dc.contributor.advisor | Calderón Benavides, Maritza Liliana | spa |
dc.contributor.author | Espitia Rey, Jershon Orlando | spa |
dc.contributor.author | Torres Rodríguez, Jared David | spa |
dc.date.accessioned | 2020-07-24T23:28:15Z | |
dc.date.available | 2020-07-24T23:28:15Z | |
dc.date.issued | 2019 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12749/7028 | |
dc.description.abstract | Este trabajo se enfoca en realizar una caracterización de herramientas del análisis de datos específicamente en alguno de sus campos y también se describen algunos de los conceptos que tienen mayor impacto en el proyecto, este proyecto se enfoca en ayudar a las pequeñas y medianas empresas que no aplican estas tecnologías, para que puedan tener una transición lo más eficaz posible, también se explican los campos más significativos para las empresas dentro de los campos del análisis de datos y una guía escrita de un total de 45 herramientas de las cuales se escogen 9 herramientas para realizar una guía un poco más especializada de las mismas para así darle una visión general a las empresas de las posibles oportunidades que tendría al implementar cualquiera de estas herramientas que se mencionan en la guía sin gastar un solo crédito en ello. | spa |
dc.description.tableofcontents | Resumen 4
Planteamiento del problema 5
Justificación 6
Pregunta de investigación 7
Hipótesis 7
Objetivos 8
Objetivo General 8
Objetivos Específicos 8
Marco teórico 9
Estado del arte 21
Metodología 24
Resultados obtenidos 25
Resultados del objetivo número 2 25
Resultados obtenidos del objetivo número 3 54
Presupuesto 118
Conclusiones 120
Recomendaciones para trabajos futuros 121
Referencia Bibliográfica 122 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.title | Caracterización de herramientas para el análisis de datos | spa |
dc.title.translated | Characterization of tools for data analysis | eng |
dc.degree.name | Ingeniero de Sistemas | spa |
dc.publisher.grantor | Universidad Autónoma de Bucaramanga UNAB | spa |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.publisher.faculty | Facultad Ingeniería | spa |
dc.publisher.program | Pregrado Ingeniería de Sistemas | spa |
dc.description.degreelevel | Pregrado | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | |
dc.type.local | Trabajo de Grado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | |
dc.subject.keywords | Systems engineer | eng |
dc.subject.keywords | Tool characterization | eng |
dc.subject.keywords | Analysis of data | eng |
dc.subject.keywords | Micro businesses | eng |
dc.subject.keywords | Information analysis | eng |
dc.subject.keywords | Information processing | eng |
dc.subject.keywords | Information science | eng |
dc.subject.keywords | Social networks | eng |
dc.subject.keywords | Big data & analytics | eng |
dc.subject.keywords | Technological innovations | eng |
dc.identifier.instname | instname:Universidad Autónoma de Bucaramanga - UNAB | spa |
dc.identifier.reponame | reponame:Repositorio Institucional UNAB | spa |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.relation.references | AbdelFattah, M., Galal, D., Hassan, N., Elzanfaly, D. S., & Tallent, G. (2017). A Sentiment Analysis Tool for Determining the Promotional Success of Fashion Images on Instagram. Retrieved from http://web.b.ebscohost.com.aure.unab.edu.co/ehost/detail/detail?vid=0&sid=4d 1e78a5-ac19-4241-b31b-190331f5f9e2%40pdc-v- sessmgr03&bdata=Jmxhbmc9ZXMmc2l0ZT1laG9zdC1saXZl#AN=122443403& db=egs | spa |
dc.relation.references | Azim, M. A., & Bhuiyan, M. H. (2018). Text to Emotion Extraction Using Supervised Machine Learning Techniques. Retrieved from http://web.a.ebscohost.com.aure.unab.edu.co/ehost/detail/detail?vid=0&sid=b1 03a955-ccbe-40b3-aea7- 935f6107aac0%40sessionmgr4007&bdata=Jmxhbmc9ZXMmc2l0ZT1laG9zdC1 saXZl#AN=129380864&db=egs | spa |
dc.relation.references | BETANCOURT, G. A. (2005). LAS MÁQUINAS DE SOPORTE VECTORIAL (SVMs). Retrieved from http://revistas.utp.edu.co/index.php/revistaciencia/article/view/6895/4139 | spa |
dc.relation.references | Boquín, A. (2017). Decide. (2018). Machine Learning: aplicaciones en el mundo empresarial. Retrieved from https://decidesoluciones.es/machine-learning- aplicaciones-en-el-mundo-empresarial/. Retrieved from https://www.incae.edu/es/blog/2017/11/17/machine-learning-que-es-y-por-que- importa.html | spa |
dc.relation.references | Brown, B., & GottliebJosh. (2016). The need to lead in data and analytics. Retrieved from https://www.mckinsey.com/business-functions/digital-mckinsey/our- insights/the-need-to-lead-in-data-and-analytics | spa |
dc.relation.references | Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., … Varoquaux, G. (2013). {API} design for machine learning software: experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning (pp. 108–122). | spa |
dc.relation.references | Camargo, J. J., Camargo, J. F., & Aguilar, L. J. (2014). Conociendo Big Data. Retrieved from http://www.scielo.org.co/pdf/rfing/v24n38/v24n38a06.pdf | spa |
dc.relation.references | Caparrini, F. S. (2018). Métodos combinados de aprendizaje. Retrieved from http://www.cs.us.es/~fsancho/?e=106 | spa |
dc.relation.references | Cunningham, P., Cord, M., & Delany, S. J. (2008). Supervised Learning. In M. Cord & P. Cunningham (Eds.), Machine Learning Techniques for Multimedia: Case Studies on Organization and Retrieval (pp. 21–49). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-75171-7_2 | spa |
dc.relation.references | Decide. (2018). Machine Learning: aplicaciones en el mundo empresarial. Retrieved from https://decidesoluciones.es/machine-learning-aplicaciones-en-el-mundo- empresarial/ | spa |
dc.relation.references | Epidat. (2014). REGRESIÓN LOGÍSTICA. Retrieved from https://www.sergas.es/Saude- publica/Documents/1898/Ayuda_Epidat4_Regresion_logistica_Octubre2014.pd f | spa |
dc.relation.references | Fernando Berzal. (n.d.). Clustering. Retrieved from http://elvex.ugr.es/decsai/intelligent/slides/dm/d3 clustering.pdf | spa |
dc.relation.references | Ghahramani, Z. (2004). Unsupervised Learning. In O. Bousquet, U. von Luxburg, & G. Rätsch (Eds.), Advanced Lectures on Machine Learning: ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, Tübingen, Germany, August 4 - 16, 2003, Revised Lectures (pp. 72–112). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-28650-9_5 | spa |
dc.relation.references | GNANA SINGH, D. A. A., & LEAVLINE, E. J. (2013). DATA MINING IN NETWORK SECURITY - TECHNIQUES & TOOLS: A RESEARCH PERSPECTIVE. Retrieved from http://web.a.ebscohost.com.aure.unab.edu.co/ehost/detail/detail?vid=0&sid=7b 1a4c14-e84d-4cf8-a8ee- a5caba7625d2%40sessionmgr4008&bdata=Jmxhbmc9ZXMmc2l0ZT1laG9zdC 1saXZl#AN=93654139&db=egs | spa |
dc.relation.references | Gómez Díaz, D., & Pérez de Armas, Marlet Curbelo Valladares, I. (2005). Gestión del conocimiento y su importancia en las organizaciones, XXVI, 37–46. Retrieved from http://www.redalyc.org/pdf/3604/360433559006.pdf | spa |
dc.relation.references | González, A. (2014). ¿Qué es Machine Learning? Retrieved from https://cleverdata.io/que-es-machine-learning-big-data/ | spa |
dc.relation.references | González González, P., & Bermúdez, T. (2010). Fuentes de información, indicadores y herramientas más usadas por gerentes de Mipyme en Cali, Colombia. Contaduría y Administración. https://doi.org/10.22201/fca.24488410e.2010.235 | spa |
dc.relation.references | Google. (2018). Google Trends. Retrieved from https://trends.google.es/trends/?geo=CO | spa |
dc.relation.references | Halweb. (2016). Introducción a DataMining. Retrieved from http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/DM/introduccion- DM.pdf | spa |
dc.relation.references | Hasan, A., Moin, S., Karim, A., & Shamshirband, S. (2018). Machine Learning- Based Sentiment Analysis for Twitter Accounts. Retrieved from http://web.b.ebscohost.com.aure.unab.edu.co/ehost/detail/detail?vid=0&sid=da d052d3-6eb6-4602-a911- 510f624b57e2%40sessionmgr104&bdata=Jmxhbmc9ZXMmc2l0ZT1laG9zdC1s aXZl#AN=128632009&db=egs | spa |
dc.relation.references | Hashtag, F. the. (2018). Follow the Hashtag. Retrieved from https://www.followthehashtag.com/ | spa |
dc.relation.references | Ibertech. (2018). ¿Qué es Machine Learning y qué aplicaciones tiene en nuestro día a día? Retrieved from https://www.ibertech.org/que-es-machine-learning-y-que- aplicaciones-tiene-en-nuestro-dia-a-dia-2/ | spa |
dc.relation.references | IDashboards. (2019). What is Data Visualization? Retrieved from https://www.idashboards.com/guides/what-is-data-visualization/ | spa |
dc.relation.references | ISOTools. (2018). ¿Qué aporta a tu empresa el Business Intelligence? Retrieved from https://www.isotools.org/2018/03/15/que-aporta-a-tu-empresa-el-business- intelligence/ | spa |
dc.relation.references | Jamalian, E. (2018). A Hybrid Data Mining Method for Customer Churn Prediction. Engineering, Technology & Applied Science Research. Retrieved from www.etasr.com | spa |
dc.relation.references | Kamthania, D., Pahwa, A., & Madhavan, S. S. (2018). Market Segmentation Analysis and Visualization Using K-Mode Clustering Algorithm for E-Commerce Business. Retrieved from http://web.a.ebscohost.com.aure.unab.edu.co/ehost/detail/detail?vid=0&sid=c9 bbcbcf-7f86-40c0-9357- 5a9172bcede0%40sessionmgr4010&bdata=Jmxhbmc9ZXMmc2l0ZT1laG9zdC 1saXZl#AN=130767863&db=iih | spa |
dc.relation.references | LÓPEZ, F. A. G., & PINILLA, J. E. R. (2013). DISEÑO Y DESARROLLO DE UNA GUÍA PARA LA IMPLEMENTACIÓN DE UN AMBIENTE BIG DATAEN LA UNIVERSIDAD CATÓLICA DE COLOMBIA. Retrieved from https://repository.ucatolica.edu.co/bitstream/10983/1320/1/DISEÑO Y DESARROLLO DE UNA GUÍA PARA LA IMPLEMENTACIÓN DE UN AMBIENTE BIG DATA EN LA UNIVERSIDAD CATÓLICA DE COLOMBIA.pdf | spa |
dc.relation.references | Luca. (2017). Los 2 tipos de aprendizaje en Machine Learning: supervisado y no supervisado. Retrieved from https://data-speaks.luca-d3.com/2017/11/que- algoritmo-elegir-en-ml-aprendizaje.html | spa |
dc.relation.references | Luque, C. M. (2003). Clasificadores Bayesianos. El algoritmo Naïve Bayes. Retrieved from https://www.nebrija.es/~cmalagon/inco/Apuntes/bayesian_learning.pdf | spa |
dc.relation.references | Madrid, U. C. I. de. (n.d.). Análisis de Componentes Principales. Retrieved from http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/AMult/tema3am.pdf | spa |
dc.relation.references | Mapal. (2017). ¿Para qué sirve el Business Intelligence o BI? Retrieved from https://mapalsoftware.com/business-intelligence-para-que-sirve-bi-que-es/ | spa |
dc.relation.references | Marr, B. (2018). How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone Should Read. Forbes. Retrieved from https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we- create-every-day-the-mind-blowing-stats-everyone-should- read/#e8b64c160ba9 | spa |
dc.relation.references | Mention, S. (2018). Social Mention. Retrieved from http://socialmention.com/ | spa |
dc.relation.references | Montesinos García, L. (2014). ANÁLISIS DE SENTIMIENTOS Y PREDICCIÓN DE EVENTOS EN TWITTER. Retrieved from http://repositorio.uchile.cl/bitstream/handle/2250/130479/cf-montesinos_lg.pdf | spa |
dc.relation.references | NeoAttack. (2018). Concepto de Datamining. Retrieved from https://neoattack.com/neowiki/datamining/ | spa |
dc.relation.references | Ontiveros, E., & Sabater, V. L. (2017). Economía de los Datos. Retrieved from https://www.fundacioncarolina.es/wp-content/uploads/2018/11/Libro-Economia- de-los-Datos-Ontiveros.pdf | spa |
dc.relation.references | OpenCourseWare. (2006). ANALISIS DE COMPONENTES INDEPENDIENTES (ICA). Retrieved from https://ocw.upc.edu/sites/all/modules/ocw/estadistiques/download.php?file=115 39/2011/1/52885/tema3_teoria_1-2837.pdf | spa |
dc.relation.references | OpenGeek. (2018). ¿Qué son y para qué sirven los metadatos? Retrieved from http://opengeekservice.cl/sitio/es/blog/67-¿qué-son-y-para-qué-sirven-los- metadatos.html | spa |
dc.relation.references | Oracle. (2018). What Is Big Data? Retrieved from https://www.oracle.com/big- data/guide/what-is-big-data.html | spa |
dc.relation.references | Oracle. (2019). What Is Data Mining? Retrieved from https://docs.oracle.com/cd/B28359_01/datamine.111/b28129/process.htm#DM CON002 | spa |
dc.relation.references | PÉREZ, F. S. (2015). BIG DATA. Retrieved from https://www.mincotur.gob.es/Publicaciones/Publicacionesperiodicas/EconomiaI ndustrial/RevistaEconomiaIndustrial/395/F SEVILLANO PEREZ.pdf | spa |
dc.relation.references | PIAD, K. C. (2018). DETERMINING THE DOMINANT ATTRIBUTES OF INFORMATION TECHNOLOGY GRADUATES EMPLOYABILITY PREDICTION USING DATA MINING CLASSIFICATION TECHNIQUES. Retrieved from http://web.a.ebscohost.com.aure.unab.edu.co/ehost/detail/detail?vid=0&sid=12 3ab707-d8d0-4ed8-bf17- cc4d9b452546%40sessionmgr4007&bdata=Jmxhbmc9ZXMmc2l0ZT1laG9zdC 1saXZl#AN=130528956&db=egs | spa |
dc.relation.references | Plata, U. nacional de la. (2010). Descomposición en Valores singulares(SVD). Retrieved from http://www.mate.unlp.edu.ar/practicas/70_18_0911201012951 | spa |
dc.relation.references | PowerData. (2018). Big Data: ¿En qué consiste? Su importancia, desafíos y gobernabilidad. Retrieved from https://www.powerdata.es/big-data | spa |
dc.relation.references | Prieto Gutiérrez, J. juan. (2011). Herramientas para el análisis y monitoreo en Redes Sociales. International Review of Information Ethics, 16, 8. Retrieved from http://www.i-r-i-e.net/inhalt/016/gutierrez.pdf | spa |
dc.relation.references | Quonext. (2016). Principales riesgos en la implantación de un software ERP. Retrieved from https://www.quonext.com/blog/principales-riesgos-en-la- implantacion-de-un-software-erp/ | spa |
dc.relation.references | Ranjan, J. (2009). BUSINESS INTELLIGENCE: CONCEPTS, COMPONENTS, TECHNIQUES AND BENEFITS. Journal of Theoretical and Applied Information Technology, 9, 60–70. Retrieved from https://s3.amazonaws.com/academia.edu.documents/33997956/9Vol9No1.pdf? AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1539349159&Signat ure=%2BTvCa9FLQoj1WZtyNdIORB5R7QU%3D&response-content- disposition=inline%3B filename%3D9Vol9No1.pdf | spa |
dc.relation.references | Resta, M. (2016). VaRSOM: A Tool to Monitor Markets’ Stability Based on Value at Risk and Self-Organizing Maps. Retrieved from http://web.b.ebscohost.com.aure.unab.edu.co/ehost/detail/detail?vid=0&sid=8a 03957f-4846-4673-adb4-9e386238ce9c%40pdc-v- sessmgr01&bdata=Jmxhbmc9ZXMmc2l0ZT1laG9zdC1saXZl#AN=113928794& db=iih | spa |
dc.relation.references | Rodríguez, E. R. (2007). Ajuste de curvas. Retrieved from http://www.geocities.ws/datos_universidad/MNumericos/AjusteDeCurvas.pdf | spa |
dc.relation.references | Rodríguez Suárez, Y., & Amador Díaz, A. (2009). Herramientas de Minería de Datos. Retrieved from http://www.redalyc.org/html/3783/378343637009/ | spa |
dc.relation.references | Rouse, M. (2016). Big Data. Retrieved from https://searchdatamanagement.techtarget.com/definition/big-data | spa |
dc.relation.references | Rouse, M. (2017). Aprendizaje automático (machine learning). Retrieved from https://searchdatacenter.techtarget.com/es/definicion/Aprendizaje-automatico- machine-learning | spa |
dc.relation.references | S., B. S., & N., C. K. (2018). A Systematic Review of Existing Data Mining Approaches Envisioned for Knowledge Discovery from Multimedia. Retrieved from http://web.a.ebscohost.com.aure.unab.edu.co/ehost/detail/detail?vid=0&sid=e2 4a7539-5376-46cd-89a5- 22558ed39725%40sessionmgr4007&bdata=Jmxhbmc9ZXMmc2l0ZT1laG9zdC 1saXZl#AN=129478937&db=egs | spa |
dc.relation.references | Sánchez, J. M. B. (2016). Big Data: Algoritmos, tecnología y aplicacione. Retrieved from http://madm.uib.es/wp-content/uploads/2016/06/Jose-Manuel-Benitez- Sanchez-Big-Data-Algoritmos_tecnologia_y_aplicaciones.pdf | spa |
dc.relation.references | SAS. (2019a). Aprendizaje automático, ¿Qué es y por qué es importante? Retrieved from https://www.sas.com/es_co/insights/analytics/machine-learning.html | spa |
dc.relation.references | SAS. (2019b). Data Mining What it is and why it matters. Retrieved from https://www.sas.com/en_us/insights/analytics/data-mining.html | spa |
dc.relation.references | SAS. (2019c). Visualización de datos ¿Qué es y por qué es importante? Retrieved from https://www.sas.com/es_co/insights/big-data/data-visualization.html | spa |
dc.relation.references | Schroeck, M., Shockle, R., Smart, J., Romero-Morales, D., & Tufano, P. (2012). Analytics: el uso de big data en el mundo real. Retrieved from https://www- 05.ibm.com/services/es/gbs/consulting/pdf/El_uso_de_Big_Data_en_el_mundo _real.pdf | spa |
dc.relation.references | Sinnexus. (2017). La Inteligencia de Negocio en los diferentes departamentos de la empresa. Retrieved from https://www.sinnexus.com/business_intelligence/departamental.aspx | spa |
dc.relation.references | Sinnexus. (2019). Datawarehouse. Retrieved from https://www.sinnexus.com/business_intelligence/datawarehouse.aspx | spa |
dc.relation.references | Tenorio, M. D. (2015). ¿Qué es el análisis del sentimiento? Retrieved from https://manueldelgado.com/que-es-el-analisis-del-sentimiento/ | spa |
dc.relation.references | Thompson, J. J., Leung, B. H., Blair, M. R., & Taboada, M. (2017). Sentiment analysis of player chat messaging in the video game StarCraft 2: Extending a lexicon-based model. Retrieved from http://web.a.ebscohost.com.aure.unab.edu.co/ehost/detail/detail?vid=0&sid=cf1 5a35b-5b9e-4bd5-88ce- 0efd6f52d786%40sessionmgr4007&bdata=Jmxhbmc9ZXMmc2l0ZT1laG9zdC1 saXZl#AN=125704116&db=egs | spa |
dc.relation.references | TIAN, Y., ÖZCAN, F., ZOU, T., GONCALVES, R., & PIRAHESH, H. (2016). Building a Hybrid Warehouse: Efficient Joins between Data Stored in HDFS and Enterprise Warehouse. Retrieved from http://web.a.ebscohost.com.aure.unab.edu.co/ehost/detail/detail?vid=0&sid=ad 640465-c34e-4741-b719- 1fa42a0f60f8%40sessionmgr4006&bdata=Jmxhbmc9ZXMmc2l0ZT1laG9zdC1s aXZl#AN=119373594&db=iih | spa |
dc.relation.references | Valcárce Asencios, V. (2004). DATAMINING Y EL DESCUBRIMIENTO DEL CONOCIMIENTO. Revista de La Facultad de Ingeniería Industrial, 7, 83–86. Retrieved from http://www.redalyc.org/html/816/81670213/ | spa |
dc.relation.references | Vozábal, M. (2016). Tools and Methods for Big Data Analysis. Retrieved from https://dspace5.zcu.cz/bitstream/11025/23681/1/Master_Thesis_Miroslav_Voza bal.pdf | spa |
dc.contributor.cvlac | Calderón Benavides, Maritza Liliana [0000068900] | * |
dc.contributor.googlescholar | Calderón Benavides, Maritza Liliana [XihGBWoAAAAJ] | * |
dc.contributor.scopus | Calderón Benavides, Maritza Liliana [15043558200] | * |
dc.subject.lemb | Ingeniería de sistemas | spa |
dc.subject.lemb | Microempresas | spa |
dc.subject.lemb | Análisis de información | spa |
dc.subject.lemb | Procesamiento de información | spa |
dc.subject.lemb | Ciencias de la información | spa |
dc.subject.lemb | Innovaciones tecnológicas | spa |
dc.identifier.repourl | repourl:https://repository.unab.edu.co | spa |
dc.description.abstractenglish | This work focuses on performing a characterization of data analysis tools specifically in one of its fields and also describes some of the concepts that have the greatest impact on the project, this project focuses on helping small and medium enterprises that do not apply these technologies, so that they can have a transition as effective as possible, the most significant fields for companies within the fields of data analysis are also explained and a written guide of a total of 45 tools from which 9 tools are chosen to make a guide a little more specialized of them to give an overview to the companies of the possible opportunities that would have to implement any of these tools mentioned in the guide without spending a single credit on it. | eng |
dc.subject.proposal | Caracterización de herramientas | spa |
dc.subject.proposal | Análisis de datos | spa |
dc.subject.proposal | Redes sociales | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TP | |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.coverage.campus | UNAB Campus Bucaramanga | spa |
dc.description.learningmodality | Modalidad Presencial | spa |