Mostrar el registro sencillo del ítem

dc.contributor.advisorDíaz González, Carlos Aliriospa
dc.contributor.authorGonzález Castro, Nicoll Marianaspa
dc.contributor.authorSuárez Camacho, María Alejandraspa
dc.coverage.spatialBucaramanga (Santander, Colombia)spa
dc.coverage.temporal2019spa
dc.date.accessioned2020-07-28T17:21:24Z
dc.date.available2020-07-28T17:21:24Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.12749/7076
dc.description.abstractEl presente proyecto de investigación se centra en el desarrollo de una simulación computacional en Aspen Plus del proceso de conversión de gasificación tipo downdraft, empleando como biomasa (materia prima) el cuesco obtenido del proceso de extracción de aceite de palma. El proceso de gasificación se divide en 4 etapas: secado, pirolisis, oxidación y reducción. En el desarrollo de esta simulación, se realiza cada una de las etapas en bloques separados, adicionalmente, entre cada etapa intervienen separadores que facilitan el redireccionamiento de los componentes. Finalmente, se realiza un tratamiento al gas de síntesis con el fin de remover la humedad y las impurezas. Este proceso se somete a diferentes condiciones como: variaciones en la temperatura, la cual va sujeta a las variaciones del agente gasificante, empleando inicialmente, el aire y posteriormente, una mezcla de aire-vapor. La relación de equivalencia y la relación vapor/biomasa se han parametrizado, la relación de equivalencia entre valores de 0,2-0,34 y la relación vapor/biomasa entre 0,25-0,35. Esto se realiza con el fin de determinar, por medio de indicadores de comparación (relación H/C, eficiencia de conversión de carbono CCE, eficiencia del gas frío CGE, poder calorífico del gas de síntesis y relación biomasa/gas de síntesis), su influencia en la producción y calidad del combustible gaseoso. Las propiedades fisicoquímicas del cuesco de palma de aceite fueron tomadas de un estudio realizado por la Universidad Nacional de Colombia “Pirolisis de Biomasa”. Los resultados obtenidos son validados utilizando información reportada en literaturaspa
dc.description.tableofcontentsAgradecimientos 2 Resumen 3 Abstract 3 Listado de tablas 4 Listado de gráficos 5 Listado de símbolos 6 1. Introducción 11 2. Generalidades 13 2.1. Objetivo General 13 2.2. Objetivos Específicos 13 3. Metodología 14 4. Marco teórico 14 4.1. Materia prima: Biomasa 14 4.2. Descripción de las materias primas 15 4.2.1. Palma de aceite (palma africana) 16 4.3. Subproductos sólidos (%) 16 4.3.1. Proceso productivo del aceite de palma [19], [20] 16 4.4. Caracterización del cuesco de palma 20 4.4.1. Análisis Próximo 20 4.4.2. Análisis Último 21 4.5. Aspen plus 22 5. Descripción del proceso 23 5.1. Biomasa-Cuesco de palma 23 5.2. Normalización de los valores de referencia 24 5.3. Proceso de conversión 24 5.3.1. Procesamiento termoquímico 24 5.4. Gasificación 25 5.4.1. Etapas de la gasificación 26 5.4.2. Reacciones presentes en la gasificación 27 5.4.3. Tipos de gasificadores 27 5.5. Parámetros a variar en el proceso de gasificación 28 5.5.1. Agente gasificante 29 5.5.2. Temperatura: 30 5.5.3. Relación aire-combustible 30 5.5.4. Relación equivalente 30 5.5.5. Relación vapor/biomasa 31 5.6. Cálculos previos a la simulación 31 5.6.1. Balance teórico de la biomasa: 31 5.6.2. Relación aire-combustible teórico 31 5.6.3. Flujo de aire teórico 32 5.6.4. Relación Aire-combustible real 32 5.6.5. Flujo de aire real 32 5.6.6. Flujo de vapor de agua 32 6. Simulación en Aspen Plus 33 6.1. Equipos empleados en la simulación 33 6.2. Cálculos y consideraciones para realizar la simulación 35 6.3. Propiedades de la biomasa 36 6.1. Distribución de tamaño de partícula 37 6.2. Especificaciones unidad de secado 37 6.2.1. Especificaciones biomasa de entrada (BIOMASS) 38 6.2.2. Especificaciones del aire de secado (AIR) 38 6.2.3. Especificaciones bloque HEATER 39 6.2.4. Especificaciones bloque RSTOIC 39 6.2.5. Especificaciones bloque FLASH 2 39 6.2.6. Especificaciones bloque calculadora WATER 39 6.3. Especificaciones unidad de pirolisis 40 6.3.1. Especificaciones bloque RYIELD 40 6.3.2. Especificaciones bloque calculadora COMBUST 41 6.3.3. Especificaciones N2 41 6.3.4. Especificaciones bloque RGIBBS 41 6.3.5. Especificaciones bloque SEP 2 42 6.4. Especificaciones unidad de oxidación – reducción empleando aire 42 6.5. Especificaciones unidad de oxidación – reducción empleando mezcla de aire: vapor 42 6.5.1. Especificaciones del vapor de agua oxidación-reducción 43 6.5.2. Especificaciones unidad MIXER 43 6.5.3. Especificaciones unidad RSTOIC 44 6.6. Especificaciones unidad de tratamiento del SYNGAS 44 6.6.1. Especificaciones bloque SSPLIT 45 6.6.2. Especificaciones bloque SEP 2 46 6.6.3. Especificaciones bloque COOLER 46 6.7. Análisis de sensibilidad 46 6.8. Escenarios 46 6.8.1. Agente gasificante: 100% Aire 46 7. Resultados 48 7.1. Resultados generales 48 7.2. Escenarios simulados con 100% aire 49 7.2.1. Efecto del ER en la composición del SYNGAS 49 7.2.2. Efecto del ER en la temperatura final de gasificación 50 7.3. Escenarios simulados mezcla aire: vapor de agua 50 7.3.1. Efecto del ER y del S/B en la composición de CO 51 7.3.2. Efecto del ER y del S/B en la composición de CO2 51 7.3.3. Efecto del ER y del S/B en la composición de CH4 52 7.3.4. Efecto del ER y del S/B en la composición de H2 53 7.3.5. Efecto del ER y del S/B en la composición de N2 53 7.3.6. Efecto del ER y del S/B en la temperatura de gasificación 54 7.4. Indicadores de comparación 55 7.4.1. Indicadores de calidad del gas 55 7.4.2. Indicadores del desempeño del proceso 59 7.5. Características del proceso de gasificación más adecuado para el cuesco de palma 64 8. Conclusiones y recomendaciones 65 8.1. CONCLUSIONES 65 8.2. RECOMENDACIONES 67 Referencias 67spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleSimulación de obtención de gas de síntesis a partir de la Cascarilla (Cuesco) de Palma en Aspen Plusspa
dc.title.translatedSimulation of obtaining synthesis gas from the Cascarilla (Cuesco) of Palma in Aspen Pluseng
dc.degree.nameIngeniero en Energíaspa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.programPregrado Ingeniería en Energíaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsEnergy engineeringeng
dc.subject.keywordsPalm hulleng
dc.subject.keywordsSimulationeng
dc.subject.keywordsAspen Pluseng
dc.subject.keywordsGasificationeng
dc.subject.keywordsSynthesis gaseng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesA. Cabello Domínguez, «Planta Piloto de Gasificación de Biomasa,» de Gasificación de Biomasa, Universidad de Sevilla.spa
dc.relation.referencesA. S. B. a. N.S.Thakur, «Small scale biomass gasification plants for electricity generation in India:Resources,Installation,technical aspects,sustainability criteria and policy,» EL SEVIER, vol. 28, Marzo 2019.spa
dc.relation.referencesA. V. Da Rosa, «Hydrogen Production,» de Fundamentals of Renewable Energy Processes (Third Edition), 2013, pp. 371- 428.spa
dc.relation.referencesA. Y. Ojeda Paredes, Simulación de un reactor para devolatilización de residuos lignocelulósicos de banano y rosas., Quito: Universidad Central de Ecuador., 2018.spa
dc.relation.referencesAik Chong Lua a, Fong Yow Lau y Jia Guo, «Influence of pyrolysis conditions on pore development of oil-palm-shell activated carbons,» Journal of Analytical and Applied Pyrolysis, vol. 76, nº 1-2, pp. 96-102, 2006.spa
dc.relation.referencesAspen Plus, Aspen Plus User Guide, Cambridge: Aspen Technology, Inc, 2000.spa
dc.relation.referencesAspen Plus, Getting Started Modeling Processes with Solids, Burlington: Aspen Technology, Inc, 2013.spa
dc.relation.referencesC. B. y. E. G., «Los modelos de simulación: Una herramienta multidisciplinar de investigación.,» Universidad Pontifica de Comillas.spa
dc.relation.referencesC. E. Osorio Flórez, «Uso integral de la biomasa de palma de aceite,» PALMAS, vol. 34, nº Especial, Tomo II, pp. 315-323, 2013.spa
dc.relation.referencesD. F. Flórez Ramos, Obtención de gas de síntesis a partir de la gasificación de cuesco de palma de aceite peletizado, Bogotá: Universidad Nacional de Colombia, 2016.spa
dc.relation.referencesD. G. y. A. F.S.Nogués, Energías renovables, Energia de la biomasa(Volumen I), España: Prensas Universitarias de Zaragoza, 2010.spa
dc.relation.referencesD. S. Gómez Mendoza, «Residuos de palma africana purifican el agua y aire,» UN periodico, p. 15, Mayo 2014.spa
dc.relation.referencesE. L. Becerra Becerra, CARACTERIZACIÓN DEL DESECHO AGROINDUSTRIAL DE LA PALMA DE ACEITE “CUESCO” PARA EL MEJORAMIENTOS DE LAS CAPAS GRANULARES DE LA ESTRUCTURA DE PAVIMENTO, Bogotá, 2017.spa
dc.relation.referencesF. P. I. G. I. C. C. Franco, «The study of reactions influencing the biomass steam gasification process,» EL SEVIER, 2002.spa
dc.relation.referencesFedepalma; Cenipalma, «La palma de caite en Colombia,» Fedepalma, 2018.spa
dc.relation.referencesFedepalma-Cenipalma, «La palmicultura colombiana enfrentó uno de sus años más difíciles en 2018, aunque la producción se mantuvo constante respecto a 2017,» Bogotá, 2019.spa
dc.relation.referencesFederación Nacional de Cultivadores de Palma de Aceite, «El Palmicultor,» Bogotá, 2018.spa
dc.relation.referencesG. A. Lopez Lopez, PREDICCION DEL ANALISIS PROXIMO DE CARBONES COLOMBIANOS MEDIANTE ESPECTROSCOPIA FTIR-DR EN LA REGION DEL INFRARROJO MEDIO UTILIZANDO MINIMOS CUADRADOS PARCIALES, Pereira: UNAD, 2018.spa
dc.relation.referencesH. a. V.S.Moholkar, «BIOMASS GASIFICATION INTEGRATED FISCHER-TROPSCH SYNTHESIS,» 2015.spa
dc.relation.referencesH. B. y. G. A., «INFORMACIÓN TECNICA SOBRE GASES DE EFECTO INVERNADERO Y EL CAMBIO CLIMÁTICO,» Instituto de Hidrología,Meterología y Estudios Ambientales-IDEAM, 2007.spa
dc.relation.referencesI. J. Miranda Caicedo y O. L. Amaris Rincón, Aprovechamiento del potencial energético de la biomasa residual obtenida de la extracción del aceite de palma en Colombia, Bucaramanga, 2009.spa
dc.relation.referencesInduagro, «Proceso de extracción de palma de aceite,» 2014.spa
dc.relation.referencesIRENA, «Renewable Energy Employment by Country,» [En línea].spa
dc.relation.referencesJ. A. García N., M. M. Cardenas M. y E. E. Yañez A., «Generación y uso de biomasa en plantas de beneficio de palma de aceite en Colombia,» PALMAS, vol. 31, nº 2, 2010.spa
dc.relation.referencesJ. A. Ruiz, M. C. Juaréz, M. P. Morales, P. Muñoz y M. A. Mendívil, «Biomass gasification for electricity generation: Review of current technology barriers,» Renewable and Sustainable Energy Reviews, vol. 18, pp. 174-183, 2013.spa
dc.relation.referencesJ. Barco Burgos, Gasificación de cuesco de palma para la obtención de gas combustible en un reactor de lecho fijo, Bogotá: Universidad Nacional de Colombia, 2015.spa
dc.relation.referencesJ. G. Speight, «Gasifier Types,» de Gasification of Unconventional Feedstocks, Science Direct, 2014, pp. 54-90.spa
dc.relation.referencesJ. H. Gladys y L. M. Zapata Márquez, APROVECHAMIENTO DE LOS RESIDUOS SÓLIDOS ORGÁNICOS EN COLOMBIA, Medellín, 2008.spa
dc.relation.referencesJ. V. DAM, «Subproductos de la palma de aceite como materias primas de biomasa,» Palmas, vol. 37, nº Tomo II, pp. 149-156, 2016.spa
dc.relation.referencesJun Han, Yan Liang, Jin Hu, Lingo Qin, Jason Street, Yongwu Lu y Fei Yu, «Modeling downdraft biomass gasification process by restricting chemical reaction equilibrium with Aspen Plus.,» Energy Conversion and Management, vol. 153, pp. 641-648, 2017.spa
dc.relation.referencesL. A. Quintero López, Evaluación de potencial energético de los residuos sólidos agroindustriales del proceso de extracción de aceite de palma africana como alternativa energética para el reemplazo de la leña en la zona norte del departamento del Cesar., Manizales: Universidad de Manizales, 2018.spa
dc.relation.referencesL. E. García Fernandez, Obtención de gas combustible a partir de la gasificación de biomasa en un reactor de lecho fijo, Bogotá: Universidad Nacional de Colombia, 2011.spa
dc.relation.referencesL. V. Peñaranda Gonzalez, S. P. Montenegro Gómez y P. A. Giraldo Abad, «Aprovechamiento de residuos agroindustriales en Colombia,» Revista de Investigación Agraria y Ambiental, vol. 8, nº 2, 2017.spa
dc.relation.referencesM. Alfaro C. y E. Ortiz A., «PROCESO DE PRODUCCIÓN DEL ACEITE DE PALMA,» Ministerio de Agricultuura, 2006.spa
dc.relation.referencesM. Aristizábal Álvarez y L. Valencia Naranjo, DISEÑO CONCEPTUAL DE UN GASIFICADOR PARA LA PRODUCCIÓN DE GAS DE SÍNTESIS A PARTIR DE RESIDUOS DE PODA GENERADOS EN LA UNIVERSIDAD EAFIT, Medellín: Universidad Eafit, 2015.spa
dc.relation.referencesM. Bueno Lorenzo, Estudio de alternativas para la electrificación rural en la zona de selva del Perú., Barcelona: Universidad Politécnica de Catalunya, 2006.spa
dc.relation.referencesM. Campoy, A. Gómez-Barea, F. Vidal y P. Ollero, «Air-steam gasification of biomass in a fluidised bed:Process optimisation by enriched air,» Fuel Processing Tecnology, pp. 667-685, 2009.spa
dc.relation.referencesM. Inayat, S. Anwar Sulaiman y K. Sanaullah, «Effect of blending ratio on co-gasification performance of tropical plant-based biomass,» de Effect of blending ratio on co-gasification performance of tropical, 2016.spa
dc.relation.referencesM. La Villetta, M. Costa y N. Massarotti, «Modelling approaches to biomass gasification: A review with emphasis on the stoichiometric method,» Renewable and Sustainable Energy Reviews, vol. 74, pp. 71-88, 2017.spa
dc.relation.referencesM. Puig-Arnavat, J. Bruno y A. Coronas, «Review and analysis of biomass gasification models,» Renewable and Sustainable Energy Reviews, 2010.spa
dc.relation.referencesM.R.Eden, «INTRODUCTION TO ASPEN PLUS SIMULATION,» Chemical Engineering Deparment, Auburn University.spa
dc.relation.referencesOleaginosas del Yuma SAS, «Plan de manejo ambiental oleaginosas de yuma,» Puerto Wilches, Santander, 2017.spa
dc.relation.referencesP. A. Castellanos, Identificación y control de un gasificador de lecho fluidizado, Piura: Universidad de Piura, 2017.spa
dc.relation.referencesP. Basu, Biomass Gasification and Pyrolisis, Elsevier, 2010.spa
dc.relation.referencesPalma de aceite, «Palma de aceite,» de Esterilización, Fedepalma; Cenipalma, 2019.spa
dc.relation.referencesR. F. Culmo, K. J. Swanson y W. P. Brennan, «Calculation of Molar Element Ratios,» PerkinElmer, Inc., Waltham, USA., 2013.spa
dc.relation.referencesS. García Garrido, Centrales termoeléctricas de biomasa, Renovetec, 2012.spa
dc.relation.referencesTiara, T. E. Agustina y M. Faizal, «The Effect of Air Fuel Ratio and Temperature on Syngas Composition and Calorific Value Produced from Downdraft Gasifier of Rubber Wood-Coal Mixture,» International Journal of Engineering, vol. 31, nº 9, pp. 1480-1486, 2018.spa
dc.relation.referencesUniversidad Industrial de Santander- Centro de Estudios e Investigaciones Ambientales; Unidad de Planeación MInero Energética; Instituto de Hidrología, Meteorología y Estudios Ambientales- Ideam, «Atlas del potencial energético de la biomasa residual en Colombia,» Universidad Industrial de Santander, Bucaramanga, 2011.spa
dc.relation.referencesUS-Pakistan Center of Advanced Studies in Energy (USPCAS-E); National University of Sciences and Technology (NUST), Biomass gasification systems, Islamabad, Pakistan: UNIDO, 2016.spa
dc.relation.referencesW. y. S. A.Gómez, Pirólisis de biomasa,Cuesco de palma de aceite, Colombia,Alemania: Kassel, 2008.spa
dc.relation.referencesWoranuch Jangsawanga, Krongkaew Laohalidanonda y Somrat Kerdsuwana, «Optimum Equivalence Ratio of Biomass Gasification Process Based on Thermodynamic Equilibrium Model,» Energy Procedia, vol. 79, pp. 520-527, 2015.spa
dc.contributor.cvlacDíaz González, Carlos Alirio [0000785806]*
dc.subject.lembInnovaciones tecnológicasspa
dc.subject.lembAceites vegetalesspa
dc.subject.lembBiomasaspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishThis research project focuses on the development of a computational simulation in Aspen Plus of the downdraft type gasification conversion process, using as a biomass (raw material) the shell obtained from the palm oil extraction process. The gasification process is divided into 4 stages: drying, pyrolysis, oxidation and reduction. In the development of this simulation, each of the stages is carried out in separate blocks, additionally, between each stage, separators are involved that facilitate the redirection of the components. Finally, a synthesis gas treatment is carried out in order to remove moisture and impurities. This process is subjected to different conditions such as: variations in gasification temperature, which is subject to variations of the gasifying agent, initially using air and subsequently, a mixture of air-steam. The equivalence ratio and the steam/biomass ratio have been parameterized, the equivalence ratio between 0.2-0.34 values and the steam/biomass ratio between 0.25-0.35. This is done in order to determine by means of comparison indicators (H/C ratio, CCE carbon conversion efficiency, CGE cold gas efficiency, calorific value of the synthesis gas and biomass/syngas ratio) its influence on the production and quality of the gaseous fuel. The physicochemical properties of oil palm cuesco were taken from a study conducted by the National University of Colombia "Biomass Pyrolysis"eng
dc.subject.proposalIngeniería en energíaspa
dc.subject.proposalCuesco de palmaspa
dc.subject.proposalSimulaciónspa
dc.subject.proposalAspen Plusspa
dc.subject.proposalGasificaciónspa
dc.subject.proposalGas de síntesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.contributor.researchgroupGrupo de Investigación Recursos, Energía, Sostenibilidad - GIRESspa
dc.contributor.researchgroupGrupo de Investigaciones Clínicasspa
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia