Show simple item record

dc.contributor.advisorPacheco Sandoval, Leonardo Estebanspa
dc.contributor.authorSánchez Ropero, Andrés Fernandospa
dc.coverage.spatialBucaramanga (Santander, Colombia)spa
dc.date.accessioned2020-09-27T18:31:03Z
dc.date.available2020-09-27T18:31:03Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.12749/7255
dc.description.abstractEn este proyecto, el análisis dimensional para intercambiadores de calor con tubos concéntricos con superficies extendidas fue llevado a cabo a partir del desarrollo del teorema de Pi Buckingham. Los resultados arrojaron información de los parámetros propuestos y se concluyó que Pr y Re influyen significativamente sobre Nu en todos los escenarios evaluados; la relación de espaciamiento y longitud de aletas σ brindó información relevante para la evaluación de la transferencia de calor de los intercambiadores con cambios en la longitud de las aletas siendo directamente proporcional con Nu; de igual forma la relación de área perforada λ para modificaciones con agujeros circulares indicó que con los arreglos de 4 y 6 aletas guarda una relación directa y con el de 8 aletas inversamente proporcional en el rango de 0,09-0,25. A su vez, se obtuvieron correlaciones a partir de data experimental y de simulaciones en el software COMSOL para la estimación de Nu en convección forzada y se validaron los datos con convergencia para el modelo empírico de ∅ = 0,95535 y ∅ = 0,92803 para el modelo computacional.spa
dc.description.tableofcontentsLISTADO DE TABLAS ....................................................................................................................... 6 LISTADO DE FIGURAS ..................................................................................................................... 7 INTRODUCCIÓN............................................................................................................................... 10 1. OBJETIVOS .............................................................................................................................. 12 1.1 OBJETIVO GENERAL ................................................................................................................... 12 1.2 OBJETIVOS ESPECÍFICOS ............................................................................................................ 12 2. MARCO TEÓRICO.................................................................................................................... 13 2.1 BANCO DE INTERCAMBIADORES DE CALOR UNAB ........................................................................ 13 2.2 TRANSFERENCIA DE CALOR ........................................................................................................ 14 2.2.1 Conceptos ........................................................................................................................ 14 2.2.1.1 Conducción .............................................................................................................................. 15 2.2.1.2 Convección .............................................................................................................................. 15 2.3 INTERCAMBIADORES DE CALOR ................................................................................................... 16 2.3.1 Análisis de los intercambiadores de calor ........................................................................ 17 2.3.2 Diferencia media logarítmica de temperatura ∆𝑻𝒎𝒍 ........................................................ 19 2.4 MODELADO COMPUTACIONAL ...................................................................................................... 20 2.4.1 Software COMSOL Multiphysics 5.4 ................................................................................ 20 2.4.1.1 Módulo transferencia de calor .................................................................................................. 20 2.4.1.2 Módulo dinámica de fluidos computacional CFD ..................................................................... 20 2.5 ANÁLISIS DIMENSIONAL............................................................................................................... 21 2.5.1 Generalidades .................................................................................................................. 21 2.5.2 Teorema de π Buckingham .............................................................................................. 22 2.5.2.1 Determinación de los grupos π ................................................................................................ 23 2.5.3 Parámetros adimensionales comúnmente utilizados ....................................................... 25 2.6 ANÁLISIS ESTADÍSTICO ............................................................................................................... 26 2.6.1 Generalidades .................................................................................................................. 26 3. METODOLOGÍA ....................................................................................................................... 27 4. DESARROLLO ......................................................................................................................... 29 4.1 ESCENARIO ICTCSE ................................................................................................................. 29 4.2 ESCENARIOS ADICIONALES PROPUESTOS .................................................................................... 33 4.3 DESARROLLO DEL TEOREMA ADIMENSIONAL ............................................................................... 36 4.4 CORRELACIONES ESTADÍSTICAS ................................................................................................. 47 5. RESULTADOS .......................................................................................................................... 49 5.1 ESCENARIO ICTCSE ................................................................................................................. 49 5.2 ESCENARIOS ADICIONALES ......................................................................................................... 57 5.2.1 Variación de longitud en las aletas .................................................................................. 57 5.2.2 Modificaciones en el área superficial de las aletas .......................................................... 63 6. CONCLUSIONES ...................................................................................................................... 69 7. RECOMENDACIONES ............................................................................................................. 71 BIBLIOGRAFÍA................................................................................................................................. 72 ANEXOS ........................................................................................................................................... 75spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleAnálisis dimensional de los intercambiadores de calor de tubos concéntricos con superficies extendidas en planta piloto UNABspa
dc.title.translatedDimensional analysis of concentric tube heat exchangers with extended surfaces in UNAB pilot plantspa
dc.degree.nameIngeniero en Energíaspa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.programPregrado Ingeniería en Energíaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsEnergy engineeringeng
dc.subject.keywordsTechnological innovationseng
dc.subject.keywordsEnergyeng
dc.subject.keywordsDimensional analysiseng
dc.subject.keywordsBuckingham Pieng
dc.subject.keywordsTheoremeng
dc.subject.keywordsExtended surfaceseng
dc.subject.keywordsHeat transfereng
dc.subject.keywordsHeat exchangerseng
dc.subject.keywordsHoteng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.references[1] B. Yu and W. Q. Tao, “Pressure drop and heat transfer characteristics of turbulent flow in annular tubes with internal wave-like longitudinal fins,” Heat Mass Transf. und Stoffuebertragung, vol. 40, no. 8, pp. 643–651, 2004.spa
dc.relation.references[2] S. V Kumbhar, M. A. Jadhav, P. G. Chipare, and G. G. Kamble, “Performance Analysis of Annular Fin Arrays with Forced Convection,” Asian Rev. Mech. Eng., vol. 7, no. 2, pp. 12–16, 2018spa
dc.relation.references[3] M. H. Zaidan, A. A. R. Alkumait, and T. K. Ibrahim, “Assessment of heat transfer and fluid flow characteristics within finned flat tube,” Case Stud. Therm. Eng., vol. 12, no. June, pp. 557–562, 2018spa
dc.relation.references[4] D. A. R. CASTAÑEDA, “MODELADO Y SIMULACIÒN EN CONDICIONES ESTABLES, DE INTERCAMBIADORES DE CALOR DE TUBOS CONCENTRICOS CON SUPERFICIES EXTENDIDAS, DE PLANTA PILOTO,” 2019spa
dc.relation.references[5] J. A. S. DÍAZ, “ESTUDIO NUMÉRICO DE INTERCAMBIADORES DE CALOR DE TUBOS CONCÉNTRICOS CON SUPERFICIES EXTENDIDAS EN PLANTA PILOTO UNAB,” Universidad Autónoma de Bucaramanga, 2015.spa
dc.relation.references[6] M. Lee, T. Kang, and Y. Kim, “Air-side heat transfer characteristics of spiraltype circular fin-tube heat exchangers,” Int. J. Refrig., vol. 33, no. 2, pp. 313– 320, 2010spa
dc.relation.references[7] S. A. El-Sayed, S. A. EL-Sayed, and M. M. Saadoun, “Experimental Study of Heat Transfer to Flowing Air inside a Circular Tube with Longitudinal Continuous and Interrupted Fins,” J. Electron. Cool. Therm. Control, vol. 02, no. 01, pp. 1–16, 2012spa
dc.relation.references[8] Ş. Yildiz and H. Yüncü, “An experimental investigation on performance of annular fins on a horizontal cylinder in free convection heat transfer,” Heat Mass Transf. und Stoffuebertragung, vol. 40, no. 3–4, pp. 239–251, 2004.spa
dc.relation.references[9] J. P. Holman, “Transferencia de calor,” Mc graw hill, vol. 7, no. 11. p. 504, 1998.spa
dc.relation.references[10] , امیری اقا مریم INTRODUCTION TO HEAT TRANSFER, SIXTH EDIT., vol. 1, no. 4. John Wiley & Sons, Inc, 2011.spa
dc.relation.references[11] I. F. Meza Castro, A. E. Herrera Acuña, and L. G. Obregón Quiñones, “Experimental determination of new statistical correlations for the calculation of the heat transfer coefficient by convection for flat plates, cylinders and tube banks,” Inge Cuc, vol. 13, no. 2, pp. 9–17, 2017spa
dc.relation.references[12] C. Rica, “SERPENTÍN EN TANQUES AGITADOS,” vol. 22, no. 1, pp. 25–37, 2012spa
dc.relation.references[13] K. Thulukkanam, Heat Exchanger Design Handbook, Second Edition. 2013spa
dc.relation.references[14] Y. A. Cengel and A. J. Ghajar, “Transferencia de calor y masa 4ta Edición,” p. 945, 2007spa
dc.relation.references[15] “COMSOL Multiphysics 5.5.” [Online]. Available: https://www.addlink.es/productos/comsol-multiphysics. [Accessed: 29-Nov2019].spa
dc.relation.references[16] H. Nemati and M. Moradaghay, “Parametric study of natural convection over horizontal annular finned tube,” J. Cent. South Univ., vol. 26, no. 8, pp. 2077–2087, 2019spa
dc.relation.references[17] FRANK M. WHITE, “Fluid mechanics (seventh ed.).,” 1979spa
dc.relation.references[18] D. Q. KERN, Process heat transfer, vol. 250, no. 5. 1950spa
dc.relation.references[19] “H&MT: Lesson 12. Free and Forced Convection- Newton’s law of cooling, heat transfer coefficient in convection, Useful non dimensional numbers.” [Online]. Available: http://ecoursesonline.iasri.res.in/mod/page/view.php?id=2349. [Accessed: 29-Nov-2019].spa
dc.relation.references[20] A. F. Mills, Transferencia de calor. .spa
dc.relation.references[21] Fox and McDonald’s, INTRODUCTION TO FLUID MECHANICS, Eight Edit. 2011spa
dc.relation.references[22] “Reynolds’ Number - an overview | ScienceDirect Topics.” [Online]. Available: https://www.sciencedirect.com/topics/engineering/reynoldsnumber. [Accessed: 29-Nov-2019].spa
dc.relation.references[23] J. H. Lin, C. Y. Huang, and C. C. Su, “Dimensional analysis for the heat transfer characteristics in the corrugated channels of plate heat exchangers,” Int. Commun. Heat Mass Transf., vol. 34, no. 3, pp. 304–312, 2007spa
dc.relation.references[24] O. Cornejo Zuniga and R. Rebolledo Vega, “Estimación De Parámetros En Modelos No Lineales: Algoritmos Y Aplicaciones Estimation of Parameters in Nonlinear Models: Algorithms and Applications,” Rev. EIA, vol. 13, no. 25, pp. 81–98, 2016spa
dc.relation.references[25] N. J. Yasin and M. H. Oudah, “The Effect of Solid and Perforated Pin Fin on the Heat Transfer Performance of Finned Tube Heat Exchanger,” Int. J. Energy Eng. Nabil J. Yasin, Mahmood H. Oudah Int. J. Energy Eng., vol. 8, no. 1, pp. 2163–1891, 2018spa
dc.relation.references[26] A. A. Bhuiyan and A. K. M. S. Islam, “Thermal and hydraulic performance of finned-tube heat exchangers under different flow ranges: A review on modeling and experiment,” Int. J. Heat Mass Transf., vol. 101, pp. 38–59, 2016.spa
dc.relation.references[27] S. Sundar, G. Song, M. Z. Zahir, J. S. Jayakumar, and S. J. Yook, “Performance investigation of radial heat sink with circular base and perforated staggered fins,” Int. J. Heat Mass Transf., vol. 143, p. 118526, 2019spa
dc.relation.references[28] R. HOFMANN, F. FRASZ, and K. PONWEISER, “Heat Transfer and Pressure Drop Performance Comparison of Finned-Tube Bundles in Forced Convection,” … Heat Mass Transf., vol. 2, no. 4, 2007spa
dc.relation.references[29] M. Lin, L. Tian, and Q. W. Wang, “Laminar heat transfer characteristics of internally finned tube with sinusoidal wavy fin,” Heat Mass Transf. und Stoffuebertragung, vol. 47, no. 6, pp. 641–653, 2011spa
dc.relation.references[30] A. Ahmadi Nadooshan, R. Kalbasi, and M. Afrand, “Perforated fins effect on the heat transfer rate from a circular tube by using wind tunnel: An experimental view,” Heat Mass Transf. und Stoffuebertragung, vol. 54, no. 10, pp. 3047–3057, 2018spa
dc.relation.references[31] K. A. Hussien, “Experimental Investigation of Heat Transfer Enhancement by Using Different Number of Fins in Circular Tube,” Wasit J. Eng. Sci., vol. 6, no. 3, pp. 1–12, 2018spa
dc.relation.references[32] G. Yakar and R. Karabacak, “Effects of different fin spacings on the nusselt number and reynolds number in perforated finned heat exchangers,” Heat Transf. Eng., vol. 32, no. 5, pp. 399–407, 2011.spa
dc.relation.references[33] Y. a. Cengel and J. M. Cimbala, Mecánica de Fluidos: Fundamentos y Aplicaciones, vol. 3o Edición. 2006spa
dc.relation.references[34] M. R. Salem, M. K. Althafeeri, K. M. Elshazly, M. G. Higazy, and M. F. Abdrabbo, “Experimental investigation on the thermal performance of a double pipe heat exchanger with segmental perforated baffles,” Int. J. Therm. Sci., vol. 122, pp. 39–52, 2017spa
dc.relation.references[35] T. Zhao et al., “Numerical analysis of flow characteristics and heat transfer of high-temperature exhaust gas through porous fins,” Appl. Therm. Eng., no. March, p. 114612, 2019.spa
dc.relation.references[36] M. A. Yassin, M. H. Shedid, H. M. A. El-Hameed, and A. Basheer, “Heat transfer augmentation for annular flow due to rotation of inner finned pipe,” Int. J. Therm. Sci., vol. 134, no. April, pp. 653–660, 2018.spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001478220*
dc.contributor.googlescholarhttps://scholar.google.es/citations?hl=es&user=yZ1HEiIAAAAJ*
dc.contributor.orcidhttps://orcid.org/0000-0001-7262-382X*
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=56117105700*
dc.contributor.researchgatehttps://www.researchgate.net/profile/Leonardo_Esteban_Pacheco_Sandoval*
dc.subject.lembIngeniería en energíaspa
dc.subject.lembInnovaciones tecnológicasspa
dc.subject.lembEnergíaspa
dc.subject.lembTransmisión de calorspa
dc.subject.lembIntercambiadores de calorspa
dc.subject.lembCalorspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishIn this Project, dimensional analysis has been carried out about concentrical tubes heat exchangers with extended surfaces from development of Buckingham’s Pi Theorem. The results showed information about the proposed parameters and it was concluded that Pr and Re influence over Nu in all the scenarios evaluated; the ratio of spacing and fin length σ provided relevant information for the evaluation of heat transfer of exchangers with changes in fin length being directly proportional to Nu; Likewise, the ratio of perforated area λ for modifications with circular holes specified with the arrangements of 4 and 6 fins keeps a direct relationship and inversely proportional with 8 fins in the range of 0.09-0.25. In turn, we obtained correlations of experimental and simulation data in COMSOL software for the modification of Nu in forced convection and the data were validated with convergence of ∅ = 0,95535 for the empirical model and ∅ = 0,92803 for the computational model.eng
dc.subject.proposalAnálisis dimensionalspa
dc.subject.proposalTeorema Pispa
dc.subject.proposalBuckinghamspa
dc.subject.proposalSuperficies extendidasspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia