Mostrar el registro sencillo del ítem

dc.contributor.advisorTello Hernández, Alejandrospa
dc.contributor.advisorOchoa Vera, Miguel Enriquespa
dc.contributor.authorCorrales Martínez, Maria Isabelspa
dc.coverage.spatialSantander, Colombiaspa
dc.date.accessioned2020-09-19T14:10:34Z
dc.date.available2020-09-19T14:10:34Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.12749/7220
dc.description.abstractObjetivo: Evaluar los resultados de la biometría óptica utilizando IOLMaster 500, Lenstar LS 900 y Aladdin en ojos con catarata. Métodos: En 231 ojos de 152 pacientes con cataratas, se compararon retrospectivamente las medidas de 3 biómetros diferentes. Se realizaron comparaciones pareadas para la longitud axial (AL), la queratometría media (K media) y la profundidad de la cámara anterior (ACD). Resultados: En solo 197 de los 231 ojos (85,3%), fue posible obtener mediciones confiables de AL con los tres dispositivos. No fue posible determinar AL en 16 ojos (6,9%) con Lenstar LS 900; en 19 ojos (8,2%) con Aladdin; y en 20 ojos (8,6%) con IOLMaster 500 posiblemente relacionado con la severidad de la opacificación del cristalino (las córneas tenían buena transparencia en los ojos incluidos en el estudio). Hubo una diferencia estadísticamente significativa en AL entre IOLMaster 500 y los dos biómetros restantes (P = 0.03). Sin embargo, la cantidad de diferencia se consideró clínicamente no significativa (0,04 mm). La queratometría media (K media) se determinó en 203 ojos (87,9%) con los tres dispositivos. Las diferencias en la media de K estuvieron entre - 0,1 y 0,06 dioptrías (D), que no se consideraron ni estadísticamente (P> 0,05) ni clínicamente significativas. La profundidad de la cámara anterior (DCA) se determinó en 197 ojos (85,28%) con los tres biómetros. Las diferencias entre los tres dispositivos (0,03 a 0,13 mm) no fueron estadísticamente significativas y tampoco se consideraron clínicamente significativas. Conclusiones: No hubo diferencias clínicamente significativas entre estos 3 biómetros en AL, K medio y ACD.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.meshCatarataspa
dc.subject.meshProcedimientos quirúrgicos refractivosspa
dc.titleComparación de tres biómetros ópticos en pacientes con catarata en una institución de alta complejidadspa
dc.title.translatedComparison of three optical biometers in patients with cataract in a highly complex institutioneng
dc.degree.nameEspecialista en Oftalmologíaspa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ciencias de la Saludspa
dc.publisher.programEspecialización en Oftalmologíaspa
dc.description.degreelevelEspecializaciónspa
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.localTesisspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.subject.keywordsMedical scienceseng
dc.subject.keywordsHealth scienceseng
dc.subject.keywordsOphthalmologyeng
dc.subject.keywordsDiagnostic techniqueseng
dc.subject.keywordsOphthalmological anterior chamber axial lengtheng
dc.subject.keywordsMethodseng
dc.subject.keywordsEye biometryeng
dc.subject.keywordsCorneal topographyeng
dc.subject.keywordsCataracteng
dc.subject.keywordsRefractive surgical procedureseng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.references1.Haigis W, Lege B, Miller N, Schneider B (2000) Compar- ison of immersion ultrasound biometry and partial coher- ence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol 238:765–773spa
dc.relation.references2. Kiss B, Findl O, Menapace R, Wirtitsch M, Drexler W, Hitzenberger CK et al (2002) Biometry of cataractous eyes using partial coherence interferometry: clinical feasibility study of a commercial prototype I. J Cataract Refract Surg 28:224–229spa
dc.relation.references3. Nazm N, Chakrabarti A (2017) Update on optical biometry and intraocular lens power calculation. TNOA J Ophthalmic Sci Res 55:196–210spa
dc.relation.references4. Holzer MP, Mamusa M, Auffarth GU (2009) Accuracy of a new partial coherence interferometry analyser for biometric measurements. Br J Ophthalmol 93:807–810spa
dc.relation.references5. Sahin A, Hamrah P (2012) Clinically relevant biometry. Curr Opin Ophthalmol 23:47–53spa
dc.relation.references6. Buckhurst PJ, Wolffsohn JS, Shah S, Naroo SA, Davies LN, Berrow EJ (2009) A new optical low coherence reflectom- etry device for ocular biometry in cataract patients. Br J Ophthalmol 93:949–953spa
dc.relation.references7. Epitropoulos A (2014) Axial length measurement acquisi- tion rates of two optical biometers in cataractous eyes. Clin Ophthalmol 8:1369–1376spa
dc.relation.references8. Mandal P, Berrow EJ, Naroo SA, Wolffsohn JS, Uthoff D, Holland D et al (2014) Validity and repeatability of the Aladdin ocular biometer. Br J Ophthalmol 98:256–258spa
dc.relation.references9. Salouti R, Nowroozzadeh MH, Zamani M, Ghoreyshi M, Salouti R (2011) Comparison of the ultrasonographic method with 2 partial coherence interferometry methods for intraocular lens power calculation. Optometry 82:140–147spa
dc.relation.references10. Shajari M, Lehmann UC, Kohnen T (2016) Comparison of corneal diameter and anterior chamber depth measurements using 4 different devices. Cornea 35:838–842spa
dc.relation.references11. Hill W, Angeles R, Otani T (2008) Evaluation of a new IOLMaster algorithm to measure axial length. J Cataract Refract Surg 34:920–924
spa
dc.relation.references12. Freeman G, Pesudovs K (2005) The impact of cataract severity on measurement acquisition with the IOLMaster. Acta Ophthalmol Scand 83:439–442spa
dc.relation.references13. Rajan MS, Keilhorn I, Bell JA (2002) Partial coherence laser interferometry vs conventional ultrasound biometry in intraocular lens power calculations. Eye (Lond) 16:552–556 14. Nemeth J, Fekete O, Pesztenlehrer N (2003) Optical and ultrasound measurement of axial length and anterior chamber depth for intraocular lens power calculation. J Cataract Refract Surg 29:85–88spa
dc.relation.references15. McAlinden C, Wang Q, Pesudovs K, Yang X, Bao F, Yu A et al (2015) Axial Length Measurement Failure Rates with the IOLMaster and Lenstar LS 900 in Eyes with Cataract. PLoS ONE 10:e0128929spa
dc.relation.references16. Mylonas G, Sacu S, Buehl W, Ritter M, Georgopoulos M, Schmidt-Erfurth U (2011) Performance of three biometry devices in patients with different grades of age-related cataract. Acta Ophthalmol 89:e237spa
dc.relation.references17. Stattin M, Zehetner C, Bechrakis NE, Speicher L (2015) Comparison of IOL-Master 500 vs. Lenstar LS900 con- cerning the calculation of target refraction: a retrospective analysis. Ophthalmologe 112:444–450spa
dc.relation.references18. Shammas HJ, Ortiz S, Shammas MC, Kim SH, Chong C (2016) Biometry measurements using a new large-coher- ence-length swept-source optical coherence tomographer. J Cataract Refract Surg 42:50–61spa
dc.relation.references19. Akman A, Asena L, Gu ̈ngo ̈r SG (2016) Evaluation and comparison of the new swept source OCT-based IOLMaster 700 with the IOLMaster 500. Br J Ophthalmol 100:1201–1205spa
dc.relation.references20. Goebels S, Pattmo ̈ller M, Eppig T, Cayless A, Seitz B, Langenbucher A (2015) Comparison of 3 biometry devices in cataract patients. J Cataract Refract Surg 41:2387–2393 Gao R, Chen H,spa
dc.relation.references21. Savini G, Miao Y, Wang X, Yang J et al (2017) Comparison of ocular biometric measurements between a new swept-source optical coherence tomography and a common optical low coherence reflectometry. Sci Rep 7:2484spa
dc.relation.references22. Hoffer KJ, Shammas HJ, Savini G (2010) Comparison of 2 laser instruments for measuring axial length. J Cataract Refract Surg 36:644–648spa
dc.relation.references23. Hua Y, Qiu W, Xiao Q, Wu Q (2018) Precision (repeata- bility and reproducibility) of ocular parameters obtained by the Tomey OA-2000 biometer compared to the IOLMaster in healthy eyes. PLoS ONE 13:e0193023spa
dc.relation.references24. Kunert KS, Peter M, Blum M, Haigis W, Sekundo W, Schu ̈tze J et al (2016) Repeatability and agreement in optical biometry of a new swept-source optical coherence tomography-based biometer versus partial coherence interferometry and optical low-coherence reflectometry. J Cataract Refract Surg 42:76–83spa
dc.relation.references25. Turczynowska M, Koz ́lik-Nowakowska K, Gaca-Wysocka M, Grzybowski A (2016) Effective ocular biometry and intraocular lens power calculation. European Ophthalmic Review 10:94–100
26.spa
dc.relation.references26. Hoffer KJ, Shammas HJ, Savini G, Huang J (2016) Multicenter study of optical low-coherence interferometry and partial-coherence interferometry optical biometers with patients from the United States and China. J Cataract Refract Surg 42:62–67spa
dc.relation.references27. McAlinden C, Wang Q, Gao R, Zhao W, Yu A, Li Y, Guo Y, Huang J (2017) Axial length measurement failure rates with biometers using swept-source optical coherence tomogra- phy compared to partial-coherence interferometry and optical low-coherence interferometry. Am J Ophthalmol 173:64–69spa
dc.relation.references28. Higashiyama T, Mori H, Nakajima F, Ohji M (2018) Comparison of a new biometer using swept-source optical coherence tomography and a conventional biometer using partial coherence interferometry. PLoS ONE 13:e0196401spa
dc.relation.references29. Savini G, Hoffer KJ, Shammas HJ, Aramberri J, Huang J, Barboni P (2017) Accuracy of a new swept-source optical coherence tomography biometer for IOL power calculation and comparison to IOLMaster. J Refract Surg 33:690–695spa
dc.relation.references30. Altman DG, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. Statistician 32:307–317spa
dc.relation.references31. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310spa
dc.relation.references32. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160spa
dc.relation.references33. Giavarina D (2015) Understanding Bland Altman analysis. Biochem Med (Zagreb) 25:141–151spa
dc.relation.referencesEye surgeryspa
dc.contributor.cvlacOchoa Vera, Miguel Enrique [0000898465]*
dc.contributor.cvlacTello Hernández, Alejandro [0001009125]*
dc.contributor.googlescholarTello Hernández, Alejandro [puxZHKYAAAAJ]*
dc.contributor.orcidOchoa Vera, Miguel Enrique [0000-0002-4552-3388]*
dc.contributor.orcidTello Hernández, Alejandro [0000-0001-5081-0720]*
dc.contributor.scopusOchoa Vera, Miguel Enrique [36987156500]*
dc.contributor.scopusTello Hernández, Alejandro [6603664598]*
dc.contributor.researchgateOchoa Vera, Miguel Enrique [Miguel-Ochoa-6]*
dc.contributor.researchgateTello Hernández, Alejandro [Alejandro-Tello]*
dc.subject.lembOftalmologíaspa
dc.subject.lembCiencias médicasspa
dc.subject.lembCirugía de los ojosspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishPurpose: To evaluate the results of optical biometry using the IOLMaster 500, Lenstar LS 900 and Aladdin in eyes with cataract. Methods: In 231 eyes of 152 patients with cataract,the measurements of 3 different biometers were retrospectively compared. Paired comparisons were performed for axial length (AL), mean keratometry (mean K) and anterior chamber depth (ACD). Results: In only 197 of the 231 eyes (85.3%), it was possible to obtain reliable measurements of AL with all the three devices. It was not possible to determine AL in 16 eyes (6.9%) with Lenstar LS 900; in 19 eyes (8.2%) with Aladdin; and in 20 eyes (8.6%) with IOLMaster 500 possibly related to the severity of lens opacification (the corneas had good transparency in the eyes included in the study). There was a statistically significant difference in AL between IOLMaster 500 and the remaining two biometers (P = 0.03). However, the amount of difference was considered clinically not significant (0.04 mm). The mean keratometry (mean K) was determined in 203 eyes (87.9%) with all the three devices. Differences in mean K were between - 0.1 and 0.06 Diopters (D), which were considered neither statistically (P > 0.05) nor clinically significant. The anterior chamber depth (ACD) was determined in 197 eyes (85.28%) with all the three biometers. The differences between the three devices (0.03 to 0.13 mm) were not statistically significant and considered also clinically not significant. Conclusions: There were no clinically significant differences between these 3 biometers in AL, mean K and ACD.eng
dc.subject.proposalCiencias de la saludspa
dc.subject.proposalLongitud axial oftalmológica de la cámara anteriorspa
dc.subject.proposalBiometría ocularspa
dc.subject.proposalTopografía cornealspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia