Show simple item record

dc.contributor.advisorPacheco Sandoval, Leonardo Estebanspa
dc.contributor.advisorMaradey Lázaro, Jessica Gissellaspa
dc.contributor.authorJiménez Neira, Carlos Mario de Leónspa
dc.coverage.spatialBucaramanga (Santander, Colombia)spa
dc.coverage.temporal2019spa
dc.date.accessioned2020-07-27T19:04:43Z
dc.date.available2020-07-27T19:04:43Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.12749/7051
dc.description.abstractEn la actualidad existe un gran interés en reducir el consumo de combustible y por ende las emisiones vehiculares. Como parte de las estrategias adoptadas por diferentes países, es el establecimiento de límites de emisiones cada vez más estrictos. Por lo que los fabricantes de vehículos deben realizar pruebas de homologación que certifiquen las nuevas tecnologías que entraran al mercado. Pero las grandes diferencias entre los valores reportados en las pruebas de homologación (FCTA) y bajo condiciones reales de operación (FCreal) de los vehículos pueden llegar a ser superiores al 60%. Dentro de los factores que tienen mayor incidencia en esta discrepancia, es el uso de ciclos de conducción (DCs) que no representan el patrón de conducción de local de las diferentes regiones del mundo. En este trabajo se planteó monitorear el consumo de combustible y los patrones de manejo de una tecnología vehicular en condiciones reales de operación en Bucaramanga, Santander. Para esto, se realizaron mediciones en condiciones reales de operación de 2 vehículos de una entidad pública, utilizados para monitorear las vías de la ciudad en busca de infractores. Se reportaron los patrones de manejo en función de los parámetros características (CPs) y el consumo específico de combustible (SFC) de 0,220  0,0828 L/km para las diferentes condiciones que se presentan en la región de estudio. En busca de la reducción de las diferencias presentadas entre los valores FCTA y FCreal, se propuso un método para construir DCs locales, al combinar las dos corrientes metodológicas (Estocástica y Determinística) utilizadas en el mundo. Se obtuvo que el método Micro-trips Fuel Based Method (MTFBM) logra representar considerablemente el patrón de conducción y el consumo de combustible de la región analizada. Tomando en cuenta que, para evaluar la representatividad del ciclo obtenido, se utilizan un grupo de parámetros característicos que definen el patrón de manejo y describe un ciclo de conducción, se obtuvo que el método propuesto exhibió un 82,5% de los CPs con diferencias relativas por debajo del 20% con respecto a los patrones de manejo de los viajes monitoreados. Además, se estimó la incorporación de estrategias de conducción eficiente que permitan obtener una reducción del 26,46% para los vehículos analizados. En conclusión, es muy importante reducir las diferencias presentadas, debido al impacto que tienen a nivel gubernamental, ambiental y económicospa
dc.description.tableofcontentsRESUMEN 10 NOMENCLATURA 12 INTRODUCCIÓN 14 1 MARCO REFERENCIAL 16 1.1 CONTAMINACIÓN ATMOSFERICA Y EL SECTOR TRANSPORTE 16 1.2 PRUEBAS DE HOMOLOGACIÓN 20 1.2.1 Diferencias entre el consumo de combustible real y el reportado por los fabricantes 22 1.3 CICLOS DE CONDUCCIÓN 25 1.3.1 Metodologías para la construcción de DC 29 1.4 ESTRATEGIAS DE CONDUCCIÓN EFICIENTE 34 1.4.1 Antes de iniciar el recorrido 35 1.4.2 Inicio de la marcha 37 1.4.3 Durante la marcha 37 1.4.4 Otras circunstancias del tráfico 39 2 OBJETIVOS 41 3 METODOLOGÍA 42 3.1 REGIÓN DE ESTUDIO 42 3.1.1 Localización y área 42 3.1.2 Población 43 3.1.3 Movilidad 44 3.1.4 Vehículos 47 3.2 INSTRUMENTACIÓN 48 3.3 TOMA DE DATOS 49 3.4 ANÁLISIS DE DATOS 51 3.4.1 Ciclo de conducción representativo 57 3.4.2 Estrategias de conducción eficiente 60 4 DESARROLLO 61 4.1 RESULTADOS DE LAS MEDICIONES 61 4.2 DESCRIPCIÓN EL PATRÓN DE MANEJO 62 4.2.1 Ciclo de conducción representativo de Bucaramanga 65 4.2.2 Consumo de combustible 68 4.3 ESTRATEGIAS DE CONDUCCIÓN EFICIENTE 69 5 CONCLUSIONES 73 6 RECOMENDACIONES 74 BIBLIOGRAFÍA 75 ANEXOS 82 ANEXO A 82 ANEXO B 100spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleEstimación del consumo de combustible mediante la determinación de ciclos de conducción representativos en Bucaramanga, Santanderspa
dc.title.translatedEstimation of fuel consumption by determining representative driving cycles in Bucaramanga, Santandereng
dc.degree.nameIngeniero Mecatrónicospa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programPregrado Ingeniería Mecatrónicaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsDriving cycleeng
dc.subject.keywordsOBDeng
dc.subject.keywordsLight vehicleseng
dc.subject.keywordsEnergy engineeringeng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesA. Ashtari, E. Bibeau and S. Shahidinejad, Using Large Driving Record Samples and a Stochastic Approach for Real-World Driving Cycle Construction: Winnipeg Driving Cycle, 2014, pp. 170-183.spa
dc.relation.referencesCentro del transporte de la Universidad Andres Bello, "Manual de conducción eficiente," pp. 32, 2014.spa
dc.relation.referencesDieselNet, "Worldwide Harmonized Light Vehicles Test Cycle (WLTC)," vol. 2019, 2019.spa
dc.relation.referencesEConcept, "El Sector de Vehículos en Colombia: Características y Propuestas de Mejora a su Régimen Impositivo." 2016.spa
dc.relation.referencesEscuela de Ingeniería Civil Geomatica, gestión y optimizacion de sistemas, "Plan Maestro de Movilidad, Área Metropolitana de Bucaramanga 2011 - 2030," pp. 202, 2011.spa
dc.relation.referencesEscuela de Ingeniería Civil, Geomatica, gestión y optimizacion de sistemas, "Plan Maestro de Movilidad, Bucaramanga 2010-2030," pp. 143, 2010.spa
dc.relation.referencesF. Quinchimbla and J. Solis, "Desarrollo de ciclos de conducción en ciudad, carretera y combinado para evaluar el rendimiento real de combustible de un vehículo con motor de ciclo otto en el distrito metropolitano de Quito." pp. 163, 2017.spa
dc.relation.referencesG. Amirjamshidi and M.J. Roorda, "Development of simulated driving cycles for light, medium, and heavy duty trucks: Case of the Toronto Waterfront Area," Transportation Research Part D: Transport and Environment, vol. 34, pp. 255-266, 2015.spa
dc.relation.referencesG. Fontaras, N. Zacharof and B. Ciuffo, "Fuel consumption and CO2 emissions from passenger cars in Europe – Laboratory versus real-world emissions," Progress in Energy and Combustion Science, vol. 60, pp. 97-131, 2017.spa
dc.relation.referencesG. Kadijk, R.P. Verbeek, R.T.M. Smokers, J.S. Spreen, A.F. Patuleia and M.G.v. Ras, "Supporting Analysis regarding Test Procedure Flexibilities and Technology Deployment for Review of the Light Duty Vehicle CO2 Regulations," European Commission., 2012.spa
dc.relation.referencesG.O. Duarte, G.A. Gonçalves and T.L. Farias, "Analysis of fuel consumption and pollutant emissions of regulated and alternative driving cycles based on real-world measurements," Transportation Research Part D: Transport and Environment, vol. 44, pp. 43-54, 2016.spa
dc.relation.referencesGlobal Fuel Economy Iniciative, "Fuel Economy State of the World 2016 - Time for global action," 2016.spa
dc.relation.referencesH. Achour and A.G. Olabi, "Driving cycle developments and their impacts on energy consumption of transportation," Journal of Cleaner Production, vol. 112, pp. 1778-1788, 2016.spa
dc.relation.referencesH. Kato, R. Ando, Y. Kondo, T. Suzuki, K. Matsuhashi and S. Kobayashi, "Comparative measurements of the eco-driving effect between electric and internal combustion engine vehicles," 2013 World Electric Vehicle Symposium and Exhibition, EVS 2014, 2014.spa
dc.relation.referencesH. Tong and W. Hung, "A Framework for Developing Driving Cycles with On‐Road Driving Data," Transport Reviews, vol. 30, pp. 589-615, 2010.spa
dc.relation.referencesICCT, "Quantifying the impact of real-world driving on total CO2 emissions from UK cars and vans: final report for The Committee on Climate Change," 2015.spa
dc.relation.referencesIDAE, "Cómo conducir de manera eficiente," pp. 30, 2003.spa
dc.relation.referencesIDAE, "La Conducción Eficiente," pp. 34, 2005.spa
dc.relation.referencesIDAE, "Manual de conducción eficiente para conductores de vehículos industriales," pp. 80, 2006.spa
dc.relation.referencesIDAE, "Manual de Conducción Eficiente para Conductores del Parque Móvil del Estado," pp. 39, 2002.spa
dc.relation.referencesIDEAM, PNUD, MADS, DNP and CANCILLERIA, "Inventario Nacional de Gases de Efecto Invernadero (GEI) de Colombia. Tercera Comunicación Nacional de Cambio Climático de Colombia." pp. 36, 2015.spa
dc.relation.referencesIEA, "CO2 Emissions From Fuel Combustion: Overview," pp. 14, 2017.spa
dc.relation.referencesInternational Energy Agency, "CO2 Emissions from Fuel Combustion: Highlights," pp. 166, 2018.spa
dc.relation.referencesInternational Energy Agency, "Energy Efficiency Indicators: Highlights," pp. 191, 2018.spa
dc.relation.referencesInternational Energy Agency, "Energy Technology Perspectives 2015," pp. 418, 2015.spa
dc.relation.referencesInternational Energy Agency, "International Comparison of Light-Duty Vehicle Fuel Economy 2005-15," pp. 133, 2017.spa
dc.relation.referencesInternational Energy Agency, "Market Report Series: Energy efficiency 2017," pp. 143, 2017.spa
dc.relation.referencesInternational Energy Agency, "Technology Roadmap - Fuel Economy of Road Vehicles," 2012.spa
dc.relation.referencesInternational Energy Agency, "Transport, Energy and CO2," Huss., pp. 418, 2009.spa
dc.relation.referencesJ. Brady and M. O’Mahony, "Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas," Applied Energy, vol. 177, pp. 165-178, 2016.spa
dc.relation.referencesJ. Huertas, L. Quirama, M. Giraldo and J. Díaz, "Comparison of Three Methods for Constructing Real Driving Cycles," Energies, vol. 12, pp. 665, Feb 19,. 2019.spa
dc.relation.referencesJ. Huertas, M. Giraldo, L. Quirama and J. Díaz, "Driving Cycles Based on Fuel Consumption," Energies, vol. 11, pp. 3064, Nov 7,. 2018.spa
dc.relation.referencesJ. Huertas, M. Giraldo, L. Quirama and J. Díaz-Ramírez, "Driving Cycles Based on Fuel Consumption," Energies, vol. 11, pp. 3064, 2018.spa
dc.relation.referencesJ. Jimenez, P. McClintock, G. McRae, D. Nelson and M. Zahniser, Vehicle Specific Power: A Useful Parameter for Remote Sensing and Emission Studies, San Diego: 1999, pp. 361.spa
dc.relation.referencesJ. Wu, Q. Zhu, J. Chu, H. Liu and L. Liang, "Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach," Transportation Research Part D: Transport and Environment, vol. 48, pp. 460-472, 2016.spa
dc.relation.referencesJ.D.K. Bishop, C.J. Axon and M.D. McCulloch, "A robust, data-driven methodology for real-world driving cycle development," Transportation Research Part D: Transport and Environment, vol. 17, pp. 389-397, 2012.spa
dc.relation.referencesJ.I. Huertas, J. Díaz, M. Giraldo, D. Cordero and L.M. Tabares, "Eco-driving by replicating best driving practices," International Journal of Sustainable Transportation, vol. 12, pp. 107-116, 2018.spa
dc.relation.referencesJ.N. Barkenbus, "Eco-driving: An overlooked climate change initiative," Energy Policy, vol. 38, pp. 762-769, 2010.spa
dc.relation.referencesL. Ntziachristos, G. Mellios, D. Tsokolis, M. Keller, S. Hausberger, N.E. Ligterink and P. Dilara, "In-use vs. type-approval fuel consumption of current passenger cars in Europe," Energy Policy, vol. 67, pp. 403-411, 2014.spa
dc.relation.referencesM. Andrejić, N. Bojović and M. Kilibarda, "A framework for measuring transport efficiency in distribution centers," Transport Policy, vol. 45, pp. 99-106, 2016.spa
dc.relation.referencesM. Giraldo, "Método basado en el consumo de combustible para la construcción de ciclos de conducción que representen patrones locales de manejo," pp. 73, 2018.spa
dc.relation.referencesM. Rutty, L. Matthews, J. Andrey and T.D. Matto, "Eco-driver training within the City of Calgary’s municipal fleet: Monitoring the impact," Transportation Research Part D: Transport and Environment, vol. 24, pp. 44-51, 2013.spa
dc.relation.referencesM. Sivak and B. Schoettle, "Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy," Transport Policy, vol. 22, pp. 96-99, 2012.spa
dc.relation.referencesM. Sivak and B. Schoettle, "Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy," Transport Policy, vol. 22, pp. 96-99, 2012.spa
dc.relation.referencesM. Zhou, H. Jin and W. Wang, "A review of vehicle fuel consumption models to evaluate eco-driving and eco-routing," Transportation Research Part D: Transport and Environment, vol. 49, pp. 203-218, 2016.spa
dc.relation.referencesMinisterio de Minas y Energía, "Plan de Acción Indicativo de Eficiencia Energética 2017 - 2022," pp. 157, 2016.spa
dc.relation.referencesMinistre de l’environnement de l’énergie et de la mer, "Contrôles des émissions de polluants atmosphériques et de CO2," 2016.spa
dc.relation.referencesN.E. Ligterink and A.R.A. Eijk, "Update analysis of real-world fuel consumption of business passenger cars based on Travelcard Nederland fuelpass data," Jan 1,. 2014.spa
dc.relation.referencesN.H. Arun, S. Mahesh, G. Ramadurai and S.M. Shiva Nagendra, "Development of driving cycles for passenger cars and motorcycles in Chennai, India," Sustainable Cities and Society, vol. 32, pp. 508-512, 2017.spa
dc.relation.referencesP. Pérez and C. Quito, "Determinación de los ciclos de conducción de un vehículo categoría M1 para la ciudad de Cuenca," pp. 132, 2018.spa
dc.relation.referencesQ. Shi, Y. Zheng, R. Wang and Y. Li, "The study of a new method of driving cycles construction," Procedia Engineering, vol. 16, pp. 79-87, 2011.spa
dc.relation.referencesQ. Wang, H. Huo, K. He, Z. Yao and Q. Zhang, "Characterization of vehicle driving patterns and development of driving cycles in Chinese cities," Transportation Research Part D: Transport and Environment, vol. 13, pp. 289-297, 2008.spa
dc.relation.referencesR. Astudillo, "Obtención de ciclos de conducción para la flota de buses urbanos del cantón Cuenca," pp. 115, 2016.spa
dc.relation.referencesR.A. Simmons, G.M. Shaver, W.E. Tyner and S.V. Garimella, "A benefit-cost assessment of new vehicle technologies and fuel economy in the U.S. market," Applied Energy, vol. 157, pp. 940-952, 2015.spa
dc.relation.referencesS. Birrell, J. Taylor, A. McGordon, J. Son and P. Jennings, "Analysis of three independent real-world driving studies: A data driven and expert analysis approach to determining parameters affecting fuel economy," Transportation Research Part D: Transport and Environment, vol. 33, pp. 74-86, 2014.spa
dc.relation.referencesS. Ho, Y. Wong and V.W. Chang, "Developing Singapore Driving Cycle for passenger cars to estimate fuel consumption and vehicular emissions," Atmospheric Environment, vol. 97, pp. 353-362, 2014.spa
dc.relation.referencesS. Zhang, Y. Wu, H. Liu, R. Huang, P. Un, Y. Zhou, L. Fu and J. Hao, "Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China," Energy, vol. 69, pp. 247-257, 2014.spa
dc.relation.referencesT. Barlow, S. Latham, I. Mccrae and P. Boulter, "A reference book of driving cycles for use in the measurement of road vehicle emissions," TRL Published Project Report., pp. 280, 2009.spa
dc.relation.referencesT. NUTRAMON and C. SUPACHART, "Influence of driving cycles on exhaust emissions and fuel consumption of gasoline passenger car in Bangkok," Journal of Environmental Sciences, vol. 21, pp. 604-611, 2009.spa
dc.relation.referencesT.M.I. Mahlia, S. Tohno and T. Tezuka, "A review on fuel economy test procedure for automobiles: Implementation possibilities in Malaysia and lessons for other countries," Renewable and Sustainable Energy Reviews, vol. 16, pp. 4029-4046, 2012.spa
dc.relation.referencesU. Tietge, N. Zacharov, P. Mock, V. Franco, J. German, A. Bandivadekar, N.E. Ligterink and U. Lambrecht, "From Laboratory to Road. A 2015 update of official and real-world fuel concumption and CO2 values for passenger cars in Europe," International Council on Clean Transportation Europe., 2015.spa
dc.relation.referencesU. Tietge, P. Mock, J. German, A. Bandivadekar and N. Ligterink, "From Laboratory to Road a 2017 Update of Official and “Real-World” Fuel Consumption and CO2 Values For Passenger Cars in Europe," pp. 62, 2015.spa
dc.relation.referencesU. Tietge, P. Mock, V. Franco and N. Zacharof, "From laboratory to road: Modeling the divergence between official and real-world fuel consumption and CO2 emission values in the German passenger car market for the years 2001–2014," Energy Policy, vol. 103, pp. 212-222, 2017.spa
dc.relation.referencesV. Basaric, M. Jambrovic, M. Milicic, T. Savković, D. Basaric and V. Bogdanović, "Positive effects of eco-driving in public transport: A case study of Novi Sad," Thermal Science, vol. 21, pp. 160, 2016.spa
dc.relation.referencesW.T. Hung, H.Y. Tong, C.P. Lee, K. Ha and L.Y. Pao, "Development of a practical driving cycle construction methodology: A case study in Hong Kong," Transportation Research Part D: Transport and Environment, vol. 12, pp. 115-128, 2007.spa
dc.relation.referencesWorld Health Organization, "WHO Global Ambient Air Quality Database (update 2018)," vol. 2019, 2018.spa
dc.relation.referencesY. Huang, E.C.Y. Ng, J.L. Zhou, N.C. Surawski, E.F.C. Chan and G. Hong, "Eco-driving technology for sustainable road transport: A review," Renewable and Sustainable Energy Reviews, vol. 93, pp. 596-609, 2018.spa
dc.relation.referencesZ. Xiao, Z. Dui-Jia and S. Jun-Min, "A Synthesis of Methodologies and Practices for Developing Driving Cycles," Energy Procedia, vol. 16, pp. 1868-1873, 2012.spa
dc.contributor.cvlacPacheco Sandoval, Leonardo Esteban [0001478220]*
dc.contributor.googlescholarPacheco Sandoval, Leonardo Esteban [yZ1HEiIAAAAJ]*
dc.contributor.orcidPacheco Sandoval, Leonardo Esteban [0000-0001-7262-382X]*
dc.contributor.researchgatePacheco Sandoval, Leonardo Esteban [Leonardo-Esteban-Pacheco-Sandoval]*
dc.subject.lembAutomóvilesspa
dc.subject.lembCombustibles para motoresspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishAt present, there is a great interest in reducing fuel consumption and therefore vehicle emissions. As part of the strategies adopted by different countries, it is the establishment of increasingly strict emission limits. Therefore, vehicle manufacturers must carry out homologation tests that certify the new technologies that will enter the market. But the big differences between the values reported in the homologation tests (FCTA) and under real operating conditions (FCreal) of the vehicles can be over 60%. Among the factors that have a greater incidence in this discrepancy, is the use of driving cycles (DCs) that do not represent the local driving pattern of the different regions of the world. In this work, it was proposed to monitor the fuel consumption and management patterns of a vehicle technology in real operating conditions in Bucaramanga, Santander. For this, measurements were made in real operating conditions of two vehicles of a public entity, used to monitor the city roads for violators. The management patterns were reported based on the characteristic parameters (CPs) and the specific fuel consumption (SFC) of 0.220  0.0828 L/km for the different conditions that occur in the study region. In search of the reduction of the differences presented between the FCTA and FCreal values, a method was proposed to build local DCs, by combining the two methodological currents (Stochastic and Deterministic) used in the world. It was obtained that the Micro-Trips Fuel Based Method (MTFBM) method considerably represents the driving pattern and the fuel consumption of the analyzed region. Taking into account that, to evaluate the representativeness of the obtained cycle, a group of characteristic parameters that define the driving pattern and describe a driving cycle are used, it was obtained that the proposed method exhibited 82.5% of the CPs with differences relative below 20% with respect to the management patterns of the monitored trips. In addition, the incorporation of efficient driving strategies that allow a reduction of 26.46% for the vehicles analyzed was estimated. In conclusion, it is very important to reduce the differences presented, due to the impact they have at the governmental, environmental and economic level.eng
dc.subject.proposalCiclo de conducciónspa
dc.subject.proposalOBDspa
dc.subject.proposalVehículos livianosspa
dc.subject.proposalIngeniería en energíaspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia