com.co/radio/2018/12/08/tendencias/1544226064_863472.html.spa
dc.relation.references[50] DW, “Mockus: el fenómeno electoral de redes sociales en Colombia,” 2010. [Online]. Available: https://www.dw.com/es/mockus-el-fenómeno-electoral-de-redes-sociales-en-colombia/a-5622105.spa
dc.relation.references[51] J. Ramírez, “Mujeres que transforman la política,” 2018. [Online]. Available: https://cerosetenta.uniandes.edu.co/mujeres-que-transforman-y-politicaspa
dc.relation.references[52] H. Marta, “Mujer y política: Claudia López va por la Alcaldía de Bogotá,” 2019. [Online]. Available: http://www.mensaje360.com/0/nota/index.vnc?id=2823spa
dc.relation.references[53] A. Gañán Moreno, “Colombia, un país polarizado,” 2018. [Online]. Available: https://www.elcolombiano.com/opinion/columnistas/colombia-un-pais-polarizado-YB8838313spa
dc.relation.references[54] ElColombiano, “¿Por qué los colombianos no superamos tanta polarización?,” 2019. [Online]. Available: https://www.elcolombiano.com/colombia/por-que-los-colombianos-no-superamos-tanta-polarizacion-JA10458067.spa
dc.description.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000068900spa
dc.description.googlescholarhttps://scholar.google.es/citations?hl=es&user=XihGBWoAAAAJspa
dc.description.scopushttps://www.scopus.com/authid/detail.uri?authorId=15043558200spa
dc.description.researchgatehttps://www.researchgate.net/profile/Liliana_Calderon-Benavidesspa
dc.subject.lembIngeniería de sistemasspa
dc.subject.lembInnovaciones tecnológicasspa
dc.subject.lembRelaciones humanasspa
dc.subject.lembConducta socialspa
dc.subject.lembParticipación socialspa
dc.subject.lembAcción comunitariaspa
dc.subject.lembOpinión públicaspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishWith the rise of social networks, some platforms such as Twitter have become important distributors of information due to the ease of creation and dissemination of information, allowing users to post content whether authored or not. The problem arises when the feeling with which the information is disseminated is unknown, since it is necessary to take into account that many social network users, in their eagerness to obtain ephemeral popularity visualized in retweets, likes, etc., seek to transmit information that generate controversy and debate so that it is disseminated among the users, who ignore the feeling with which it is transmitting said information. In addition, as politics generates a desire for power among the leaders themselves, they seek to transmit all kinds of information - generally against their political "rivals" and in favor of their "allies" - using their influence and their thousands of followers in the social networks generating in many cases defamation because the information that they transmit does not correspond to the reality, this generates polarization between the citizens because the objective of this information is to generate an emotional response in the users who ignore that the information is true or not. This paper analyzes the sentiment of the messages issued by Colombian political leaders in order to determine what kind of influence they are emitting in their followers.spa
dc.subject.proposalRedes socialesspa
dc.subject.proposalDistribuidores de informaciónspa
dc.subject.proposalAnálisis de sentimientospa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia