Mostrar el registro sencillo del ítem

dc.contributor.advisorRosero Pahi, Mario Albertospa
dc.contributor.authorHerrera Chaves, Danielaspa
dc.contributor.authorMateus Vélez, Sandraspa
dc.date.accessioned2020-06-26T16:15:06Z
dc.date.available2020-06-26T16:15:06Z
dc.date.issued2017-05-17
dc.identifier.urihttp://hdl.handle.net/20.500.12749/364
dc.description.abstractLas escenas visuales son complejas y sobrecargadas de información pero, aún así, contienen elementos invariables que se mantienen a través del tiempo. El contextual cueing paradigm demuestra la existencia de una forma implícita de memoria para el contexto visual que guía la atención a los aspectos más relevantes de una escena, optimizando así la búsqueda visual. Varios estudios han encontrado un sesgo hacia el hemisferio derecho en la atención visuoespacial, pero los resultados han sido menos concluyentes en lo referente a las diferencias hemisféricas en el contextual cueing. Debido a que la atención visuoespacial es un mecanismo crucial en el contextual cuieng task, hipotetizamos que el desempeño en esta tarea sería superior cuando los estímulos fueran presentados en el hemicampo izquierdo. Siendo así, comparamos el desempeño en la tarea dependiendo de la ubicación visuoespacial de los estímulos (hemicampo visual izquierdo o derecho) y no encontramos diferencias significativas entre hemicampos. Estos resultados pueden deberse a diferencias individuales entre sujetos y a que en el contextual cueing participan la atención dirigida por objetivos y la atención dirigida por estímulos, las cuales tienen diferentes patrones de lateralización en el cerebro.spa
dc.description.tableofcontentsIntroduction ................................................ 8 Problem statement .......................................... 12 Research question .......................................... 13 Hypothesis ................................................. 13 Null Hypothesis ............................................. 14 Justification .............................................. 14 Objectives ................................................. 15 General objective ........................................... 15 Specific objectives ......................................... 15 Background of the study .................................... 16 Theoretical Framework ...................................... 21 The visual pathway .......................................... 21 The dorsal and ventral attentional networks ................. 23 Hemispheric asymmetry in the human brain .................... 25 Hemispheric asymmetries in visuospatial attention. ........ 27 Implicit memory and implicit learning ....................... 32 Statistical learning. ..................................... 36 Contextual cueing and memory-guided attention ............... 39 Variables .................................................. 42 Independent variables ....................................... 42 Dependent variables ......................................... 43 Method ..................................................... 43 Design and Type of Study .................................... 43 Subjects .................................................... 44 Task ........................................................ 44 Procedure ................................................... 46 Data Analysis ............................................... 47 Results .................................................... 48 Discussion ................................................. 49 Conclusion ................................................. 53 References ................................................. 54spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleVisual hemifield differences in contextual cueing performancespa
dc.title.translatedVisual hemifield differences in contextual cueing performanceeng
dc.degree.namePsicólogospa
dc.coverageBucaramanga (Colombia)spa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ciencias de la Saludspa
dc.publisher.programPregrado Psicologíaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsMemoryeng
dc.subject.keywordsVisual perceptioneng
dc.subject.keywordsPsychologyeng
dc.subject.keywordsResearcheng
dc.subject.keywordsVisual sceneseng
dc.subject.keywordsVisuospatial attentioneng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesHerrera Chaves, Daniela, Mateus Vélez, Sandra (2017). Visual hemifield differences in contextual cueing performance. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNABspa
dc.relation.referencesBecker, E. & Karnath, H., (2007). Incidence of visual extinction after left versus right hemisphere stroke. Stroke, 38(12), 3172-3174. doi: 10.1161/STROKEAHA.107.489096spa
dc.relation.referencesBertels, J., Boursain, E., Destrebecqz, A. & Gaillard, V. (2015). Visual statistical learning in children and young adults: How implicit? Frontiers in Psychology, 5(1541), 111. doi: 10.3389/fpsyg.2014.01541spa
dc.relation.referencesBuckner, A. & Wippich, W. (1998). Differences and commonalities between implicit learning and implicit memory. In Stadler, M.A. & Frensch, P.A., (Eds.) Handbook of implicit learning (pp. 3-46). Thousand Oaks, CA, US: Sage Publications, Inc.spa
dc.relation.referencesCai, Q., Van der Haegen, L. & Brysbaert, M. (2013). Complementary hemispheric specialization for language production and visuospatial attention. Proceedings of the National Academy of Science, 110(4), E322–E330. doi: 10.1073/pnas.1212956110spa
dc.relation.referencesChokron, S., Brickman, A.M., Wei, T. & Buchsbaum, M.S. (2000). Hemispheric asymmetry for selective attention. Cognitive Brain Research, 9, 85-90. doi: http://doi.org/10.1016/S0006-8993(99)02169-1spa
dc.relation.referencesChun, M.M. (2000). Contextual cueing of visual attention. Trends in Cognitive Sciences, 4(5), 170-177. doi: http://dx.doi.org/10.1016/S1364-6613(00)01476-5spa
dc.relation.referencesChun, M.M. & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71. doi: http://doi.org/10.1006/cogp.1998.0681spa
dc.relation.referencesChun, M.M. & Nakayama, K. (2000). On the functional role of implicit visual memory for the adaptive deployment of attention across scenes. Visual Cognition, 7, 65-81. doi: http://dx.doi.org/10.1080/135062800394685spa
dc.relation.referencesChun, M.M. & Phelps, E.A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature America, 2(9), 844-847. doi: 10.1038/12222spa
dc.relation.referencesCleeremans, A., Destrebecqz, A. & Boyer, M. (1998). Implicit learning: News from the front. Trends in Cognitive Sciences, 2(10), 406-416. doi: http://doi.org/10.1016/S1364-6613(98)01232-7spa
dc.relation.referencesCorbetta, M. & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215. doi: 10.1038/nrn755spa
dc.relation.referencesCorbetta, M. & Shulman, G.L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34, 569-599. doi: 10.1146/annurev-neuro-061010-113731spa
dc.relation.referencesGotts, S.J., Joon Jo, H., Wallace, G.L., Saad., Z.S., Cox, R.W. & Martin, A. (2013). Two distinct forms of functional lateralization in the human brain. Proceedings of the National Academy of Science, 110(36), E3435–E3444. doi: 10.1073/pnas.1302581110spa
dc.relation.referencesGoujon, A., Didierjean, A. & Thorpe, S. (2015). Investigating implicit statistical learning mechanisms through contextual cueing. Trends in Cognitive Sciences, 19(9), 524-533. doi: http://dx.doi.org/10.1016/j.tics.2015.07.0spa
dc.relation.referencesGreene, A.J., Gross, W.L., Elsinger, C.L., & Rao, S.M. (2007). Hippocampal differentiation without recognition: An fMRI analysis of the contextual cueing task. Learning & Memory, 14, 548-553. Retrieved from: http://www.learnmem.org/cgi/doi/10.1101/lm.609807spa
dc.relation.referencesGoldstein, E.B. (2008). Cognitive Psychology (2nd ed.). Belmont, CA: Wadsworth Cengage Learning.spa
dc.relation.referencesGüntürkün, O. & Ocklenburg, S. (2017). Ontogenesis of lateralization. Neuron, 94, 249-263. doi: http://dx.doi.org/10.1016/j.neuron.2017.02.045spa
dc.relation.referencesHellige, J.B., Laeng, B. & Michimata, C. (2010). Processing asymmetries in the visual system. In Hughdal, K. & Westerhausen, R. (Eds.), The two halves of the brain: Information processing in the cerebral hemispheres (pp. 379-416). Cambridge, MA: The MIT Pressspa
dc.relation.referencesHopkins, W.D. (2007). Hemispheric specialization in chimpanzees: Evolution of hand and brain. In Platek, S.M.,spa
dc.relation.referencesKeenan, J.P. & Shackelford, T.K. (Eds.), Evolutionary Cognitive Neuroscience. (pp. 95-119). Cambridge, MA: The MIT Pressspa
dc.relation.referencesHutchinson, J.B. & Turk-Browne, N.B. (2012). Memory-guided attention: control from multiple memory systems. Trends in Cognitive Sciences, 16(12), 576-579. doi: 10.1016/j.tics.2012.10.003spa
dc.relation.referencesJanacsek, K., Ambrus, G.G., Paulus, W., Antal, A. & Nemeth, D. (2015). Right Hemisphere Advantage in Statistical Learning: Evidence From a Probabilistic Sequence Learning Task. Brain Stimulation, 8, 277-282. doi: http://dx.doi.org/10.1016/j.brs.2014.11.008spa
dc.relation.referencesKingstone, A.K., Enns, J.T., Mangun, G.R. & Gazzaniga, M.S. (1995). Guided visual search is a left-hemisphere process in split-brain patients. Psychological Science, 6(2), 118121. doi: 10.1111/j.1467-9280.1995.tb00317.xspa
dc.relation.referencesKolb, B. & Wishaw, I.Q. (2003). Fundamentals of Human Neuropsychology (5th ed.). New York, NY: W.H. Freeman.spa
dc.relation.referencesKornrumpf, B., Dimigen, O. & Sommer, W. (2017). Lateralization of posterior alpha EEG reflects the distribution of spatial attention during saccadic Reading. Psychophysiology, doi: 10.1111/psyp.12849spa
dc.relation.referencesKosslyn, S.M., Chabris, C.F. & Laeng, B. Asymmetries in encoding spatial relations. In Davidson, R. & Hugdahl, K. (Eds.), The asymmetrical brain (pp. 303-339). Cambridge, MA: The MIT Press.spa
dc.relation.referencesKrogh, L., Vlach, H.A., Johnson, S.P. (2013). Statistical learning across development: flexible yet constrained. Frontiers in Psychology, 3(598), 1- 11. doi: 10.3389/fpsyg.2012.00598spa
dc.relation.referencesLaeng , B. (1994). Lateralization of categorical and coordinate spatial functions: A study of unilateral stroke patients. Journal of Cognitive Neuroscience, 6, 189–203. doi: 10.1162/jocn.1994.6.3.189spa
dc.relation.referencesLaeng , B. ( 2006 ). Constructional apraxia after left or right unilateral stroke. Neuropsychologia, 44, 1595–1606.doi: 10.1016/j.neuropsychologia.2006.01.023spa
dc.relation.referencesMalhotra, P., Coulthard, E.J. & Husain, M. (2009). Role of right posterior parietal cortex in maintaining attention to spatial locations over time. A Journal of Neurology, 132, 643-660. doi:10.1093/brain/awn350spa
dc.relation.referencesManelis, A. & Reder, L.M. (2012). Procedural learning and associative memory mechanisms contribute to contextual cueing: Evidence from fMRI and eye-tracking. Learning & Memory, 19, 527-534. Retrieved from: http://www.learnmem.org/cgi/doi/10.1101/lm.025973.112.spa
dc.relation.referencesMeador, K.J., Allison, J.D., Loring, D.W., Lavin, T.B. & Pillai, J.J. (2002). Topography of somatosensory processing: Cerebral lateralization and focused attention. Journal of the International Neuropsychological Society, 8, 349-359. doi: 10.1017.S1355617701020161spa
dc.relation.referencesMiniussi, C., Rao, A. & Nobre, A.C. (2002). Watching where you look: modulation of visual processing of foveal stimuli by spatial attention. Neuropsychologia, 40, 2448-2460.doi: http://doi.org/10.1016/S0028-3932(02)00080-5spa
dc.relation.referencesMüri, R.M., Bühler, R., Heinemann, D., Mosimann, U.P., Felblinger, J., Schlaepfer, T.E. & Hess, C.W. (2002).spa
dc.relation.referencesHemispheric asymmetry in visuospatial attention assessed with transcranial magnetic stimulation. Experimental Brain Research, 143, 426-430. doi: 10.1007/s00221-002-1009-9spa
dc.relation.referencesNegash, S., Kliot, D., Howard, V., Howard, J.H., Das, S.R., Yushkevich, P.A., Pluta, J.B., Arnold, S.E. & Wolk, D.A. (2015). Relationship of contextual cueing and hippocampal volume in amnestic mild cognitive impairment patients and cognitively normal older adults. Journal of the International Neuropsychological Society, 21, 285-296. doi: https://doi.org/10.1017/S1355617715000223spa
dc.relation.referencesOcklenburg, S. & Güntürkün, O. (2012). Hemispheric asymmetries: The comparative view. Frontiers in Psychology, 3(5), 19.doi: 10.3389/fpsyg.2012.00005spa
dc.relation.referencesO’Connell, R.G., Schneider, D., Hester, R., Mattingley, J.B. & Bellgrove, M.A. (2010). Attentional load asymmetrically affects early electrophysiological indices of visual orienting. Cerebral Cortex, 21(5), 1056-1065. doi: https://doi.org/10.1093/cercor/bhq178spa
dc.relation.referencesOldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97-113. Retrieved from: http://gade.psy.ku.dk/Readings/Oldfield1971.pdfspa
dc.relation.referencesOlson, I.R. & Chun, M.M. (2002). Perceptual constraints on implicit learning of spatial context. Visual Cognition, 9(3), 273-302. doi:10.1080/13506280042000162spa
dc.relation.referencesPark, H., Quinlan, J., Thornton, E. & Reder, L. (2004). The effect of midazolam on visual search: Implications for understanding amnesia. Proceedings of the National Academy of Science, 101(51), 17879-17883. Retreived from: www.pnas.org_cgi_doi_10.1073_pnas.0408075101spa
dc.relation.referencesPurves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A., McNamara, J.O. & Williams, S.M. (2004) Neuroscience (3rd ed.). Sunderland, MA: Sinauer Associates, Incspa
dc.relation.referencesReber, P.J. (2008). Cognitive neuroscience of declarative and nondeclarative memory. Human Learning, 139, 113-123. doi: http://doi.org/10.1016/S0166-4115(08)10010-3spa
dc.relation.referencesReber, P.J. (2013). The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia, 51, 2026-2042. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2013.06.019spa
dc.relation.referencesReddon, A.R. & Hurd, P.L. (2009). Individual differences in cerebral lateralization are associated with shy-bold variation in convict cichlid. Animal Behaviour, 77, 189193. doi:10.1016/j.anbehav.2008.09.026spa
dc.relation.referencesRoser, M.E., Fiser, J., Aslin, R.N. & Gazzaniga, M.S. (2011). Right hemisphere dominance in visual statistical learning. Journal of Cognitive Neuroscience, 23(5), 1088-1099. doi:10.1162/jocn.2010.21508spa
dc.relation.referencesRushworth, M.F.S., Ellison, A. & Walsh, V. (2001). Complementary localization and lateralization of orienting and motor attention. Nature Neuroscience, 4(6), 656-661. doi:10.1038/88492spa
dc.relation.referencesRushworth, M.F.S., Krams, M. & Passingham, R.E. (2001). The attentional role of the left parietal cortex: The distinct lateralization and localization of motor attention in the human brain. Journal of Cognitive Neuroscience, 13(5), 698-710. doi:10.1162/089892901750363244spa
dc.relation.referencesSchott, B.H., Henson, R.N., Richardson-Klavehn, A., Becker, C., Thoma, V., Heinze, H. & Düzel, E. (2004). Redefining implicit and explicit memory: The functional neuroanatomy of priming, remembering, and control of retrieval. Procedings of the National Academy of Science, 102(4), 1257-1262. Retrieved from www.pnas.org_cgi_doi_10.1073_pnas.0409070102spa
dc.relation.referencesShulman, G.L, Pope, D.L.W., Astafiev, S.V., McAvoy, M.P., Snyder, A.Z. & Corbetta, M. (2010). Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal fronto-parietal network. The Journal of Neuroscience, 30(10), 3640-3651. doi:10.1523/JNEUROSCI.4085-09.2010spa
dc.relation.referencesSquire, L.R, Bloom, F.E., Spitzer, N.C., du Lac, S., Ghosh, A. & Berg, D. (2008). Fundamental Neuroscience (3rd ed.) San Diego, CA: Elsevierspa
dc.relation.referencesStevens, M.C., Calhoun, V.D. & Kiehl, K.A. (2005). Hemispheric differences in hemodynamics elicited by auditory oddball stimuli. Neuroimage, 26(3), 782-792. doi:10.1016/j.neuroimage.2005.02.044spa
dc.relation.referencesThiebaut de Schotten, M., Dell’Acqua, F., Forkel, S.J., Simmons, A., Vergani, F., Murphy, D.G.M. & Catani, M. (2011). A lateralized brain network for visuospatial attention. Nature Neuroscience, 14(10), 1245-1246. doi:10.1038/nn.2905spa
dc.relation.referencesVauclair, J., Yamazaki, Y. & Güntürkün, O. (2006). The study of hemispheric specialization for categorical and coordinate spatial relations in animals. Neuropsychologia, 44(9), 1524-1534. doi: http://doi.org/10.1016/j.neuropsychologia.2006.01.021spa
dc.relation.referencesVossel, S., Geng, J.J. & Fink, G.R. (2014). Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist, 20(2), 150-159. doi: 10.1177/1073858413494269spa
dc.relation.referencesWu, Y., Wang, J., Zhang, Y., Zheng, D., Zhang, J., Rong, M., Wu., H., Wang, Y., Zhou, K. & Jiang, T. (2016). The neuroanatomical basis for posterior superior parietal lobule control lateralization of visuospatial attention. Frontiers in Neuroanatomy, 10(32), 1-9. doi: 10.3389/fnana.2016.00032spa
dc.contributor.cvlacRosero Pahi, Mario Alberto [0001356760]*
dc.contributor.googlescholarRosero Pahi, Mario Alberto [lmqwzwUAAAAJ&hl=en]*
dc.contributor.orcidRosero Pahi, Mario Alberto [0000-0002-9546-4064]*
dc.contributor.researchgateRosero Pahi, Mario Alberto [Mario-Alberto-Rosero-Pahi]*
dc.subject.lembMemoriaspa
dc.subject.lembPercepción visualspa
dc.subject.lembPsicologíaspa
dc.subject.lembInvestigacionesspa
dc.description.abstractenglishVisual scenes are complex and overloaded by information, yet they contain invariants that are stable over time. The contextual cueing paradigm demonstrates the existence of an implicit form of memory for visual context that guides attention to relevant aspects of a scene, thus optimizing visual search. Studies have found a right-hemispheric bias for visuospatial attention, but results have been less conclusive regarding hemispheric differences in contextual cueing. Since visuospatial attention is a crucial mechanism in contextual cueing, we hypothesized that performance on the task would be enhanced when stimuli were presented in the left visual hemifield. We compared performance depending on the visuospatial location of the stimuli (left or right visual hemifield) and did not find significant differences between hemifields. Such results may be due to individual variation and the participation of both goal-directed and stimuli-driven attentional mechanisms in contextual cueing, which show different patterns of lateralization in the brain.eng
dc.subject.proposalEscenas visualesspa
dc.subject.proposalAtención visuoespacialspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.contributor.researchgroupGrupo de Investigación en Violencia, Lenguaje y Estudios Culturalesspa
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia