Mostrar el registro sencillo del ítem

dc.contributor.advisorTello Hernández, Alejandrospa
dc.contributor.authorSacoto Mendoza, José Ignaciospa
dc.coverage.spatialFloridablanca (Santander, Colombia)spa
dc.date.accessioned2020-09-21T14:19:40Z
dc.date.available2020-09-21T14:19:40Z
dc.date.issued2019-10
dc.identifier.urihttp://hdl.handle.net/20.500.12749/7225
dc.description.abstractObjetivo: Determinar el error de predicción al calcular lentes intraoculares tóricos y no toricos con biometría preoperatoria IOL MASTER 700 (con diversas fórmulas de tercera y cuarta generación) y resultados refractivos afaquicos intraoperatorios con aberrometro ORAsystem en pacientes a quienes se les haya realizado faquectomia por facoemulsificación. Metodología:Estudio observacional, analítico, longitudinal con muestreo no probabilístico con universo de 150 pacientes atendidos en el periodo desde octubre 2016 hasta julio 2019. Se realizó análisis secundario de base de datos digital de pacientes atendidos a quienes se les realizó faquectomia por facoemulsificación en Foscal Internacional con resultados de cálculos de lentes intraoculares, refractivos preoperatorios, intraoperatorios y a 1 mes posoperatorios Se determinó el menor error de predicción refractivo en equivalente esférico y cilíndrico usando los resultados de los cálculos preoperatorios e intraoperatorios obtenidos bajo cálculo con IOL MASTER 700 (con diversas fórmulas de tercera y cuarta generación) y ORAsystem, en relación al resultado refractivo obtenido en el primer mes de posoperatorio. Resultados: En este estudio de un universo de 150 ojos posterior criterios de exclusión se seleccionaron 86 ojos de 68 pacientes (34 hombres y 34 mujeres). De los cuales 84% (42 ojos)fueron ojos derechos. El 63,9% de los lentes implantados coincidieron en su poder de equivalente esférico con el sugerido por el ORASystem. Mientras que 25,5% de los lentes toricos implantados coincidieron en su poder de T (toricidad) con el sugerido por el ORASystem. Los promedios de los errores absolutos fueron similares siendo Hill la de menor magnitud, pero sin encontrarse diferencia estadísticamente significativa con ninguna de las formulas excepto con la de T2 (p=0.04) (ver tabla 2). Al comparar el error absoluto contra 0.00D todos fueron diferentes incluyendo el ORASystem. Al comparar el error absoluto contra 0.25 D(clínicamente significativo) se observa que el promedio del error absoluto de la formula de Hill no fue diferente. (ver tabla 3) Al comparar los errores absolutos de las formulas de 3 y 4ta generación contra ORASystem se observo que no existió ninguna diferencia estadísticamente significativa (ver tabla 4). Evaluando el porcentaje de ojos dentro de un error de predicción dado se encontró que al analizar los ojos con error de predicción menor o igual a 0.25D la formula de HILL presento el porcentaje mas alto con 54,7%, las formulas de menor porcetaje fueron barrett II y SRKT con 43% cada una. De la misma manera al analizar los ojos con error de predicción menor o igual a 0.5D la formula de BARRET II presento el porcentaje mas alto con 80,2%, la formula de T2 tuvo el menor porcentaje con 73,3%. Por otro lado al analizar los ojos con error de predicción menor o igual a 0.75D fue el ORASystem quien presentó el porcentaje mas alto con 96.5%, mientras la formula de T2 tuvo el menor porcentaje con 89,5%. Y finalmente al analizar los ojos con error de predicción menor o igual a 1D todas las formulas obtuvieron el 100% excepto Kane quien tuvo 97,7% (ver tabla 5). Conclusión: En ojos sin antecedentes de cirugía refractiva y con longitud axial entre 22 – 26mm el desempeño del ORASystem no fue inferior a las demás formulas de 3era y 4ta generación.spa
dc.description.tableofcontentsResumen 7 Introducción 10 Problema de investigación y su justificación 11 Marco teórico 12 ULTRASONIDO MODO A Y MODO B 13 TRANSMISIÓN, VELOCIDAD Y REFLEXIÓN DEL ULTRASONIDO 14 BIOMETRÍA ULTRASÓNICA: CONTACTO E INMERSIÓN 15 BIOMETRÍA ÓPTICA: INTERFEROMETRÍA Y REFLECTOMETRÍA 17 BIOMETRÍA ULTRASÓNICA VERSUS BIOMETRÍA ÓPTICA 23 FÓRMULAS PARA EL CÁLCULO DEL PODER DEL LENTE A IMPLANTAR 25 Fórmulas teóricas de 1ª generación 26 Fórmulas de regresión de 1ª generación 29 Fórmulas teóricas de 2ª generación 30 Fórmulas de regresión de 2ª generación 31 Fórmulas teóricas de 3ª generación 31 Fórmulas teóricas de 4ª generación 33 ¿CÓMO OBTENER UNA MEDIDA ADECUADA DEL PODER DEL LENTE INTRAOCULAR? 38 VERIFICANDO LOS DATOS MEDIDOS: QUERATOMETRÍA Y LONGITUD AXIAL 38 ¿CUÁL FÓRMULA USAR? 40 OPTIMIZACIÓN Y PERSONALIZACIÓN DE LAS CONSTANTES 45 CALCULO DEL PODER DEL LENTE INTRAOCULAR EN PACIENTES OPERADOS DE CIRUGÍA REFRACTIVA 47 ORA SYSTEM 48 CIRUGÍA AVANZADA DE CATARATAS 49 POTENCIAL DE RESULTADOS PROGRESIVAMENTE MEJORES 49 Estado del arte 51 Objetivo general y objetivos específicos 53 Objetivo General 53 Objetivos específicos 54 Metodología 54 Población de estudio 54 Cálculo del tamaño de la muestra 54 Método de muestreo 55 Criterios de selección 55 -Criterios de exclusión 55 Descripción y definición de recolección de datos 56 VARIABLES 57 PLAN DE ANÁLISIS 59 Resultados/Productos esperados y potenciales beneficiarios 60 Conducentes al fortalecimiento de la capacidad científica institucional 60 Dirigidos a la apropiación social del conocimiento 60 Impactos esperados a partir del uso de los resultados 61 Disposiciones Vigentes 62 Consideraciones Éticas 62 Cronograma de Actividades 64 Resultados 66 Discusión 67 Conclusión 68 Referencias bibliográficas 68 Lista de tablas y gráficos 83spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.meshCatarataspa
dc.subject.meshLentes intraocularesspa
dc.subject.meshImplantación de lentes intraocularesspa
dc.titleResultados refractivos en ojos posoperados de facoemulsificación con implante de lentes intraoculares tóricos y no tóricos: comparación del error de predicción refractivo del aberrometro intraoperatorio ora system con otras tecnologíasspa
dc.title.translatedRefractive results in eyes after phacoemulsification with implantation of toric and non-toric intraocular lenses: comparison of the refractive prediction error of the intraoperative aberrometer ora system with other technologieseng
dc.degree.nameEspecialista en Oftalmologíaspa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ciencias de la Saludspa
dc.publisher.programEspecialización en Oftalmologíaspa
dc.description.degreelevelEspecializaciónspa
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.localTesisspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.subject.keywordsMedical scienceseng
dc.subject.keywordsHealth scienceseng
dc.subject.keywordsOphthalmologyeng
dc.subject.keywordsSpherical refractiveseng
dc.subject.keywordsFemtosecond laserseng
dc.subject.keywordsResidual refractive astigmatismeng
dc.subject.keywordsCataracteng
dc.subject.keywordsEye surgeryeng
dc.subject.keywordsLenses intraoculareng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.references1- Hatch KM, Woodcock EC, Talamo JH. Intraocular lens power selection and positioning with and without intraoperative aberrometry. J Refract Surg. 2015 Apr;31(4):237-42. doi: 10.3928/1081597X-20150319-03.spa
dc.relation.references2- Galvis V, Tello A, Niño CA, Parra MM. Total Corneal Astigmatism Measurement Precision. Invest Ophthalmol Vis Sci. 2015 Sep 1;56(10):5912. doi: 10.1167/iovs.15-17735.spa
dc.relation.references3- Koch DD. The posterior cornea: hiding in plain sight. Ophthalmology. 2015 Jun;122(6):1070-1. doi: 10.1016/j.ophtha.2015.01.022.spa
dc.relation.references4- Stringham J, Pettey J, Olson RJ. Evaluation of variables affecting intraoperative aberrometry. J Cataract Refract Surg. 2012 Mar;38(3):470-4. doi: 10.1016/j.jcrs.2011.09.039.spa
dc.relation.references5- Hirnschall N, Amir-Asgari S, Maedel S, Findl O. Predicting the postoperative intraocular lens position using continuous intraoperative optical coherence tomography measurements. Invest Ophthalmol Vis Sci. 2013 Aug 5;54(8):5196-203.spa
dc.relation.references6.- T. Ianchulev, K. Hoffer, et al. Intraoperative Refractive Biometry
for Predicting Intraocular Lens Power Calculation after Prior Myopic Refractive Surgery. American Academy of Ophthalmology. Volume 121, Number 1, January 2014. 0161-6420.spa
dc.relation.references7.- E. Mertens, P. Preussner. is intraoperative aberrometry Worth the investment?. Cataract & refrative Surgery today europe. Marzo 2013.spa
dc.relation.references8.- William F. Wiley, MD; Shamik Bafna, MD. Intra-Operative Aberrometry Guided Cataract Surgery. INTERNATIONAL OPHTHALMOLOGY CLINICS Volume 51, Number 2, 119–129. 2011.spa
dc.relation.references9.- nei.nih.gov (Internet). USA: National Eye Institute; 2000 (actualizado 2 Mayo 2010; citado 3 de mayo 2017). Disponible en nei.nih.gov/eyedata/cataractspa
dc.relation.references10.- Kerry D. Solomon, Helga P. Sandoval, Richard Potvin. Correcting astigmatism at the time of cataract surgery: Toric intraocular lenses and corneal relaxing incisions planned with an image-guidance system and intraoperative aberrometer versus manual planning and surgery. J Cataract Refract Surg 2018. https://doi.org/10.1016/j.jcrs.2018.12.002spa
dc.relation.references11.- Susie Drake, Robert Hyde, Shilpa Gulati, Alex Pleet, Mei Zhou, Kai Kang, and Siya Huo. Review of “Intraoperative aberrometry vs. for bilateral toric IOL implantation with a standard preoperative biometry and a toric IOL calculator femtosecond laser: One-month clinical study results”. EyeWorld journal club. June 2016, Pag 70 – 72.spa
dc.relation.references12.- Robert J Cionni, Michael Breen, Cody Hamilton, Ravaughn Williams. Retrospective analysis of an intraoperative aberrometry database: a study investigating absolute prediction in eyes implanted with low cylinder power toric intraocular lenses. Clinical Ophthalmology 2019:13 1485–1492spa
dc.relation.references13.- Shruti Sudhakar, Darren C. Hill, Tonya S. King, Ingrid U. Scott, Gautam Mishra, Brett B. Ernst, Seth M. Pantanelli. Intraoperative aberrometry versus preoperative biometry for intraocular lens power selection in short eyes. J Cataract Refract Surg 2018. https://doi.org/10.1016/j.jcrs.2018.12.016spa
dc.relation.references14.- Rodrigo Franco lafetá, Queiroz
Danilo Varela Kniggendorf, André lins de Medeiros , Wilson Takashi hida, Celso Takashi nakano, Pedro Carlos Carricondo, Walton nosé, Andre gustavo rolim, Antonio Francisco Pimenta Motta. Clinical comparison of speculum’s influence on intraoperative aberrometry Reading. Clinical Ophthalmology 2019:13 953–958spa
dc.relation.references15.- Ming Chen, Michael Reinsbach, Nathan D Wilbanks, Chaokai Chang, Chen Cheng Chao. Utilizing intraoperative aberrometry and digital eye tracking to develop a novel nomogram for manual astigmatic keratotomy to effectively decrease mild astigmatism during cataract surgery. Taiwan Journal Of Ophthalmology 2019, Volume : 9, Issue : 1, Page : 27-32. DOI: 10.4103/tjo.tjo_6_18spa
dc.relation.references16.- Rushton RH. The clinical measurement of the axial length of the living eye. Trans. ophthal. Soc. U.K.1938; 58, 136-42.spa
dc.relation.references17.- Jansson F. Measurement of intraocular distances by ultrasound and comparison between optical and ultrasonic determinations of the depth of the anterior chamber. Acta Ophthalmol (Copenh). 1963;41:25-61.spa
dc.relation.references18.- Colenbrander MC. Calculation of the power of an iris clip lens for distance vision. Brit J Ophthalmol. 1973;57(10):735–740.spa
dc.relation.references19.- Ossoinig KC. Standardized echography: Basic principles, clinical applications, and results. Int Ophthalmol Clin. 1979;19(4):127–210.spa
dc.relation.references20.- Hoffer KJ. IOL Power. SLACK Inc. Thorofare, Estados Unidos, 2011. Páginas 10-11.spa
dc.relation.references21.- Di Bernardo C, Greenberg EF. Ophthalmic ultrasound: A diagnostic atlas.Segunda Edición. Thieme Medical Publisher, Nueva York (Estados Unidos), 2007. Página 1.spa
dc.relation.references22.- Waldron RG, Aaberg TM. B-Scan ocular ultrasound. Ultrasound principles and physics.Emedicine.Medscape. Disponible en http://emedicine.medscape.com/article/1228865-overview#a3, consultado el 8 de diciembre de 2016/ Harrie RP. Clinical ophthalmic echography: a case study approach. Springer, Nueva York (Estados Unidos),2008. Página 52.spa
dc.relation.references23.- Shammas HJ. Intraocular Lens Power Calculations. Slack Inc. Thorofare, Estados Unidos, 2004, páginas 83-89.spa
dc.relation.references24.- Harrie RP. Clinical ophthalmic echography: a case study approach. Springer, Nueva York, Estados Unidos, 2008. Página 51.spa
dc.relation.references25.- Hill W. Biometry Methods. Disponible en http://doctor-hill.com/iol-main/biometry_explained.htm.spa
dc.relation.references26.- Schechter RJ. Capítulo “Optics of Intraocular Lenses”, en “Duane´s Ophthalmology”. Editores: Tasman W, Jaeger EA, Lippincott Williams & Wilkins,Edición 2011, disponible en http://ovidsp.tx.ovid.com/sp.4.2a/ovidweb.cgi?&S=CEBDFPFKGHDDBBDINCBLGEMCGCBPAA00&tab=books&New+Database=S.dbListAll%7cSingle%7c7&C=books&Jump+to+Browse=books.spa
dc.relation.references27.- Holladay JT. Standardizing constants for ultrasonic biometry, keratometry, and intraocular lens power calculations. J Cataract Refract Surg. 1997;23(9):1356–1370.spa
dc.relation.references28.- Hoffer KJ. IOL Power, Slack Inc, Thorofare, Estados Unidos, 2011.Página 18.spa
dc.relation.references29.- Shammas HJF. A comparison of immersion and contact techniques for axial length measurements. J Am Intraocul Implant Soc. 1984;10(4):444–447.spa
dc.relation.references30.- Olsen T, Nielsen PJ. Immersion versus contact technique in the measurement of axial length by ultrasound. Acta Ophthalmol (Copenh). 1989;67(1):101–102.).spa
dc.relation.references31.- Hill W. A-scan biometry. Disponible en http://doctor-hill.com/iol-main/a-scan.htm.spa
dc.relation.references32.- Gupta AK, Krishna V. Clinical Ophthalmology: Contemporary Perspectives, 9ª Edición.Elsevier, Noida (India), 2009. Página 690.spa
dc.relation.references33.- Hill W, Immersion Vector A/B-scan Biometry, disponible en: http://doctor-hill.com/iol-main/immersion_vector_abscan.htmspa
dc.relation.references34.- Zaldivar R, Shultz MC, Davidorf JM, Holladay JT. Intraocular lens power calculations in patients with extreme myopia. J Cataract Refract Surg. 2000 May;26(5):668-74.spa
dc.relation.references35.- Ridley H. Intra-ocular acrylic lenses; a recent development in the surgery of cataract. Br J Ophthalmol. 1952 Mar;36(3):113-22.spa
dc.relation.references36.- Binkhorst CD. Results of implantation of intraocular lenses in unilateral aphakia. With special reference to the pupillary or iris clip lens-a new method of fixation. Am J Ophthalmol. 1960 Apr;49:703-10.spa
dc.relation.references37.- Fyodorov S.N., Kolonko A.I.: Estimation of optical power of the intraocular lens. Vestnik Oftalmologic (Moscú) 1967; 4:27.spa
dc.relation.references38.- Fyodorov SN, Galin MA, Linksz A. Calculation of the optical power of intraocular lenses.Invest Ophthalmol. 1975 Aug;14(8):625-8.spa
dc.relation.references39.- Hoffer K.J.Intraocular lens calculation: the problem of the short eye. Ophthalmic Surg 1981; 12:269-272.spa
dc.relation.references40.- Binkhorst R.D.: The optical design of intraocular lens implants. Ophthalmic Surg 1975; 6:17-31.spa
dc.relation.references41.- Gills J.P.: Regression formula. Amer Intra-Ocular Implant Soc J 1978; 4:163.spa
dc.relation.references42.- Retzlaff J.: A new intraocular lens calculation formula. Am Intra-Ocular Implant Soc J 1980; 6:148.spa
dc.relation.references43.- Sanders DR, Kraff MC.Improvement of intraocular lens power calculation: Regression formula. Am Intra-Ocular Implant Soc J 1980; 6:263.spa
dc.relation.references44.- Sanders D.R., Retzlaff J., Kraff M.C., et al: Comparison of the accuracy of the Binkhorst, Colenbrander and SRK implant power prediction formulas. Am Intra-Ocular Implant Soc J 1981; 7:337-340.spa
dc.relation.references45.- Schechter RJ. Capítulo: Optics of Intraocular Lenses, en Duane´s Ophthalmology. Edición Electrónica 2011. Editores: Tasman W, Jaeger EA. Lippincott Williams & Wilkins. ISBN: 978-1-4511-1217-7.spa
dc.relation.references46.- Hoffer K.J.: The effect of axial length on posterior chamber lenses and posterior capsule position. Current Concepts in Ophthalmic Surg 1984; 1:20-22.spa
dc.relation.references47.- Binkhorst R.D.: Biometric A-scan ultrasonography and intraocular lens power calculation. In: Emery J.E., ed. Current Concepts in cataract surgery: selected proceedings of the Fifth Biennial Cataract Surgical Congress, St. Louis: Mosby; 1987:175-182.spa
dc.relation.references48.- Sanders D.R., Retzlaff J., Kraff M.C.: Comparison of the SRK II formula and the other second generation formulas. J Cataract Refract Surg 1988; 14:136-141.spa
dc.relation.references49.- Shammas HJ. The fudged formula for intraocular lens power calculations. J Am Intraocul Implant Soc. 1982 Fall;8(4):350-2.spa
dc.relation.references50.- Holladay J.T., Prager T.C., Chandler T.Y., Musgrove K.H. A three-part system for refining intraocular lens power calculations. J Cataract Refract Surg 1988; 14:17-24spa
dc.relation.references51.- Hoffer KJ. IOL Power. SLACK Inc. Thorofare, Estados Unidos, 2011. Página 138.spa
dc.relation.references52.- Aristodemou P, Knox Cartwright NE, Sparrow JM, Johnston RL. Formula choice: Hoffer Q, Holladay 1, or SRK/T and refractive outcomes in 8108 eyes after cataract surgery with biometry by partial coherence interferometry. J Cataract Refract Surg. 2011 Jan;37(1):63-71.spa
dc.relation.references53.- Retzlaff J., Sanders D.R., Kraff M.C.: Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg 1990; 16:333-340.Errata: 16:528, 1990.spa
dc.relation.references54.- Holladay JT, Gills JP, Leidlein J, Cherchio M.Achieving emmetropia in extremely short eyes with two piggyback posterior chamber intraocular lenses. Ophthalmology 1996;103:1118-1123.spa
dc.relation.references55.- Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg. 1993 Nov;19(6):700-12.spa
dc.relation.references56.- Hoffer KJ. IOL Power. SLACK Inc. Thorofare, Estados Unidos, 2011. Páginas 138-9.spa
dc.relation.references57.- Olsen T., Oleson H., Thim K., Corydon L.: Prediction of postoperative intraocular lens chamber depth. J Cataract Refract Surg 1990; 16:587-590spa
dc.relation.references58.- Olsen T. Capítulo “The Olsen Formula”, en “Intraocular Lens Power Calculations”. Editor: Shammas HJ. Slack Inc. Thorofare, Estados Unidos, 2004.spa
dc.relation.references59-. Koch, D., Wang I. Calculating IOL power in eyes that have had refractive surgery. J Cataract Refract Surg 2003 29(11) 2039-2042.spa
dc.relation.references60.- Haigis W.Strahldurchrechnung in Gauß'scher Optik zur Beschreibung des Systems Brille-Kontaktlinse-Hornhaut-Augenlinse (IOL), 4. Kongreß d. Deutschen Ges. f. Intraokularlinsen Implant., Essen 1990spa
dc.relation.references61.- Haigis W. Capítulo “The Haigis Formula”, en “Intraocular Lens Power Calculations”. Editor: Shammas HJ. Slack Inc. Thorofare, Estados Unidos, 2004.spa
dc.relation.references62.- Hoffer KJ. IOL Power. SLACK Inc. Thorofare, Estados Unidos, 2011. Página 140.spa
dc.relation.references63.-http://www.augenklinik.uniwuerzburg.de/scripts2/ciolc.php?ctyp=2&cnst=118.0&subm=Convert+IOL+constantspa
dc.relation.references64.- Haigis W. Intraocular lens calculation after refractive surgery for myopia: Haigis-L formula. Journal Cataract Ref Surgery 2008; 34(10):1658-1663spa
dc.relation.references65.- Haigis W, Lege BAM, Neuhann TF: Bestimmung wirksamer Hornhautradien nach hyperoper LASIK. Fortschritte der Ophthalmochirurgie (A.Scharrer, A.Reuscher, Th..Neuhann (Hrsg), 18.Kongress der Deutschen Ophthalmochirurgen. Diomed-Verlag, Ebelsbach, p.95, 2005.spa
dc.relation.references66.- http://doctor-hill.com/iol-main/haigis-l.htm, http://doctor-hill.com/iol-main/hyperopic-haigis.htmspa
dc.relation.references67.- Sheard RM, Smith GT, Cooke DL.Improving the prediction accuracy of the SRK/T formula: the T2 formula. J Cataract Refract Surg. 2010 Nov;36(11):1829-34.spa
dc.relation.references68.- Sanders DR, Retzlaff JA, Kraff MC. What constitutes "clinically significant" improvement in implant power calculation accuracy? J Cataract Refract Surg. 2011 Apr;37(4):795-6; author reply 796-8.spa
dc.relation.references69.- Holladay JT, Prager TC, Ruiz RS, Lewis JW, Rosenthal H. Improving the predictability of intraocular lens power calculations. Arch Ophthalmol. 1986 Apr;104(4):539-41spa
dc.relation.references70.- Knox Cartwright NE, Johnston RL, Jaycock PD, Tole DM, Sparrow JM. The Cataract National Dataset electronic multicentre audit of 55,567 operations: when should IOLMaster biometric measurements be rechecked? Eye (Lond). 2010 May;24(5):894-900. Epub 2009 Aug 14.spa
dc.relation.references71.- Olsen T. Improved accuracy of intraocular lens power calculation with the Zeiss IOLMaster. Acta Ophthalmol Scand 2007;85:84–87.spa
dc.relation.references72.- Findl O, Drexler W, Menapace R, Heinzl H, Hitzenberger CK, Fercher AF. Improved prediction of intraocular lens power using partial coherence interferometry. J Cataract Refract Surg 2001; 27: 861–867spa
dc.relation.references73.- Landers J, Goggin M. Comparison of refractive outcomes using immersion ultrasound biometry and IOLMaster biometry. Clin Experiment Ophthalmol. 2009 Aug;37(6):566-9.spa
dc.relation.references74.- Shammas HJ, Chan S. Precision of biometry, keratometry, and refractive measurements with a partial coherence interferometry-keratometry device. J Cataract Refract Surg. 2010 Sep;36(9):1474-8.spa
dc.relation.references75.- Shammas HJ, Hoffer KJ. Repeatability and Reproducibility of Biometry and Keratometry Measurements Using a Noncontact Optical Low-Coherence Reflectometer and Keratometer. Am J Ophthalmol. 2011 Sep 9. [Epub ahead of print].spa
dc.relation.references76.- Sanders DR, Retzlaff JA, Kraff MC, Gimbel HV, Raanan MG. Comparison of the SRK/T formula and other theoretical and regression formulas.J Cataract Refract Surg. 1990 May;16(3):341-6.spa
dc.relation.references77.- Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg. 1993 Nov;19(6):700-12spa
dc.relation.references78.- Hoffer KJ. Clinical results using the Holladay 2 intraocular lens power formula. J Cataract Refract Surg. 2000 Aug;26(8):1233-7.spa
dc.relation.references79.- Tsang CSL, Chong GSL, Yiu EPF, Ho CK. Intraocular lens power calculation formulas in Chinese with high axial myopia. J Cataract Refract Surg 2003; 29:1358–1364.spa
dc.relation.references80.- Hoffer KJ. IOL Power. SLACK Inc. Thorofare, Estados Unidos, 2011. Página 147.spa
dc.relation.references81.- Narváez J, Zimmerman G, Stulting RD, Chang DH. Accuracy of intraocular lens power prediction using the Hoffer Q, Holladay 1, Holladay 2, and SRK/T formulas. J Cataract Refract Surg. 2006 Dec;32(12):2050-3.spa
dc.relation.references82.- MacLaren RE, Natkunarajah M, Riaz Y, Bourne RR, Restori M, Allan BD.Biometry and formula accuracy with intraocular lenses used for cataract surgery in extreme hyperopia. Am J Ophthalmol. 2007 Jun;143(6):920-931.spa
dc.relation.references83.- Gavin EA, Hammond CJ. Intraocular lens power calculation in short eyes. Eye 2008; 22:935-938.spa
dc.relation.references84.- Wang JK, Hu CY, Chang SW. Intraocular lens power calculation using the IOLMaster and various formulas in eyes with long axial length. J Cataract Refract Surg. 2008 Feb;34(2):262-7.spa
dc.relation.references85.- Petermeier K, Gekeler F, Messias A, Spitzer MS, Haigis W, Szurman P. Intraocular lens power calculation and optimized constants for highly myopic eyes. J Cataract Refract Surg. 2009 Sep;35(9):1575-81.spa
dc.relation.references86.- Bang S, Edell E, Yu Q, Pratzer K, Stark W. Accuracy of intraocular lens calculations using the IOLMaster in eyes with long axial length and a comparison of various formulas. Ophthalmology. 2011 Mar;118(3):503-6.spa
dc.relation.references87.- Loannides A. Holladay 2 formula. Ophthalmology. 2011 Dec;118(12):2525).spa
dc.relation.references88.- Wang L, Shirayama M, Ma XJ, Kohnen T, Koch DD. Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm. J Cataract Refract Surg. 2011 Nov;37(11):2018-27.spa
dc.relation.references89.- Trivedi RH, Wilson ME, Reardon W. Accuracy of the Holladay 2 intraocular lens formula for pediatric eyes in the absence of preoperative refraction. J Cataract Refract Surg. 2011 Jul;37(7):1239-43.spa
dc.relation.references90.- Hoffmann PC, Hütz WW. Analysis of biometry and prevalence data for corneal astigmatism in 23,239 eyes.J Cataract Refract Surg. 2010 Sep;36(9):1479-85.spa
dc.relation.references91.- NOTICIERO ALACCSA OCTUBRE 2010. http://www.alaccsa.com/noticiero_octubre_10.htm.spa
dc.relation.references92.- J Cataract Refract Surg. 2002 Feb;28(2):239-42. Immersion A-scan compared with partial coherence interferometry: outcomes analysis.Packer M, Fine IH, Hoffman RS, Coffman PG, Brown LK.spa
dc.relation.references93.- Mylonas G, Sacu S, Buehl W, Ritter M, Georgopoulos M, Schmidt-Erfurth U. Performance of three biometry devices in patients with different grades of age-related cataract.Acta Ophthalmol. 2011 May;89(3):e237-41. doi: 10.1111/j.1755-3768.2010.02042.x. Epub 2011 Feb 11.spa
dc.relation.references94.- Freeman G, Pesudovs K. The impact of cataract severity on measurement acquisition with the IOLMaster. Acta Ophthalmol Scand. 2005 Aug;83(4):439-42.spa
dc.relation.references95.- Hoffer KJ. IOL Power. SLACK Inc. Thorofare, Estados Unidos, 2011. Páginas 145-7.spa
dc.relation.references96.- Royal College of Ophthalmologists. Cataract Surgery Guidelines. September 2010. Disponible en: http://www.rcophth.ac.uk/page.asp?section=451&sectionTitle=Clinical +Guidelines.spa
dc.relation.references97.- Cataract in the Adult Eye AAO 2011.Prefered Practice Patterns. Disponible en http://one.aao.org/CE/PracticeGuidelines/PPP_Content.aspx?cid=a80a87ce-9042-4677-85d7-4b876deed276.spa
dc.relation.references98.- Gale RP, Saldana M, Johnston RL, Zuberbuhler B, McKibbin M. Benchmark standards for refractive outcomes after NHS cataract surgery. Eye 2009; 23:149–152.spa
dc.relation.references99.-. Madge SN, Khong CH, L amont M, Bansal A, Antcliff RJ. Optimization of biometry for intraocular lens implantation using the Zeiss IOLMaster. Acta Ophthalmol Scand 2005; 83:436–438.spa
dc.relation.references100.- Aristodemou P, Knox Cartwright NE, Sparrow JM, Johnston RL. Intraocular lens formula constant optimization and partial coherence interferometry biometry: Refractive outcomes in 8108 eyes after cataract surgery. J Cataract Refract Surg. 2011 Jan;37(1):50-62spa
dc.relation.references101.- http://www.augenklinik.uni-wuerzburg.de/ulib/czm/dload.htmspa
dc.relation.references102.- http://www.augenklinik.uni-wuerzburg.de/ulib/c1.htmspa
dc.relation.references103.- http://doctor-hill.com/physicians/download.htmspa
dc.relation.references104.- Haigis W, Lege B, Miller N & Schneider B. Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol 238: 765–773.spa
dc.relation.references105.- Narváez J, Cherwek DH, Stulting RD, Waldron R, Zimmerman GJ, Wessels IF, Waring GO 3rd. Comparing immersion ultrasound with partial coherence interferometry for intraocular lenspower calculation. Ophthalmic Surg Lasers Imaging. 2008 Jan-Feb;39(1):30-4.spa
dc.relation.references106.- Buckhurst PJ, Wolffsohn JS, Shah S, Naroo SA, Davies LN, Berrow EJ. A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br J Ophthalmol. 2009 Jul;93(7):949-53.spa
dc.relation.references107.- Roy A, Das S, Sahu SK, Rath S. Ultrasound biometry vs. IOL Master. Ophthalmology. 2012 Sep;119(9):1937.spa
dc.relation.references108.- Schelenz J, Kammann J. Comparison of contact and immersion techniques for axial length measurement and implant power calculation. J Cataract Refract Surg. 1989 Jul;15(4):425-8.spa
dc.relation.references109.- Giers U, Epple C. Comparison of A-scan device accuracy. J Cataract Refract Surg. 1990 Mar;16(2):235-42.spa
dc.relation.references110.- Lege BA, Haigis W. Laser interference biometry versus ultrasound biometry in certain clinical conditions. Graefes Arch Clin Exp Ophthalmol. 2004 Jan;242(1):8-12.spa
dc.relation.references111.- Leaming D. 2012 Survey of US ASCRS Members. Disponible en: http://www.analeyz.com/NEWAnaleyz%20ASCRS%202012.htm. Consultada el 8 de Diciembre de 2016.spa
dc.relation.references112.- Leaming D. 2012 Survey of ESCRS members. Disponible en: http://www.analeyz.com/Analeyz%20ESCRS%202012.htm. Consultada el 8 de Diciembre de 2016.spa
dc.relation.references113- Németh J, Fekete O, Pesztenlehrer N. Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation. J Cataract Refract Surg. 2003 Jan;29(1):85-8.spa
dc.relation.references114.- Findl O, Kriechbaum K, Sacu S, Kiss B, Polak K, Nepp J, Schild G, Rainer G, Maca S, Petternel V, Lackner B, Drexler W. Influence of operator experience on the performance of ultrasound biometry compared to optical biometry before cataract surgery. J Cataract Refract Surg. 2003 Oct;29(10):1950-5.spa
dc.relation.references115.- Leaming DV. Practice styles and preferences of ASCRS members-1999 survey. J Cataract Refract Surg 2000;26:913–921.spa
dc.relation.references116.- Montés-Micó R, Carones F, Buttacchio A, Ferrer-Blasco T, Madrid-Costa D. Comparison of immersion ultrasound, partial coherence interferometry, and low coherence reflectometry for ocular biometry in cataract patients. J Refract Surg. 2011 Sep;27(9):665-71.spa
dc.relation.references117.- Whang WJ, Jung BJ, Oh TH, Byun YS, Joo CK. Comparison of Postoperative Refractive Outcomes: IOLMaster(®) Versus Immersion Ultrasound.Ophthalmic Surg Lasers Imaging. 2012 Aug 2:1-4.spa
dc.relation.references118.- Connors R 3rd, Boseman P 3rd, Olson RJ. Accuracy and reproducibility of biometry using partial coherence interferometry. J Cataract Refract Surg. 2002 Feb;28(2):235-8.spa
dc.relation.references119.- Rajan MS, Keilhorn I, Bell JA. Partial coherence laser interferometry vs conventional ultrasound biometry in intraocular lens power calculations. Eye (Lond). 2002 Sep;16(5):552-6.spa
dc.relation.references120.- Jasvinder S, Khang TF, Sarinder KK, Loo VP, Subrayan V. Agreement analysis of LENSTAR with other techniques of biometry. Eye (Lond). 2011 Jun;25(6):717-24.spa
dc.relation.references121.- Melles RB, Holladay JT, Chang WJ. Accuracy of Intraocular Lens Calculation Formulas. Ophthalmology. 2017 Sep 23. pii: S0161-6420(17)31428-8. doi: 10.1016/j.ophtha.2017.08.027.spa
dc.relation.references122.- Bertelmann T, Blum M, Kunert K, Haigis W, Messerschmidt-Roth A, Peter M, Buehren T, Sekundo W. Foveal pit morphology evaluation during optical biometry measurements using a full-eye-length swept-source OCT scan biometer prototype. Eur J Ophthalmol. 2015 Nov-Dec;25(6):552-8. doi: 10.5301/ejo.5000630. Epub 2015 May 19.spa
dc.relation.references123.- Nemeth G, Nagy A, Berta A, Modis L Jr. Graefes. Comparison of intraocular lens power prediction using immersion ultrasound and optical biometry with and without formula optimization. Arch Clin Exp Ophthalmol. 2013 Oct;251(10):2477-8. doi: 10.1007/s00417-013-2381-9. Epub 2013 May 2spa
dc.relation.references124.- Alvin Relucio, M.D. Using ORA SYSTEM® Technology with AnalyzOR™ Technology to Optimize Refractive Cataract Outcomes: Normal to Complex Cases, Simultaneous Innovations. Alcon Medical Affairs, North America (Consultado Octubre 2019).spa
dc.relation.references125.- Anders Behndig, Per Montan, Ulf Stenevi, Maria Kugelberg, Charlotta Zetterström, Mats Lundström. Aiming for emmetropia after cataract surgery: Swedish National Cataract Register study. J Cataract Refract Surg 2012; 38:11181-1186.spa
dc.relation.references126.- Robert J. Cionni, Ramon Dimalanta, Michael Breen, Cody Hamilton. A large retrospective database analysis comparing outcomes of intraoperative aberrometry with conventional preoperative planning. J Cataract Refract Surg 2018. Https://doi.org/10.1016/j.jcrs.2018.07.016.spa
dc.relation.references127.- Ronald B. Melles, Jack T Holladay, William J. Chang. Accurancy of Intraocular Lens Calculation Formulas. American Academy of Ophthalmology, 2017. http://dx.doi.org/10.1016/j.ophtha.2017.08.027spa
dc.relation.referencesLens implantation intraocularspa
dc.contributor.cvlacTello Hernández, Alejandro [0001009125]*
dc.contributor.googlescholarTello Hernández, Alejandro [puxZHKYAAAAJ]*
dc.contributor.orcidTello Hernández, Alejandro [0000-0001-5081-0720]*
dc.contributor.scopusTello Hernández, Alejandro [6603664598]*
dc.contributor.researchgateTello Hernández, Alejandro [Alejandro-Tello]*
dc.subject.lembOftalmologíaspa
dc.subject.lembCiencias médicasspa
dc.subject.lembCirugía de los ojosspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishObjective: To determine the prediction error when calculating toric and non-toric intraocular lenses with preoperative biometrics IOL MASTER 700 (with various third and fourth generation formulas) and intraoperative refractive atrial results with ORAsystem aberrometer in patients who have undergone phacoemulsification phakectomy. Methodology: Observational, analytical, longitudinal study with non-probabilistic sampling with a universe of 150 patients treated in the period from October 2016 to July 2019 Secondary analysis of the digital database of patients attended to whom phacoctulsia was performed by phacoemulsification in Foscal International with results of calculations of intraocular lenses, preoperative refractive, intraoperative and 1 month postoperative The lowest refractive prediction error in spherical and cylindrical equivalent was determined using the results of the preoperative and intraoperative calculations obtained under calculation with IOL MASTER 700 (with various third and fourth generation formulas) and ORAsystem, in relation to the refractive result obtained in the First month postoperatively Results: In this study of a universe of 150 eyes after exclusion criteria, 86 eyes of 68 patients (34 men and 34 women) were selected. Of which 84% (42 eyes) were straight eyes 63.9% of the implanted lenses coincided in their spherical equivalent power with that suggested by the ORASystem. While 25.5% of the implanted toric lenses coincided in their power of T (toricity) with that suggested by the ORASystem The averages of the absolute errors were similar, Hill being the smallest, but no statistically significant difference was found with any of the formulas except that of T2 (p = 0.04) (see table 2) When comparing the absolute error against 0.00D all were different including the ORASystem. When comparing the absolute error against 0.25 D (clinically significant) it is observed that the average of the absolute error of the Hill formula was not different (see table 3). When comparing the absolute errors of the 3rd and 4th generation formulas against ORASystem, it was observed that there was no statistically significant difference (see table 4) Evaluating the percentage of eyes within a given prediction error, it was found that when analyzing the eyes with prediction error less than or equal to 0.25D the HILL formula presented the highest percentage with 54.7%, the formulas with the lowest percentage were Barrett II and SRKT with 43% each. In the same way when analyzing the eyes with prediction error less than or equal to 0.5D, the BARRET II formula presented the highest percentage with 80.2%, the T2 formula had the lowest percentage with 73.3%. On the other hand, when analyzing the eyes with a prediction error of less than or equal to 0.75D, it was the ORASystem who presented the highest percentage with 96.5%, while the T2 formula had the lowest percentage with 89.5%. And finally, when analyzing the eyes with a prediction error of less than or equal to 1D, all the formulas obtained 100% except Kane, who had 97.7% (see table 5) Conclusion: In eyes without a history of refractive surgery and with axial length between 22 - 26mm, the ORASystem's performance was not inferior to the other 3rd and 4th generation formulas.eng
dc.subject.proposalCiencias de la saludspa
dc.subject.proposalRefractivos esféricosspa
dc.subject.proposalLáseres de femtosegundospa
dc.subject.proposalAstigmatismo refractivo residualspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia