dc.contributor.advisor | Cadena Carter, Miguel Antonio | spa |
dc.contributor.author | Pinzón Castellanos, Javier | spa |
dc.date.accessioned | 2020-06-26T21:35:50Z | |
dc.date.available | 2020-06-26T21:35:50Z | |
dc.date.issued | 2018 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12749/3551 | |
dc.description.abstract | Dew computing ó la computación de rocío o lágrima ha despertado gran interés en la academia, debido a la separación de los procesos de computación distribuida; donde se encuentran las capas de cloud Computing (computación en la nube), Fog Computing (computación de niebla), Edge Computing (computación de borde) y por último Dew Computing. Estas capas están mencionadas de orden descendente (de mayor a menor) siendo Dew Computing la más cercana al usuario final. Esto se realiza para una mayor comprensión entre las tecnologías y procesos que en ellas se realizan permitiendo su diferenciación.
La arquitectura de Internet of Things (IoT) es un paradigma tecnológico que se está formando dentro del ecosistema de computación distribuida, por ende, se requiere resaltar la capa de Dew Computing y su aporte al modelo tecnológico.
Es por esto, que se realiza un estado del arte de las arquitecturas Dew Computing e IoT que permitan su comparación con el fin de saber su aporte de forma independiente y en dado caso, cómo podrían integrarse.
Se realiza una prueba piloto entre las arquitecturas y una integración de las misma para encontrar los aportes que un modelo del entrega al otro y por último, se plantean posibles escenarios de aplicación que evidencien los beneficios y déficit de la implementación de cada arquitectura en diferentes ámbitos sociales. | spa |
dc.description.tableofcontents | INTRODUCCIÓN
1. PROBLEMA, PREGUNTA E HIPÓTESIS DE INVESTIGACIÓN 11
2. JUSTIFICACIÓN 11
3. OBJETIVOS DEL PROYECTO 13
3.1 OBJETIVO GENERAL 13
3.2 OBJETIVOS ESPECÍFICOS 13
4. MARCO REFERENCIAL 14
4.1 MARCO CONCEPTUAL 14
4.1.1 Internet of Things 15
4.1.2 Cloud Computing 15
4.1.3 Fog Computing 16
4.1.4 Edge Computing 17
4.1.5 Dew Computing 20
4.2 MARCO TEÓRICO 21
4.3 ESTADO DEL ARTE 22
4.3.1 Revisión sistemática de la literatura 22
4.3.2 Análisis estado del arte 28
4.4 MARCO CONTEXTUAL Y ANTECEDENTES 28
4.5 NORMAS Y ESTÁNDARES 29
4.5.1 Normatividad colombiana 29
4.5.2 Estándares y documentos de referencia 30
4.6 EMPRESAS TECNOLÓGICAS 31
4.6.1 Microsoft Azure IoT Edge 31
4.6.2 Amazon IoT GreenGrass 32
5. DESCRIPCIÓN DEL PROCESO INVESTIGATIVO 34
5.1 ENFOQUE Y TIPO DE INVESTIGACIÓN 34
5.2 FASES Y ACTIVIDADES 34
5.2.1 Elaboración del estado del arte de Dew computing 35
5.2.2 Análisis comparativo entre frameworks para Dew Computing 35
5.2.3 Dispositivo para pruebas
36
5.2.4 Pruebas de ambas arquitecturas 40
5.2.5 Análisis de pruebas
45
6. RESULTADOS 48
6.1 REVISIÓN COMPARATIVA DE DEW COMPUTING E IOT 48
6.2 VENTAJAS Y DESVENTAJAS DE DEW COMPUTING CON IOT. 52
6.2.1 Física 53
6.2.2 Economía 54
6.2.3 Ubicación 54
6.3 OPORTUNIDADES QUE BRINDA DEW COMPUTING 55
6.3.1 Manejo de la energía 55
6.3.2 Procesamiento 55
6.3.3 Almacenamiento 55
6.3.4 Protocolos de comunicación 55
6.3.5 Lenguajes de programación 55
6.3.6 Seguridad de los datos 56
6.3.7 Visualización de los datos 56
7. CONCLUSIONES Y RECOMENDACIONES 57
8. REFERENCIAS 58 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.title | Aportes de la arquitectura Dew Computing al internet de las cosas: comparaciones entre implementaciones piloto de ambas arquitecturas | spa |
dc.title.translated | Contributions of architecture Dew Computing to the Internet of Things: comparisons between pilot implementations of both architectures | eng |
dc.degree.name | Magíster en Telemática | spa |
dc.coverage | Bucaramanga (Colombia) | spa |
dc.publisher.grantor | Universidad Autónoma de Bucaramanga UNAB | spa |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.publisher.faculty | Facultad Ingeniería | spa |
dc.publisher.program | Maestría en Telemática | spa |
dc.description.degreelevel | Maestría | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.local | Tesis | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.subject.keywords | Systems engineering | eng |
dc.subject.keywords | Telematics | eng |
dc.subject.keywords | Software engineering | eng |
dc.subject.keywords | Cloud computing | eng |
dc.subject.keywords | Investigations | eng |
dc.subject.keywords | Analysis | eng |
dc.subject.keywords | Dew computing | eng |
dc.subject.keywords | Fog computing | eng |
dc.subject.keywords | Internet of things | eng |
dc.identifier.instname | instname:Universidad Autónoma de Bucaramanga - UNAB | spa |
dc.identifier.reponame | reponame:Repositorio Institucional UNAB | spa |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.relation.references | Pinzón Castellanos, Javier (2018). Aportes de la arquitectura dew computing al internet de las cosas. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB | spa |
dc.relation.references | AWS Developers. (2017, diciembre 12). AWS Greengrass – Computación de Lambda integrada en dispositivos conectados – Amazon Web Services. Recuperado 12 de diciembre de 2017, a partir de //aws.amazon.com/es/greengrass/ | spa |
dc.relation.references | Brezany, P., Ludescher, T., & Feilhauer, T. (2017). Cloud-Dew computing support for automatic data analysis in life sciences. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 365-370). https://doi.org/10.23919/MIPRO.2017.7973450 | spa |
dc.relation.references | Cabé, B. (2018). Key Trends from the IoT Developer Survey 2018. Recuperado a partir de https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018 | spa |
dc.relation.references | Chang, K.-D., Chen, J.-L., Chen, C.-Y., & Chao, H.-C. (2012). IoT operations management and traffic analysis for Future Internet. En Computing, Communications and Applications Conference (ComComAp), 2012 (pp. 138–142). IEEE. | spa |
dc.relation.references | Crnko, N. (2017). Distributed Database System as a base for multilanguage support for legacy software. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 371-374). https://doi.org/10.23919/MIPRO.2017.7973451 | spa |
dc.relation.references | Crook, S., MacGillivray, C., & Turner, V. (2017, julio 1). IDC MarketScape: Worldwide IoT Platforms (Software Vendors) 2017 Vendor Assessment. Recuperado 12 de diciembre de 2017, a partir de http://www.idc.com/getdoc.jsp?containerId=US42033517 | spa |
dc.relation.references | Deepti Sharma, P. K. (2015). A Detail Review on Cloud, Fog and Dew Computing. International Journal of Science, Engineering and Technology Research (IJSETR), 5(5), 9. | spa |
dc.relation.references | Fernández, P. (1996). Determinación del tamaño muestral. Cad Aten Primaria, 3, 138–141. | spa |
dc.relation.references | Frincu, M. (2017). Architecting a hybrid cross layer dew-fog-cloud stack for future data-driven cyber-physical systems. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 399-403). https://doi.org/10.23919/MIPRO.2017.7973456 | spa |
dc.relation.references | Goleva, R. I., Garcia, N. M., Mavromoustakis, C. X., Dobre, C., Mastorakis, G., & Stainov, R. (2017). Chapter 16 - End-Users Testing of Enhanced Living Environment Platform and Services. En Ambient Assisted Living and Enhanced Living Environments (pp. 427-440). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-805195-5.00016-8 | spa |
dc.relation.references | Goleva, R. I., Garcia, N. M., Mavromoustakis, C. X., Dobre, C., Mastorakis, G., Stainov, R., … Trajkovik, V. (2017). Chapter 8 - AAL and ELE Platform Architecture. En Ambient Assisted Living and Enhanced Living Environments (pp. 171-209). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-805195-5.00008-9 | spa |
dc.relation.references | Gordienko, Y., Stirenko, S., Alienin, O., Skala, K., Sojat, Z., Rojbi, A., … Jervan, G. (2017). Augmented Coaching Ecosystem for Non-obtrusive Adaptive Personalized Elderly Care on the basis of Cloud-Fog-Dew computing paradigm. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 359-364). https://doi.org/10.23919/MIPRO.2017.7973449 | spa |
dc.relation.references | Gremban, K., & Street, C. (2017, noviembre 15). What is Azure IoT Edge. Recuperado 7 de diciembre de 2017, a partir de https://docs.microsoft.com/en-us/azure/iot-edge/how-iot-edge-works | spa |
dc.relation.references | Gusev, M. (2017). A dew computing solution for IoT streaming devices. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 387-392). https://doi.org/10.23919/MIPRO.2017.7973454 | spa |
dc.relation.references | Gusev, M., & Guseva, A. (2017). State-of-the-art of cloud solutions based on ECG sensors. En IEEE EUROCON 2017 -17th International Conference on Smart Technologies (pp. 501-506). https://doi.org/10.1109/EUROCON.2017.8011162 | spa |
dc.relation.references | Huang, D., & Wu, H. (2018). Chapter 6 - Edge Clouds – Pushing the Boundary of Mobile Clouds. En Mobile Cloud Computing (pp. 153-176). Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-809641-3.00008-9 | spa |
dc.relation.references | Jóźwiak, L. (2017). Advanced mobile and wearable systems. Microprocessors and Microsystems, 50 (Supplement C), 202-221. https://doi.org/10.1016/j.micpro.2017.03.008 | spa |
dc.relation.references | Kholod, I., Efimova, M., Rukavitsyn, A., & Andrey, S. (2017). Time Series Distributed Analysis in IoT with ETL and Data Mining Technologies. En Internet of Things, Smart Spaces, and Next Generation Networks and Systems (pp. 97-108). Springer, Cham. https://doi.org/10.1007/978-3-319-67380-6_9 | spa |
dc.relation.references | Lorga, M., Feldman, L., Barton, R., Martin, M., Goren, N., & Mahmoudi, C. (2017, septiembre 21). The NIST Definition of Fog Computing. Recuperado 11 de octubre de 2017, a partir de https://csrc.nist.gov/publications/detail/sp/800-191/draft | spa |
dc.relation.references | Luchian, E. F., Taut, A., Ivanciu, I. A., Lazar, G., & Dobrota, V. (2017). Mobile wireless sensor network gateway: A raspberry Pi implementation with a VPN backend to OpenStack. En 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM) (pp. 1-5). https://doi.org/10.23919/SOFTCOM.2017.8115561 | spa |
dc.relation.references | Mell, P., & Grance, T. (2011, julio 7). The NIST Definition of Cloud Computing. Recuperado 5 de diciembre de 2017, a partir de https://csrc.nist.gov/publications/detail/sp/800-145/final | spa |
dc.relation.references | MSV, J. (2017, septiembre 15). Demystifying Edge Computing -- Device Edge vs. Cloud Edge. Recuperado 12 de octubre de 2017, a partir de https://www.forbes.com/sites/janakirammsv/2017/09/15/demystifying-edge-computing-device-edge-vs-cloud-edge/ | spa |
dc.relation.references | Mulay, P., Patel, K., & Gauchia, H. G. (2017). Distributed system implementation based on «ants feeding birds» algorithm: Electronics transformation via animals and human. En Detecting and Mitigating Robotic Cyber Security Risks (pp. 51-85). https://doi.org/10.4018/978-1-5225-2154-9.ch005 | spa |
dc.relation.references | Patel, H., Chaudhari, R., R Prajapati, K., & A Patel, A. (2017). The Interdependent Part of Cloud Computing:Dew Computing. | spa |
dc.relation.references | Podbojec, D., Herynek, B., Jazbec, D., Cvetko, M., Debevc, M., & Kožuh, I. (2017). 3D-based location positioning using the Dew Computing approach for indoor navigation. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 393-398). https://doi.org/10.23919/MIPRO.2017.7973455 | spa |
dc.relation.references | Quwaider, M., Al-Alyyoub, M., & Jararweh, Y. (2016). Cloud Support Data Management Infrastructure for Upcoming Smart Cities. Procedia Computer Science, 83, 1232–1237. | spa |
dc.relation.references | Ray, P. P. (2017). An Introduction to Dew Computing: Definition, Concept and Implications. IEEE Access, PP(99), 1-1. https://doi.org/10.1109/ACCESS.2017.2775042 | spa |
dc.relation.references | Rindos, A., & Wang, Y. (2016). Dew Computing: The Complementary Piece of Cloud Computing. En Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE International Conferences on (pp. 15–20). IEEE. Recuperado a partir de http://ieeexplore.ieee.org/abstract/document/7723668/ | spa |
dc.relation.references | Ristov, S., Cvetkov, K., & Gusev, M. (2016). Implementation of a Horizontal Scalable Balancer for Dew Computing Services. Scalable Computing: Practice and Experience, 17(2), 79–90. | spa |
dc.relation.references | Skala, K., Davidovic, D., Afgan, E., Sovic, I., & Sojat, Z. (2015). Scalable distributed computing hierarchy: Cloud, fog and dew computing. Open Journal of Cloud Computing (OJCC), 2(1), 16–24. | spa |
dc.relation.references | Šojat, Z., & Skala, K. (2016). Views on the role and importance of dew computing in the service and control technology. En 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 164-168). https://doi.org/10.1109/MIPRO.2016.7522131 | spa |
dc.relation.references | Šojat, Z., & Skala, K. (2017). The dawn of Dew: Dew Computing for advanced living environment. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 347-352). https://doi.org/10.23919/MIPRO.2017.7973447 | spa |
dc.relation.references | Stojkoska, B. R., Trivodaliev, K., & Davcev, D. (2017). Internet of things framework for home care systems. Wireless Communications and Mobile Computing, 2017. https://doi.org/10.1155/2017/8323646 | spa |
dc.relation.references | AWS Developers. (2017, diciembre 12). AWS Greengrass – Computación de Lambda integrada en dispositivos conectados – Amazon Web Services. Recuperado 12 de diciembre de 2017, a partir de //aws.amazon.com/es/greengrass/
Brezany, P., Ludescher, T., & Feilhauer, T. (2017). Cloud-Dew computing support for automatic data analysis in life sciences. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 365-370). https://doi.org/10.23919/MIPRO.2017.7973450
Cabé, B. (2018). Key Trends from the IoT Developer Survey 2018. Recuperado a partir de https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018
Chang, K.-D., Chen, J.-L., Chen, C.-Y., & Chao, H.-C. (2012). IoT operations management and traffic analysis for Future Internet. En Computing, Communications and Applications Conference (ComComAp), 2012 (pp. 138–142). IEEE.
Crnko, N. (2017). Distributed Database System as a base for multilanguage support for legacy software. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 371-374). https://doi.org/10.23919/MIPRO.2017.7973451
Crook, S., MacGillivray, C., & Turner, V. (2017, julio 1). IDC MarketScape: Worldwide IoT Platforms (Software Vendors) 2017 Vendor Assessment. Recuperado 12 de diciembre de 2017, a partir de http://www.idc.com/getdoc.jsp?containerId=US42033517
Deepti Sharma, P. K. (2015). A Detail Review on Cloud, Fog and Dew Computing. International Journal of Science, Engineering and Technology Research (IJSETR), 5(5), 9.
Fernández, P. (1996). Determinación del tamaño muestral. Cad Aten Primaria, 3, 138–141.
Frincu, M. (2017). Architecting a hybrid cross layer dew-fog-cloud stack for future data-driven cyber-physical systems. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 399-403). https://doi.org/10.23919/MIPRO.2017.7973456
Goleva, R. I., Garcia, N. M., Mavromoustakis, C. X., Dobre, C., Mastorakis, G., & Stainov, R. (2017). Chapter 16 - End-Users Testing of Enhanced Living Environment Platform and Services. En Ambient Assisted Living and Enhanced Living Environments (pp. 427-440). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-805195-5.00016-8
Goleva, R. I., Garcia, N. M., Mavromoustakis, C. X., Dobre, C., Mastorakis, G., Stainov, R., … Trajkovik, V. (2017). Chapter 8 - AAL and ELE Platform Architecture. En Ambient Assisted Living and Enhanced Living Environments (pp. 171-209). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-805195-5.00008-9
Gordienko, Y., Stirenko, S., Alienin, O., Skala, K., Sojat, Z., Rojbi, A., … Jervan, G. (2017). Augmented Coaching Ecosystem for Non-obtrusive Adaptive Personalized Elderly Care on the basis of Cloud-Fog-Dew computing paradigm. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 359-364). https://doi.org/10.23919/MIPRO.2017.7973449
Gremban, K., & Street, C. (2017, noviembre 15). What is Azure IoT Edge. Recuperado 7 de diciembre de 2017, a partir de https://docs.microsoft.com/en-us/azure/iot-edge/how-iot-edge-works
Gusev, M. (2017). A dew computing solution for IoT streaming devices. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 387-392). https://doi.org/10.23919/MIPRO.2017.7973454
Gusev, M., & Guseva, A. (2017). State-of-the-art of cloud solutions based on ECG sensors. En IEEE EUROCON 2017 -17th International Conference on Smart Technologies (pp. 501-506). https://doi.org/10.1109/EUROCON.2017.8011162
Huang, D., & Wu, H. (2018). Chapter 6 - Edge Clouds – Pushing the Boundary of Mobile Clouds. En Mobile Cloud Computing (pp. 153-176). Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-809641-3.00008-9
Jóźwiak, L. (2017). Advanced mobile and wearable systems. Microprocessors and Microsystems, 50 (Supplement C), 202-221. https://doi.org/10.1016/j.micpro.2017.03.008
Kholod, I., Efimova, M., Rukavitsyn, A., & Andrey, S. (2017). Time Series Distributed Analysis in IoT with ETL and Data Mining Technologies. En Internet of Things, Smart Spaces, and Next Generation Networks and Systems (pp. 97-108). Springer, Cham. https://doi.org/10.1007/978-3-319-67380-6_9
Lorga, M., Feldman, L., Barton, R., Martin, M., Goren, N., & Mahmoudi, C. (2017, septiembre 21). The NIST Definition of Fog Computing. Recuperado 11 de octubre de 2017, a partir de https://csrc.nist.gov/publications/detail/sp/800-191/draft
Luchian, E. F., Taut, A., Ivanciu, I. A., Lazar, G., & Dobrota, V. (2017). Mobile wireless sensor network gateway: A raspberry Pi implementation with a VPN backend to OpenStack. En 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM) (pp. 1-5). https://doi.org/10.23919/SOFTCOM.2017.8115561
Mell, P., & Grance, T. (2011, julio 7). The NIST Definition of Cloud Computing. Recuperado 5 de diciembre de 2017, a partir de https://csrc.nist.gov/publications/detail/sp/800-145/final
MSV, J. (2017, septiembre 15). Demystifying Edge Computing -- Device Edge vs. Cloud Edge. Recuperado 12 de octubre de 2017, a partir de https://www.forbes.com/sites/janakirammsv/2017/09/15/demystifying-edge-computing-device-edge-vs-cloud-edge/
Mulay, P., Patel, K., & Gauchia, H. G. (2017). Distributed system implementation based on «ants feeding birds» algorithm: Electronics transformation via animals and human. En Detecting and Mitigating Robotic Cyber Security Risks (pp. 51-85). https://doi.org/10.4018/978-1-5225-2154-9.ch005
Patel, H., Chaudhari, R., R Prajapati, K., & A Patel, A. (2017). The Interdependent Part of Cloud Computing:Dew Computing.
Podbojec, D., Herynek, B., Jazbec, D., Cvetko, M., Debevc, M., & Kožuh, I. (2017). 3D-based location positioning using the Dew Computing approach for indoor navigation. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 393-398). https://doi.org/10.23919/MIPRO.2017.7973455
Quwaider, M., Al-Alyyoub, M., & Jararweh, Y. (2016). Cloud Support Data Management Infrastructure for Upcoming Smart Cities. Procedia Computer Science, 83, 1232–1237.
Ray, P. P. (2017). An Introduction to Dew Computing: Definition, Concept and Implications. IEEE Access, PP(99), 1-1. https://doi.org/10.1109/ACCESS.2017.2775042
Rindos, A., & Wang, Y. (2016). Dew Computing: The Complementary Piece of Cloud Computing. En Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE International Conferences on (pp. 15–20). IEEE. Recuperado a partir de http://ieeexplore.ieee.org/abstract/document/7723668/
Ristov, S., Cvetkov, K., & Gusev, M. (2016). Implementation of a Horizontal Scalable Balancer for Dew Computing Services. Scalable Computing: Practice and Experience, 17(2), 79–90.
Skala, K., Davidovic, D., Afgan, E., Sovic, I., & Sojat, Z. (2015). Scalable distributed computing hierarchy: Cloud, fog and dew computing. Open Journal of Cloud Computing (OJCC), 2(1), 16–24.
Šojat, Z., & Skala, K. (2016). Views on the role and importance of dew computing in the service and control technology. En 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 164-168). https://doi.org/10.1109/MIPRO.2016.7522131
Šojat, Z., & Skala, K. (2017). The dawn of Dew: Dew Computing for advanced living environment. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 347-352). https://doi.org/10.23919/MIPRO.2017.7973447
Stojkoska, B. R., Trivodaliev, K., & Davcev, D. (2017). Internet of things framework for home care systems. Wireless Communications and Mobile Computing, 2017. https://doi.org/10.1155/2017/8323646
Uehara, M. (2017). Mist Computing: Linking Cloudlet to Fogs. En Computational Science/Intelligence and Applied Informatics (pp. 201-213). Springer, Cham. https://doi.org/10.1007/978-3-319-63618-4_15 | spa |
dc.relation.references | Vogels, W. (2017, junio 7). Unlocking the Value of Device Data with AWS Greengrass. [Blog]. Recuperado 21 de febrero de 2018, a partir de https://www.allthingsdistributed.com/2017/06/unlocking-value-device-data-aws-greengrass.html | spa |
dc.relation.references | Wang, Y. (2017). The Theory and Applications of Dew Computing. En Proceedings of the 27th Annual International Conference on Computer Science and Software Engineering (pp. 317–317). Riverton, NJ, USA: IBM Corp. Recuperado a partir de http://dl.acm.org.aure.unab.edu.co/citation.cfm?id=3172795.3172843 | spa |
dc.relation.references | Wang, Y., & LeBlanc, D. (2016). Integrating SaaS and SaaP with Dew Computing. En Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE International Conferences on (pp. 590–594). IEEE. Recuperado a partir de http://ieeexplore.ieee.org/abstract/document/7723746/ | spa |
dc.relation.references | Zhou, Y., Zhang, D., & Xiong, N. (2017). Post-cloud computing paradigms: a survey and comparison. Tsinghua Science and Technology, 22(6), 714-732. https://doi.org/10.23919/TST.2017.8195353 | spa |
dc.contributor.cvlac | https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000068845 | * |
dc.contributor.orcid | https://orcid.org/0000-0002-0159-4889 | * |
dc.subject.lemb | Ingeniería de sistemas | spa |
dc.subject.lemb | Telemática | spa |
dc.subject.lemb | Ingeniería de software | spa |
dc.subject.lemb | Computación en la nube | spa |
dc.subject.lemb | Investigaciones | spa |
dc.subject.lemb | Análisis | spa |
dc.description.abstractenglish | Dew Computing or the dew or tear computation has aroused considerable interest in the academy, due to the separation of the processes of distributed computing; where are the layers of Cloud Computing (cloud computing), Fog Computing (fog computing), Edge Computing (edge computing) and finally Dew Computing. These layers are mentioned in descending order (from highest to lowest) with Dew Computing being the closest to the end user. This is done for a better understanding of the technologies and processes that are carried out in them, allowing their differentiation. | eng |
dc.subject.proposal | Computación de niebla | spa |
dc.subject.proposal | Computación de rocío | spa |
dc.subject.proposal | Internet de las cosas | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.coverage.campus | UNAB Campus Bucaramanga | spa |
dc.description.learningmodality | Modalidad Presencial | spa |