Show simple item record

dc.contributor.advisorGalindo Noguera, Ana Lisbeth
dc.contributor.advisorSerna Suárez, Iván David
dc.contributor.advisorMendoza Castellanos, Luis Sebastián
dc.contributor.authorRojas Mantilla, Andrés Mauricio
dc.coverage.spatialBucaramanga (Santander, Colombia)spa
dc.coverage.temporal2019spa
dc.date.accessioned2020-08-02T23:48:20Z
dc.date.available2020-08-02T23:48:20Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.12749/7125
dc.description.abstractEn el presente trabajo se realiza la modelación y simulación para el dimensionamiento de un sistema híbrido compuesto por paneles solares, biomasa, generación diésel y almacenamiento de energía, el generador diésel ya se encuentra en la microrred, las demás alternativas son evaluadas en base al costo nivelado de la energía para su implementación. Se estableció un modelo matemático para el gasificador compuesto por tres etapas, Secado-Pirolisis, Oxidación y Reducción, en los cuales se tuvo en cuenta los balances de masa, de energía, gases ideales y cinética química para su implementación, el modelo compuesto por 9 ecuaciones diferenciales calcula la composición, la cantidad y calidad del gas de síntesis producido. Se estableció un modelo matemático para el motor de combustión interna, donde se modificó la parte termodinámica del modelo de Ferguson con el fin de modelar el comportamiento del gas de síntesis en el motor, este modelo se compone de seis ecuaciones diferenciales que permiten el análisis en cada etapa del motor. Finalmente se tiene el modelo de generación fotovoltaica basado en el modelo de eficiencia del panel, y el modelo del almacenamiento por baterías, basado en el modelo de Coppeti. Se realizo el análisis de 403 escenarios posibles de combinaciones de las tecnologías y se calculó el costo nivelado de energía, se encontró que en 47 escenarios el costo nivelado de energía es menor al costo nivelado de energía del sistema actual, el menor costo nivelado de energía correspondió a una composición de la microrred de 85 por ciento generación diésel y 15 por ciento GMCI, se concluyó que la implementación de esta combinación de tecnologías generaría ahorros anuales de alrededor de 705 millones de pesos con los recursos de biomasa disponibles y se recupera la inversión en menos de tres añosspa
dc.description.tableofcontentsResumen 15 Introducción 19 Justificación 22 1. Objetivos 25 1.1. Objetivo general 25 1.2. Objetivos específicos 25 2. Marco teórico 26 2.1. Generalidades 26 2.2. Sistema solar fotovoltaico 30 2.3. Almacenamiento de energía 34 2.4. Gasificación 35 2.5. Grupo electrógeno 40 2.6. Costo nivelado de la energía 44 3. Antecedentes 47 4. Metodología 51 5. Desarrollo 53 5.1. Información de la ZNI 53 5.1.1. Población. 55 5.1.2. Economía. 56 5.1.3. Servicio de energía eléctrica. 58 5.1.4. Apoyo económico. 66 5.2. Caracterización de la demanda 67 5.2.1. Estructura del consumidor. 69 5.3. Caracterización de los recursos renovables 70 5.3.1. Potencial de la energía solar. 70 5.3.2. Potencial de Biomasa. 73 5.4. Modelamiento matemático de la microrred 78 5.4.1. Panel solar. 79 5.4.2. Baterías. 89 5.4.3. Gasificador. 96 5.4.4. Grupo electrógeno. 126 6. Resultados 140 6.1. La microrred 140 6.2. Simulación y optimización 152 7. Conclusiones 160 8. Recomendaciones 161 REFERENCIAS BIBLIOGRAFICAS 163 APENDICES 174spa
dc.format.mimetypeapplication/pdf
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleModelación y simulación para el dimensionamiento de un sistema híbridospa
dc.title.translatedModeling and simulation for dimensioning a hybrid systemeng
dc.degree.nameIngeniero en Energíaspa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.programIngeniería en Energía
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsEnergy engineering
dc.subject.keywordsSynthesis gas
dc.subject.keywordsSolar panel
dc.subject.keywordsDiesel
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponamereponame:Repositorio Institucional UNAB
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.relation.referencesAbedini, M., Moradi, M. H., & Hosseinian, S. M. (2016). Optimal management of microgrids including renewable energy scources using GPSO-GM algorithm. Renewable Energy, 90, 430–439. https://doi.org/10.1016/J.RENENE.2016.01.014spa
dc.relation.referencesAlcaldía de El Charco. (2016). Plan de Desarrollo Municipal 2016-2019. Unidos Por Un Charco Mejor. Retrieved from www.elcharco-narino.gov.co/spa
dc.relation.referencesAlcaldia municipal de El Charco, . (2007). El Charco, una Experiencia de Energizacion rural en la Costa Pacifica Colombiana.spa
dc.relation.referencesAlcaldía Municipal de Tumaco. (2008). Plan de Orden- a miento Territorial del Municipio de Tumaco 2008-2019.spa
dc.relation.referencesAlmanza, R., & Tolosa, O. (2015). Diseño y simulación de un prototipo de sistema de gestión energética para una microrred aislada basado en un esquema de priorizacion de cargas. Universidad Distrital Francisco José De Caldas.spa
dc.relation.referencesALTERNAR. (2015). Geoalternar, mapas energeticos. Retrieved from http://192.68.185.27:90/alternar/index.php/geoalternarspa
dc.relation.referencesAmundson, N., & Arri, L. (1978). Char Gasification in a Countercurrent Reactor. AIChE Journal, 24, 87–101.spa
dc.relation.referencesBabu, B., & Sheth, P. (2006). Modeling and Simulation of Reduction Zone of Downdraft Biomass Gasifier: Effect of Char Reactivity Factor. Energy Conversion and Management, 47, 2602–2611.spa
dc.relation.referencesBaños, R., Manzano-Agugliaro, F., Montoya, F. G., Gil, C., Alcayde, A., & Gómez, J. (2011). Optimization methods applied to renewable and sustainable energy: A review. Renewable and Sustainable Energy Reviews, 15(4), 1753–1766. https://doi.org/10.1016/J.RSER.2010.12.008spa
dc.relation.referencesBarrera, X., & Gómez, R. (2015). El ABC de los compromisos de Colombia para la COP21. WWF-Colombia, 2.spa
dc.relation.referencesBasu, P. (2006). Combustion and Gasification in Fluidized Beds. 496.spa
dc.relation.referencesBasu, P. (2010). Biomass gasification and Pyrolysis, Practical Design. ELSEVIER, Oxford, Reino Unido.spa
dc.relation.referencesBaxter, J. (1994). Downdraft Gasification of Biomass. University of Aston in Birmingham.spa
dc.relation.referencesBerends, R., & Brem, G. (2002). Two-Stage Gasification of Biomass for the Production of Syngas. Proceedings of the 12th European Conference and Technical Exhibition on Biomass for Energy, Industry and Climate Protection, 622–624.spa
dc.relation.referencesBhagat, P. (1980). Wood Charcoal Combustion and the Effects of Water Application. Combustion and Flame, 37, 275–291.spa
dc.relation.referencesBilal, B. O., Sambou, V., Kébé, C. M. ., Ndiaye, P. A., & Ndongo, M. (2012). Methodology to Size an Optimal Stand-Alone PV/wind/diesel/battery System Minimizing the Levelized cost of Energy and the CO2 Emissions. Energy Procedia, 14, 1636–1647. https://doi.org/10.1016/J.EGYPRO.2011.12.1145spa
dc.relation.referencesBlaabjerg, F., Teodorescu, R., Liserre, M., & Timbus, V. (2006). Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Transactions on Industrial Electronics, 53, 1398–1409. https://doi.org/10.1109/TIE.2006.881997spa
dc.relation.referencesButtsworth, D. (2002). Spark ignition internal combustion engine. In Faculty of Engineering & Surveying. Australia.spa
dc.relation.referencesCabrera, G., Madriñan, S., & Muñoz, D. (2012). Caracterización del gas de síntesis obtenido a partir de algarrobo y bagazo de caña. Biotecnología En El Sector Agropecuario y Agroindustrial, 10, 166–172.spa
dc.relation.referencesCelulosa Arauco y Constitución S.A. (2004). Trupán Biomass Power Plant.spa
dc.relation.referencesCenteno, F. (2010). Avaliação do desempenho de um sistema integrado motor ciclo otto/gaseificador co-corrente utilizando modelagem matemática. Universidad Federal de Itajubá.spa
dc.relation.referencesCenteno, Felipe, Mahkamov, K., Silva Lora, E. E., & Andrade, R. V. (2012). Theoretical and experimental investigations of a downdraft biomass gasifier-spark ignition engine power system. Renewable Energy, 37(1), 97–108. https://doi.org/10.1016/J.RENENE.2011.06.008spa
dc.relation.referencesChanniwala, S. (1992). On Biomass Gasification Process and Technology Development – Some Analytical and Experimental Investigations. Indian Institute of Technology.spa
dc.relation.referencesChanniwala, S., & Parikh, P. (2002). A Unified Correlation for Estimating Hhv of Solid, Liquid and Gaseous Fuels. Fuel, 81, 1051–1063.spa
dc.relation.referencesChen, W., Chen, C., Hung, C., Shen, C., & Hsu, H. (2013). A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained flow-reactor. Applied Energy, 421–430.spa
dc.relation.referencesCho, Y., & Joseph, B. (1981). Heterogeneous Model for Moving-Bed Coal Gasification Reactors. Industrial & Engineering Chemistry Process Design and Development, 20, 314–318.spa
dc.relation.referencesCopetti JB, Lorenzo E, C. F. (1993). A general battery model for PV system simulation. 283–292.spa
dc.relation.referencesCorrea Lopez, J. (2019). Asignación óptima de recursos energéticos a través de algoritmo húngaro y bipartite matching para respuesta a la demanda en microredes (Universidad politécnica salesiana). Retrieved from https://dspace.ups.edu.ec/bitstream/123456789/16689/1/UPS-ST003878.pdfspa
dc.relation.referencesCREG. (2013). Determinación de inversiones y gastos de administración, operación y mantenimiento para la actividad de generación en zonas no interconectadas con plantas termicas.spa
dc.relation.referencesCREG. (2017). Segunda jornada de orientación institucional del servicio de energía eléctrica en ZNI. Aspectos regulatorios. Retrieved from https://www.superservicios.gov.co/system/files_force/SSPD Publicaciones/Memoria de eventos institucionales/2018/Nov/aspectos_regulatorios.pdf?download=1spa
dc.relation.referencesCREG, & CORPOEMA. (2012). Inversiones y gastos de AOM para la actividad de generación en zonas no interconectadas utilizando recursos renovables.spa
dc.relation.referencesDejtrakulwong, C., & Patumsawad, S. (2014). Four Zones Modeling of the Downdraft Biomass Gasification Process: Effects of Moisture Content and Air to Fuel Ratio. Energy Procedia, 52, 142–149. https://doi.org/10.1016/J.EGYPRO.2014.07.064spa
dc.relation.referencesDiaf, S., Diaf, D., Belhamel, M., Haddadi, M., & Louche, A. (2007). A methodology for optimal sizing of autonomous hybrid PV/wind system. Energy Policy, 35(11), 5708–5718. https://doi.org/10.1016/J.ENPOL.2007.06.020spa
dc.relation.referencesDogru, M., Howarth, C. R., Akay, G., Keskinler, B., & Malik, A. A. (2002). Gasification of hazelnut shells in a downdraft gasifier. Energy, 27(5), 415–427. https://doi.org/10.1016/S0360-5442(01)00094-9spa
dc.relation.referencesDuffie, J., & Beckman, W. (1980). Solar Engineering of Thermal Processes-Second Edition (2nd ed.). New York: Jhon Wiley & Sons.spa
dc.relation.referencesDufo, R. (2007). Dimensionado y Control Óptimos de Sistemas Híbridos Aplicando Algoritmos Evolutivos. Universidad de Zaragoza.spa
dc.relation.referencesEmpresa generadora de energía eléctrica del Charco. (2012). Informe de Gestion. Retrieved from https://www.superservicios.gov.co/system/files_force/Energia y gas combustible/Energía/2018/Sep/2012ieg-empresageneradoradeenergiaelectricadelcharcosaesp.pdf?download=1spa
dc.relation.referencesErbs, D., Klein, S., & Duffie, J. (1982). Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Sol. Energy, 28, 293–302.spa
dc.relation.referencesErvit, A. (2002). EHN: Planta de Biomasa de Sangüesa 25 MW de potencia neta mediante combustión de paja. Retrieved from https://docplayer.es/storage/39/19531675/1555492818/TxzQtXWyEg5_N6gmG32uYg/19531675.pdfspa
dc.relation.referencesEvans, D., & Emmons, H. (1977). Combustion of Wood Charcoal. Fire Safety Journal, 1, 57–66.spa
dc.relation.referencesFerguson, C., & Kirkpatrick, A. (1986). Internal combustion engines (3rd ed.). New York: Wiley.spa
dc.relation.referencesGalindo Noguera, A. L., Mendoza Castellanos, L. S., Silva Lora, E. E., & Melian Cobas, V. R. (2017). Optimum design of a hybrid diesel-ORC / photovoltaic system using PSO: Case study for the city of Cujubim, Brazil. Energy, 142, 33–45. https://doi.org/10.1016/J.ENERGY.2017.10.012spa
dc.relation.referencesGaona, E. E., Trujillo, C. L., & Guacaneme, J. A. (2015). Rural microgrids and its potential application in Colombia. Renewable and Sustainable Energy Reviews, 51, 125–137. https://doi.org/10.1016/J.RSER.2015.04.176spa
dc.relation.referencesGas y energia. (2012). Canasta energetica Colombiana. Retrieved from http://www.gasyenergia.com/datos-tecnicospa
dc.relation.referencesGiltrap, D., Mckibbin, R., & Barnes, G. (2003). A Steady State Model of Gas-Char Reactions in a Downdraft Biomass Gasifier. Solar Energy, 74, 85–91.spa
dc.relation.referencesGu, W., Wu, Z., Bo, R., Liu, W., Zhou, G., Chen, W., & Wu, Z. (2014). Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review. International Journal of Electrical Power & Energy Systems, 54, 26–37. https://doi.org/10.1016/J.IJEPES.2013.06.028spa
dc.relation.referencesGumz, W. (1950). Gas Producers and Blast Furnaces : Theory and Methods of Calculation Wiley. Chapman & Hall, New York.spa
dc.relation.referencesIDEAM. (2017). Atlas de Radiación Solar, Ultravioleta y Ozono de Colombia. Bogota: Imprenta Nacional de Colombia.spa
dc.relation.referencesIPSE. (2016). Informe mensual de telemetria - Julio 2016. Retrieved from http://190.216.196.84/cnm/info_loc.php?v1=informes_telemetria/EL CHARCO - EL CHARCO - NARIÑO - 072016.pdfspa
dc.relation.referencesIPSE, & CNM. (2014). Informe de telemetria - Diciembre 2014.spa
dc.relation.referencesIPSE, & SSPD. (2017). Informe de Rendición Social de Cuentas 2016-2017.spa
dc.relation.referencesIrena. (2018). Renewable Capacity Statistics 2018. Retrieved from https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Mar/IRENA_RE_Capacity_Statistics_2018.pdfspa
dc.relation.referencesIRENA. (2019). Renewable power generation costs in 2018.spa
dc.relation.referencesIzadbakhsh, M., Gandomkar, M., Rezvani, A., & Ahmadi, A. (2015). Short-term resource scheduling of a renewable energy based micro grid. Renewable Energy, 75, 598–606. https://doi.org/10.1016/J.RENENE.2014.10.043spa
dc.relation.referencesJayah, T., Aye, L., Fuller, R., & Stewart, D. (2003). Computer Simulation of a Downdraft Wood Gasifier for Tea Drying. Biomass and Bioenergy, 25, 459–469.spa
dc.relation.referencesKratochvil, J., Boyson, W., & King, D. (2004). Photovoltaic array performance model. Retrieved from http://www.osti.gov/servlets/purl/919131sca5ep/spa
dc.relation.referencesKumar, A., Ashokkumar, S., & Pushpak, B. (2014). Biomass Gasification and syngas utilization. Sustainable Bioenergy Production.spa
dc.relation.referencesLewis, B., & Von Elbe, G. (1987). Combustion, Flames and Explosions of Gases.spa
dc.relation.referencesLogenthiran, T., Srinivasan, D., & Shun, T. (2012). Demand Side Management in Smart Grid Using Heuristic Optimization. IEEE Transactions on Smart Grid, 3, 1244–1252. https://doi.org/10.1109/TSG.2012.2195686spa
dc.relation.referencesLuque, A., & Hegedus, S. (2003). Handbook of Photovoltaic Science and Engineering.spa
dc.relation.referencesMartinez, J. (2009). Estudo experimental do conjunto gaseificador de biomassa em reator co-corrente com duplo estágio de fornecimento de ar e motor de combustão interna. Universidade Federal De Itajubá.spa
dc.relation.referencesMastral, F., Esperanza, E., Berrueco, C., Serrano, S., & Ceamanos, J. (2002). Co-Pyrolysis and Co-Gasification of Polyethylene and Sawdust Mixtures in a Fluidised Bed Reactor, Temperature Influence. Proceedings of the 12th European Conference and Technical Exhibition on Biomass for Energy, Industry and Climate Protection, 636–639.spa
dc.relation.referencesMott, R., & Spooner, C. (1940). The Calorific Value of Carbon in Coal: The Dulong Relationship. Fuel, 19, 226–231.spa
dc.relation.referencesNREL. (2016). Distributed Generation Renewable Energy Estimate of Costs. Retrieved from https://www.nrel.gov/analysis/tech-lcoe-re-cost-est.htmlspa
dc.relation.referencesOviedo Pinzon, A. M. (2015). Otimização da potência unitária dos geradores de energia numa microrrede elétrica com geração hibrida fóssil/renovável. Universidad Federal de Itajubá.spa
dc.relation.referencesPantoja Bucheli, A. D., Guerrero Ordoñez, J. C., & Castillo Muñoz, J. F. (2016). Metodología para el aprovechamiento de potencial energético con biomasa forestal en el departamento de Nariño: caso de estudio. Ingeniería Solidaria, 12(20), 43. https://doi.org/10.16925/in.v19i20.1415spa
dc.relation.referencesParikh, J., Ghosal, G., & Channiwala, S. (2002). A Critical Review on Biomass Pyrolysis. Proceedings of the 12th European Conferenceand Tech. Exhibition on Biomass for Energy, Industry and Climate Protection, 889–892.spa
dc.relation.referencesPERS-Nariño. (2014a). Análisis de generación de energía eléctrica a partir de residuos forestales en el municipio de olaya herrera del departamento de nariño. Retrieved from http://sipersn.udenar.edu.co:90/sipersn/docs/DocumentosProyectos/ProyectosPERS/ResumenesProyectosPDF/PrefactibilidadBiomasaSanquianga.pdfspa
dc.relation.referencesPERS-Nariño. (2014b). Análisis de tarifas y subsidios para el servicio de energía eléctrica en zonas rurales de Nariño. Retrieved from http://sipersn.udenar.edu.co:90/sipersn/docs/DocumentosAnalisisdeInformacion/AnalisisdeTarifasySubsidiosenZonasRurales.pdfspa
dc.relation.referencesPERS-Nariño. (2014c). Diagnóstico energético y social de las zonas rurales del departamento de Nariño. Universidad de Nariño. Retrieved from http://sipersn.udenar.edu.co:90/sipersn/docs/DocumentosAnalisisdeInformacion/DiagnosticoEnergeticoySociadelDepartamento.pdfspa
dc.relation.referencesPholboon, S., Sumner, M., & Kounnos, P. (2016). Community power flow control for peak demand reduction and energy cost savings. 2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 1–5. https://doi.org/10.1109/ISGTEurope.2016.7856276spa
dc.relation.referencesPica, A., Sauma, E., Valdes, J., & Perez, A. (2015). Impactos y desafios de la nueva ley de energias renovables no convencionales.spa
dc.relation.referencesPlan todos somos pazcificos. (2017). Evaluacion social, conectividad en las vías navegables y provisión de agua. Retrieved from http://documents.worldbank.org/curated/en/226421497468440154/pdf/SFG3440-REVISED-SA-SPANISH-P156880-Box405296B-PUBLIC-Disclosed-8-18-2017.pdfspa
dc.relation.referencesPNUD programa de las naciones unidas para el desarrollo, . (2015). Perfil productivo municipio El Charco Nariño. Retrieved from https://issuu.com/pnudcol/docs/perfil_productivo_el_charcospa
dc.relation.referencesPortabella, I. (2010). Proceso de creacion de una planta sola fotovoltaica conectada a la red. ETSETB Barcelona, España.spa
dc.relation.referencesProbstein, R., & Hicks, E. (2006). Synthetic Fuels. Dover Publications Inc.spa
dc.relation.referencesRahim, N., & Ping, H. (2013). Photovoltaic Module Modeling using Simulink/Matlab. Procedia Environmental Sciences, 17, 537–546. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/S1878029613000716spa
dc.relation.referencesRatnadhariya, J., & Channiwala, S. (2009). Three Zone Equilibrium and Kinetic Free Modeling of Biomass Gasifier - a Novel Approach. Renewable Energy, 34, 1050–1058.spa
dc.relation.referencesReed, T. (1981). Indian Institute of Technology.spa
dc.relation.referencesRincon, J., & Silva, E. (2015). Bioenergía: Fuentes, conversión y sustentabilidad. Retrieved from https://books.google.com/books/about/Bioenergía_Fuentes_conversión_y_susten.html?id=YpnxCAAAQBAJspa
dc.relation.referencesRoldán-Blay, C., Escrivá-Escrivá, G., Roldán-Porta, C., & Álvarez-Bel, C. (2017). An optimisation algorithm for distributed energy resources management in micro-scale energy hubs. Energy, 132, 126–135. https://doi.org/10.1016/J.ENERGY.2017.05.038spa
dc.relation.referencesRubio, E., & Ordoñes, L. (2016). Diseño de una micro red eléctrica inteligente con sistema fotovoltaico y celda de combustible.spa
dc.relation.referencesSaldarriaga-Loaiza, J. D., Villada, F., & Pérez, J. F. (2019). Análisis de Costos Nivelados de Electricidad de Plantas de Cogeneración usando Biomasa Forestal en el Departamento de Antioquia, Colombia. Información Tecnológica, 30(1), 63–74. https://doi.org/10.4067/S0718-07642019000100063spa
dc.relation.referencesShyu, C.-W. (2014). Ensuring access to electricity and minimum basic electricity needs as a goal for the post-MDG development agenda after 2015. Energy for Sustainable Development, 19, 29–38. https://doi.org/10.1016/J.ESD.2013.11.005spa
dc.relation.referencesSingh, G. K. (2013). Solar power generation by PV (photovoltaic) technology: A review. Energy, 53, 1–13. https://doi.org/10.1016/J.ENERGY.2013.02.057spa
dc.relation.referencesSrinivas, B., & Amundson, N. (1980). A Single-Particle Char Gasification Model. AIChE Journal, 26, 487–496.spa
dc.relation.referencesStorm, C., Diger, H., & Spliethoff, K. (1999). Co-Pyrolysis of Coal/Biomass and Coal/Sewage Sludge Mixtures. American Society of Mechanical Engineers, New York.spa
dc.relation.referencesSUI. (2017). Informe consolidado de informacion comercial ZNI. Retrieved from http://reportes.sui.gov.co/fabricaReportes/frameSet.jsp?idreporte=ele_com_103spa
dc.relation.referencesSUI. (2019). Lista de empresas prestadoras de servicios. Retrieved from http://reportes.sui.gov.co/fabricaReportes/frameSet.jsp?idreporte=mul_adm_061spa
dc.relation.referencesTerreros, J., & Hernandez, B. (2015). Diseño de sistemas híbridos solar biomasa caso de estudio: resguardo indígena calle Santa rosa - Cauca (Universidad de la Salle). Retrieved from http://repository.lasalle.edu.co/bitstream/handle/10185/18291/42112014_2015.pdf?sequence=1spa
dc.relation.referencesThring, M. (1962). The Science of Flames and Furnaces. Wiley, New York.spa
dc.relation.referencesTon, D. T., & Smith, M. A. (2012). The U.S. Department of Energy’s Microgrid Initiative. The Electricity Journal, 25(8), 84–94. https://doi.org/10.1016/J.TEJ.2012.09.013spa
dc.relation.referencesUPME, & Aene Consultoría S.A. (2013). Potencialidades de los cultivos energéticos y residuos agrícolas en Colombia. Retrieved from https://bdigital.upme.gov.co/handle/001/1287spa
dc.relation.referencesUPME, & UDEA. (2017). GeoLCOE V 2.0. Retrieved from http://www.geolcoe.siel.gov.co/spa
dc.relation.referencesUPME, UDEA, Barrientos, J., & Villada, F. (2017). Cálculo de un WACC diferenciado por región para proyectos de generación de electricidad con fuentes renovables en Colombia.spa
dc.relation.referencesVan De Steene, L., Salvador, S., & Napoli, A. (2002). Rice Husk, Straw and Bark Behaviour During Pyrolysis, Combustion and Gasification Fundamental Study. Proceedings of the 12th European Conferenceand Technical Exhibition on Biomass for Energy, Industry and Climate Protection, 821–826.spa
dc.relation.referencesVan de Wyngard, H. (2011). Incorporacion de Energias Renovables a Sistemas Medianos de Chile. Retrieved from http://hrudnick.sitios.ing.uc.cl/alumno15/renoSM/costoNivelado.htmlspa
dc.relation.referencesVisagie, J. (2009). Generic Gasifier Modelling: Evaluating Model by Gasifier Type. University of Petroria.spa
dc.relation.referencesWang, Y., & Kinoshita, C. M. (1993). Kinetic model of biomass gasification. Solar Energy, 51(1), 19–25. https://doi.org/10.1016/0038-092X(93)90037-Ospa
dc.relation.referencesWilke, H. (2015). Diagnóstico das Usinas Termelétricas dos Sistemas Isolados do Ponto de Vista de Adequação aos Limites de Consumo Específico de Combustível, Estabelecidos pela Agência Nacional de Energia Elétrica (ANEEL), e Proposição de Alternativas para Redução dos Mesm. Universidad federal de Itajuba.spa
dc.relation.referencesYekini Suberu, M., Wazir Mustafa, M., & Bashir, N. (2014). Energy storage systems for renewable energy power sector integration and mitigation of intermittency. Renewable and Sustainable Energy Reviews, 35, 499–514. https://doi.org/10.1016/J.RSER.2014.04.009spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000115074spa
dc.contributor.googlescholarhttps://scholar.google.es/citations?hl=es&user=wdT-u28AAAAJspa
dc.contributor.orcidhttps://orcid.org/0000-0001-8065-5055
dc.contributor.scopushttps://www-scopus-com.aure.unab.edu.co/authid/detail.uri?authorId=56002365900spa
dc.subject.lembInnovaciones tecnológicasspa
dc.subject.lembSistemas híbridosspa
dc.subject.lembGeneradores de energía fotovoltaicaspa
dc.subject.lembBiomasaspa
dc.subject.lembAlmacenamiento de energíaspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishIn the present document the modeling and simulation for the sizing of a hybrid system was carried out. The diesel generator is already in the microgrid, the other alternatives are evaluated based on the levelized cost of energy for its implementation. A mathematical model was established for the gasifier composed of three stages, Drying-Pyrolysis, Oxidation and reduction, in which the balances of mass, energy, ideal gases and chemical kinetics were taken into account for its implementation, the model composed of 9 differential equations calculate the composition, quantity and quality of the synthesis gas produced. A mathematical model for the internal combustion engine was established, where the thermodynamic part of the Ferguson’s model was modified in order to model the behavior of the synthesis gas in the engine, this model is composed of six differential equations that allow analysis at each stage the motor. Finally there is the photovoltaic generation model based on the panel efficiency model, and the battery storage model, based on the Coppeti model. The analysis of 403 possible scenarios of technology combinations was performed and the levelized cost of energy was calculated, it was found that in 47 scenarios the levelized cost of energy is lower than the levelized cost of energy of the current system, the lowest levelized cost of energy corresponded to a composition of the microgrid of 85 percent Diesel generation and 15 percent GMCI, it was concluded that the implementation of this technology combinations would generate annual savings of around 705 million Colombian pesos with the available biomass resources and in less than three years the investment is recoveredspa
dc.subject.proposalIngeniería en energíaspa
dc.subject.proposalGas de síntesisspa
dc.subject.proposalPanel solarspa
dc.subject.proposalDiéselspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TPspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia