Mostrar el registro sencillo del ítem

dc.contributor.advisorTalavera Portocarrero, Jesús Martínspa
dc.contributor.advisorCabrera Cruz, José Danielspa
dc.contributor.authorLandazábal Hernández, Edinsson Javierspa
dc.date.accessioned2020-06-26T21:35:49Z
dc.date.available2020-06-26T21:35:49Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/20.500.12749/3546
dc.description.abstractEl presente proyecto tiene como propósito facilitar el diseño, simulación y prototipado funcional de dispositivos IoT vestibles. Estos dispositivos vestibles son elementos de cómputo con una gran capacidad de interacción con las personas y de comunicación con Internet. Estos dispositivos presentan una oportunidad para los ecosistemas donde se requiere implementar el desarrollo e innovación de base tecnológica, como en Colombia, país que cuenta con políticas encaminadas hacia este horizonte. Sin embargo, el proceso de desarrollo de tales equipos en un ambiente competitivo que se desarrolla a la velocidad de la tecnología de punta se considera complejo debido a factores como el tiempo de desarrollo, la interdisciplinariedad del equipo de trabajo necesario y la necesidad de implementación de funcionalidades avanzadas acordes con el desarrollo tecnológico actual. Para abordar estas dificultades se propuso el framework denominado Frame-WIoT, utilizando un enfoque de diseño basado en modelos con el cual se pudo abordar las dificultades inherentes al desarrollo de dispositivos vestibles. El trabajo consideró diseñar una arquitectura genérica que permita representar los dispositivos vestibles, de acuerdo con la documentación científica. El siguiente paso fue implementar los componentes de la arquitectura en un ambiente de simulación, Simulink, con el objetivo de formalizar el diseño genérico del punto anterior. Finalmente, se generaron los componentes de simulación y prototipado que fueron evaluados con la construcción de un prototipo funcional de dispositivo.spa
dc.description.tableofcontentsLISTA DE FIGURAS 11 LISTA DE ANEXOS 16 RESUMEN 17 ABSTRACT 18 INTRODUCCION 19 1 PROBLEMA, PREGUNTA E HIPOTESIS DE INVESTIGACIÓN 21 1.1 PROBLEMA 21 1.1.1 Pregunta 23 1.1.2 Hipótesis 23 1.2 OBJETIVOS 25 1.2.2 Objetivos específicos 25 1.3 JUSTIFICACIÓN 26 2 MARCO REFERENCIAL 28 2.1 MARCO CONCEPTUAL 28 2.1.1 Framework 28 2.1.2 Diseño 28 2.1.3 Simulación 28 2.1.4 Prototipado 28 2.1.5 Dispositivo vestible 28 2.2 MARCO TEÓRICO 29 2.2.1 Internet de las cosas 29 2.2.2 Modelo de referencia de IoT 29 2.2.3 Capacidades de dispositivo IoT 29 2.2.4 Computación vestible 30 2.2.5 Vestibilidad 31 2.3 ESTADO DEL ARTE 32 2.3.1 Prototipado de vestibles: Aplicaciones y enfoques 33 2.3.2 Frameworks y otras herramientas para el prototipado 37 2.3.3 Consideraciones finales 41 2.4 MARCO LEGAL Y POLÍTICO 43 2.5 MARCO CONTEXTUAL 45 3 ASPECTOS METODOLÓGICOS 46 3.1 ENFOQUE Y TIPO DE INVESTIGACIÓN 46 3.2 TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE INFORMACIÓN 47 3.3 ACTIVIDADES REALIZADAS 48 3.3.1 Diseño de una arquitectura genérica para dispositivos vestibles 48 3.3.2 Implementación de los componentes de la arquitectura propuesta en Simulink 49 3.3.3 Construcción del componente de simulación del framework 50 3.3.4 Construcción del componente de prototipado del framework 51 4 ARQUITECTURA GENÉRICA PARA DISPOSITIVOS IOT VESTIBLES 53 4.1 ANÁLISIS DE ARQUITECTURAS ENCONTRADAS EN LA LITERATURA CIENTÍFICA 53 4.2 REQUISITOS DE UN VESTIBLE 57 4.3 MODELO DE DOMINIO PARA IOT VESTIBLE 60 4.4 FLUJO DE INFORMACIÓN EN LA ARQUITECTURA IOT-A 62 4.4.1 Servicio adquiere valor de un sensor 62 4.4.2 Almacenamiento de información del sensor 62 4.5 FLUJO DE INFORMACIÓN EN EL DISPOSITIVO VESTIBLE 62 4.6 DIAGRAMA DE COMPONENTES 63 4.7 DIAGRAMA DE DESPLIEGUE 65 5 ARQUITECTURA IMPLEMENTADA EN SIMULINK 68 5.1 COMPONENTE DE ADQUISICIÓN 71 5.2 COMPONENTE DE PROCESAMIENTO 74 5.3 COMPONENTE DE ALMACENAMIENTO 76 5.4 COMPONENTE DE SALIDA/CTUACIÓN 77 5.5 COMPONENTE DE COMUNICACIÓN 79 6 ENTORNO DE SIMULACIÓN PARA FRAME-WIOT 81 6.1 ESCENARIOS DE SIMULACIÓN 81 6.1.1 Escenario de interacción con la persona 83 6.1.2 Escenario de comunicación de datos 83 6.2 ELEMENTOS DEL ENTORNO DE SIMULACIÓN PARA FRAME-WIOT 84 6.3 MODELO DE COMPONENTES DE LA ARQUITECTURA DE DISPOSITIVO VESTIBLE EN SIMULINK 84 6.3.1 Componente de adquisición 84 6.3.2 Componente de procesamiento 85 6.3.3 Componente de actuación 87 6.3.4 Componente de comunicación 88 6.3.5 Componente de almacenamiento 89 6.4 INTERFAZ DE SIMULACIÓN 89 6.5 INTERFAZ DE SALIDA DE VIDEO 90 6.6 MODELO DEL CUERPO HUMANO 91 7 ENTORNO DE PROTOTIPADO 94 7.1 RECURSOS PARA LA IMPLEMENTACIÓN DE PROTOTIPOS 94 7.1.1 Raspberry Pi 94 7.1.2 Thingspeak 95 7.1.3 Modelo de prototipado 97 7.2 COMPONENTES MODIFICADOS PARA PROTOTIPADO 99 7.2.1 Componente de adquisición 100 7.2.2 Componente de comunicación 101 7.2.3 Componente de actuación/salida. 102 7.3 PRUEBAS IMPLEMENTADAS 104 7.3.1 Pruebas para el componente de adquisición 104 7.3.2 Pruebas al componente de actuación 105 7.3.3 Pruebas al componente de comunicación 107 7.4 PRUEBA DE CONCEPTO 110 7.4.1 Problema 110 7.4.2. Solución planteada 111 7.4.3 Escenarios evaluados 111 7.4.4 Conclusiones sobre la prueba de concepto 118 8 RESULTADOS 119 9 CONCLUSIONES Y RECOMENDACIONES 121 9.1 CONCLUSIONES 121 9.2 RECOMENDACIONES 125 10 REFERENCIAS 127 11 ANEXOS 140spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleFramework para el diseño, simulación y prototipado funcional de dispositivos IOT vestiblesspa
dc.title.translatedFramework for design, simulation and functional prototyping of wearable IoT devices.eng
dc.degree.nameMagíster en Telemáticaspa
dc.coverageBucaramanga (Colombia)spa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programMaestría en Telemáticaspa
dc.description.degreelevelMaestríaspa
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.localTesisspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.subject.keywordsTelematicseng
dc.subject.keywordsFrameworkeng
dc.subject.keywordsComputer programeng
dc.subject.keywordsSystems engineeringeng
dc.subject.keywordsTelematicseng
dc.subject.keywordsInvestigationseng
dc.subject.keywordsNew technologieseng
dc.subject.keywordsDesigneng
dc.subject.keywordsSimulationeng
dc.subject.keywordsPrototypingeng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesLandazábal Hernández, Edinsson Javier (2018). Framework para el diseño, simulación y prototipado funcional de dispositivos IOT vestibles. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNABspa
dc.relation.referencesAbdali-Mohammadi, F., Bajalan, V., & Fathi, A. (2015). Toward a Fault Tolerant Architecture for Vital Medical-Based Wearable Computing. Journal of Medical Systems, 39(12), 149. https://doi.org/10.1007/s10916-015-0347-7spa
dc.relation.referencesAbeyruwan, S. W., Sarkar, D., Sikder, F., & Visser, U. (2016). Semi-Automatic Extraction of Training Examples From Sensor Readings for Fall Detection and Posture Monitoring. IEEE Sensors Journal, 16(13), 5406–5415. https://doi.org/10.1109/JSEN.2016.2559804spa
dc.relation.referencesAhn, Y., Jayalath, D., & Oloyede, A. (2016). A framework for modularised wearable adaptive biofeedback devices. 2016 IEEE 18th International Conference on E-Health Networking, Applications and Services, Healthcom 2016. https://doi.org/10.1109/HealthCom.2016.7749528spa
dc.relation.referencesAleksy, M., & Rissanen, M. J. (2014). Utilizing wearable computing in industrial service applications. Journal of Ambient Intelligence and Humanized Computing, 5(4), 443–454. https://doi.org/10.1007/s12652-012-0114-2spa
dc.relation.referencesAndersen, M. P., Fierro, G., & Culler, D. E. (2016). System Design for a Synergistic, Low Power Mote/BLE Embedded Platform. 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN 2016 - Proceedings. https://doi.org/10.1109/IPSN.2016.7460722spa
dc.relation.referencesBannach, D., Amft, O., & Lukowicz, P. (2008). Rapid Prototyping of Activity Recognition Applications. IEEE Pervasive Computing, 7(2), 22–31. https://doi.org/10.1109/MPRV.2008.36spa
dc.relation.referencesBauer, M., Boussard, M., Bui, N., & Carrez, F. (2013). Final Architectural Reference Model for IoT, (257521), 53–59. Retrieved from http://www.iot-a.eu/public/public-documents/d1.5/at_download/filespa
dc.relation.referencesBiswas, D., Maharatna, K., Panic, G., Mazomenos, E. B., Achner, J., Klemke, J., … Ortmann, S. (2017). Low-Complexity Framework for Movement Classification Using Body-Worn Sensors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(4), 1537–1578. https://doi.org/10.1109/TVLSI.2016.2641046spa
dc.relation.referencesCarulli, M., Bordegoni, M., & Cugini, U. (2017). Evaluating Industrial Products in an Innovative Visual-Olfactory Environment, 1–10. CEA-IoT. (2016). Qué es el CEA-IoT | CEA-IoT. Retrieved May 8, 2017, from http://www.cea-iot.org/que-es/spa
dc.relation.referencesChan, G. J., Lin, D. H., Yi, C. W., & Tseng, C. C. (2016). A two-layer hierarchical framework for activity sequence recognition by wearable sensors. 18th Asia-Pacific Network Operations and Management Symposium, APNOMS 2016: Management of Softwarized Infrastructure - Proceedings. https://doi.org/10.1109/APNOMS.2016.7737259spa
dc.relation.referencesChu, B. N. N. Y., & Luptow, W. (2017). CE Standards of Interest: Wearables and Wireless TV. IEEE Consumer Electronics Magazine, (April), 114–117.spa
dc.relation.referencesCobo, D., & Daza, P. (2011). Signos vitales en pediatría. Revista Gastrohnup, 13(1), 58–70. Retrieved from http://bibliotecadigital.univalle.edu.co/bitstream/10893/5810/1/15 signos.pdfspa
dc.relation.referencesColciencias. (2017). Convocatoria para cofinanciar proyectos de Investigación Aplicada, Desarrollo Tecnológico e Innovación con TIC en sectores estratégicos orientados al mejoramiento de la productividad y competitividad del sector TIC | COLCIENCIAS. Retrieved July 10, 2017, from http://www.colciencias.gov.co/convocatorias/innovacion/convocatoria-para-cofinanciar-proyectos-investigacion-aplicada-desarrollospa
dc.relation.referencesConsejo Internacional Del Sistema Nacional De Salud. (2003). Guia Descriptiva De Ortoprótesis Tomo II Ortesis de Miembro Superior y Miembro Inferior. Retrieved from https://www.msssi.gob.es/profesionales/prestacionesSanitarias/CarteraDeServicios/ContenidoCS/6PrestacionOrtoprotesica/docs/GuiaDescriptivaOrtoprotesisTomo2.pdfspa
dc.relation.referencesCosta, B., Pires, P. F., & Delicato, F. C. (2016). Modeling IoT Applications with SysML4IoT. Proceedings of SEAA 2016 — 42nd Euromicro Conference on Software Engineering and Advanced Applications. https://doi.org/10.1109/SEAA.2016.19spa
dc.relation.referencesCosta, B., Pires, P. F., Delicato, F. C., Li, W., & Zomaya, A. Y. (2016). Design and Analysis of IoT Applications: A Model-Driven Approach. Proceedings - 2016 IEEE 14th International Conference on Dependable, Autonomic and Secure Computing, DASC 2016, 2016 IEEE 14th International Conference on Pervasive Intelligence and Computing, PICom 2016, 2016 IEEE 2nd International Conference on Big Data, 392–399. https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.81spa
dc.relation.referencesDatta, S. K., Bonnet, C., Gyrard, A., Ferreira Da Costa, R. P., & Boudaoud, K. (2015). Applying Internet of Things for personalized healthcare in smart homes. 2015 24th Wireless and Optical Communication Conference, WOCC 2015, 164–169. https://doi.org/10.1109/WOCC.2015.7346198spa
dc.relation.referencesDelabrida, S. E., Dangelo, T., Oliveira, R. A. R., & Loureiro, A. A. F. (2016). Building Wearables for Geology - An Operating System Approach. Proceedings - 2015 Brazilian Symposium on Computing Systems Engineering, SBESC 2015, 148–153. https://doi.org/10.1109/SBESC.2015.35spa
dc.relation.referencesDelCore, A., & Herrera, A. (2015). Sustainable Solar Headlamp: An Open Source Consumer Medical Device. IEEE International Conference on Consumer Electronics, 395–397.spa
dc.relation.referencesDesign Spark. (2016). Raspberry Pi 3 to Raspberry Pi 2 Comparison. Retrieved March 14, 2018, from https://www.rs-online.com/designspark/raspberry-pi-3-to-raspberry-pi-2-comparisonspa
dc.relation.referencesDuval, J.-F. (2016). FlexSEA : flexible, scalable electronics architecture for wearable robotic applications. In 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) June 26-29, 2016. UTown, Singapore (pp. 1236–1241). Retrieved from http://dspace.mit.edu/handle/1721.1/98647%0Ahttp://dspace.mit.edu/bitstream/1721.1/98647/1/920678184-MIT.pdfspa
dc.relation.referencesDuval, J. F., & Herr, H. M. (2016). FlexSEA: Flexible, Scalable Electronics Architecture for wearable robotic applications. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 2016–July, 1236–1241. https://doi.org/10.1109/BIOROB.2016.7523800spa
dc.relation.referencesEichberg, M. (2001). Introduction to Software Engineering. Retrieved from http://stg-tud.github.io/eise/WS11-EiSE-07-Domain_Modeling.pdfspa
dc.relation.referencesEtemadi, M., Inan, O. T., Heller, J. A., Hersek, S., Klein, L., & Roy, S. (2016). A Wearable Patch to Enable Long-Term Monitoring of Environmental, Activity and Hemodynamics Variables. IEEE Transactions on Biomedical Circuits and Systems, 10(2), 280–288. https://doi.org/10.1109/TBCAS.2015.2405480spa
dc.relation.referencesGajos, K., & Weld, D. S. (2004). SUPPLE: automatically generating user interfaces. Proceedings of the 9th International Conference on Intelligent User Interface - IUI ’04, 93. https://doi.org/10.1145/964442.964461spa
dc.relation.referencesGanguly, P., Senior, D. E., Chakrabarti, A., & Parimi, P. V. (2017). Sensitive transmit receive architecture for body wearable RF plethysmography sensor. Asia-Pacific Microwave Conference Proceedings, APMC, 2–5. https://doi.org/10.1109/APMC.2016.7931277spa
dc.relation.referencesGargiulo, G. D., Bifulco, P., Cesarelli, M., McEwan, A., & Wabnitz, A. (2014). Open platform, 32-channel, portable, data-logger with 32 pga control lines for wearable medical device development. Electronics Letters, 50(16), 1127–1129. https://doi.org/10.1049/el.2014.1791spa
dc.relation.referencesGartseev, I. B., & Safonov, I. V. (2017). Rapid Prototyping of the Learning-based Functionality for Wearable Devices. Proceedings of the 2017 International Conference on Mechatronics Systems and Control Engineering, 42–46. https://doi.org/10.1145/3045714.3045721spa
dc.relation.referencesGhasemzadeh, H., & Jafari, R. (2013). Ultra low-power signal processing in wearable monitoring systems: A tiered screening architecture with optimal bit resolution. Transactions on Embedded Computing Systems, 13(1), 9. https://doi.org/10.1145/2501626.2501636spa
dc.relation.referencesGómez Maureira, M. A., Oldenhof, D., & Teernstra, L. (2014). ThingSpeak – an API and Web Service for the Internet of Things. World Wide Web. Retrieved from http://mediatechnology.leiden.edu/images/uploads/docs/wt2014_thingspeak.pdfspa
dc.relation.referencesGonzalo-de-liria, C. R., & Méndez, M. (2011). Fiebre sin foco. In Protocolos diagnóstico-terapéuticos de la AEP: Infectología pediátrica (pp. 37–45). https://doi.org/10.4321/S0212-71992007000700015spa
dc.relation.referencesGraham, D., & Zhou, G. (2016). Prototyping Wearables: A Code-First Approach to the Design of Embedded Systems. IEEE Internet of Things Journal, 3(5), 806–815. https://doi.org/10.1109/JIOT.2016.2537148spa
dc.relation.referencesGurluk, H. (2016). Concept of an adaptive augmented vision based assistance system for air traffic control towers. In AIAA/IEEE Digital Avionics Systems Conference - Proceedings (Vol. 2016–Decem, pp. 1–10). https://doi.org/10.1109/DASC.2016.7777975spa
dc.relation.referencesHaller, S., Serbanati, A., Bauer, M., & Carrez, F. (2013). A domain model for the internet of things. Proceedings - 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, GreenCom-iThings-CPSCom 2013, (Section II), 411–417. https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.87spa
dc.relation.referencesHermanis, A., Cacurs, R., Nesenbergs, K., Greitans, M., & Selavo, L. (2015). Demonstration Abstract : Wearable Sensor Grid Architecture For Body Posture And Surface Detection And Rehabilitation, 414–415.spa
dc.relation.referencesHester, J., Peters, T., Yun, T., Peterson, R., Skinner, J., Golla, B., … Sorber, J. (2016). Amulet: An Energy-Efficient, Multi-Application Wearable Platform. Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, 216–229. https://doi.org/10.1145/2994551.2994554spa
dc.relation.referencesHiremath, S., Yang, G., & Mankodiya, K. (2015). Wearable Internet of Things: Concept, architectural components and promises for person-centered healthcare. Proceedings of the 2014 4th International Conference on Wireless Mobile Communication and Healthcare - “Transforming Healthcare Through Innovations in Mobile and Wireless Technologies”, MOBIHEALTH 2014, 304–307. https://doi.org/10.1109/MOBIHEALTH.2014.7015971spa
dc.relation.referencesHuang, Q., Mei, Y., Wang, W., & Zhang, Q. (2016). Battery-free sensing platform for wearable devices: The synergy between two feet. Proceedings - IEEE INFOCOM, 2016–July. https://doi.org/10.1109/INFOCOM.2016.7524543spa
dc.relation.referencesISO, IEEE, & IEC. ISO/IEC/IEEE 24765 Systems and software engineering — Vocabulary (2010).spa
dc.relation.referencesJamaluddin, F. N., Ahmad, S. A., Noor, S. B. N., & Hasan, W. Z. W. (2014). Low cost and wearable multichannel surface electromyography data acquisition system architecture. Journal of Engineering Science and Technology, 9(Spec. Issue on Applied Engineering and Sciences (SAES2013), October 2014), 98–106.spa
dc.relation.referencesJanak, J., & Schulzrinne, H. (2016). Framework for rapid prototyping of distributed IoT applications powered by WebRTC - IEEE Xplore Document. 2016 Principles, Systems and Applications of IP Telecommunications (IPTComm), 1–7. Retrieved from http://ieeexplore.ieee.org/document/7780249/spa
dc.relation.referencesJara, A. J., Bocchi, Y., Genoud, D., Thomas, I., & Lambrinos, L. (2015). Enabling federated emergencies and Public Safety Answering Points with wearable and mobile Internet of Things support: An approach based on EENA and OMA LWM2M emerging standards. IEEE International Conference on Communications, 2015–Septe, 679–684. https://doi.org/10.1109/ICC.2015.7248400spa
dc.relation.referencesKaiser, C., Fischer, T. V., Schmeltzpfenning, T., Stöhr, M., & Artschwager, A. (2014). Case study: Mass customisation of individualized orthotics - The FASHION-ABLE virtual development and production framework. Procedia CIRP, 21, 105–110. https://doi.org/10.1016/j.procir.2014.03.189spa
dc.relation.referencesKhaleel, H., Conzon, D., Kasinathan, P., Brizzi, P., Pastrone, C., Pramudianto, F., … Paralic, M. (2015). Heterogeneous applications, tools, and methodologies in the car manufacturing industry through an iot approach. IEEE Systems Journal, PP(99), 1–12. https://doi.org/10.1109/JSYST.2015.2469681spa
dc.relation.referencesKhor, I. (2014). LM35 Precision Monolithic Temperature Sensors.spa
dc.relation.referencesKruger, C. P., & Hancke, G. P. (2014). Benchmarking Internet of things devices. Proceedings - 2014 12th IEEE International Conference on Industrial Informatics, INDIN 2014, 611–616. https://doi.org/10.1109/INDIN.2014.6945583spa
dc.relation.referencesKugler, P., Nordhus, P., & Eskofier, B. (2013). Shimmer, Cooja and Contiki: A new toolset for the simulation of on-node signal processing algorithms. 2013 IEEE International Conference on Body Sensor Networks, BSN 2013. https://doi.org/10.1109/BSN.2013.6575497spa
dc.relation.referencesKullman, K. (2016). Prototyping bodies: a post-phenomenology of wearable simulations. Design Studies, 47, 73–90. https://doi.org/10.1016/j.destud.2016.08.004spa
dc.relation.referencesLandazabal, E., & Talavera, J. (2016). Oportunidades de apropiación de tecnología vestible en la industria santandereana. In CIINATIC. Bucaramanga, Santander: CIINATIC. Retrieved from http://docs.wixstatic.com/ugd/6e2c11_c12c6c82e8e24e95b123ff92fb6ba44a.pdfspa
dc.relation.referencesLatella, C., Kuppuswamy, N., & Nori, F. (2016). Wear DY: Wearable dynamics. A prototype for human whole-body force and motion estimation. AIP Conference Proceedings, 1749. https://doi.org/10.1063/1.4954494spa
dc.relation.referencesLee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440. https://doi.org/10.1016/j.bushor.2015.03.008spa
dc.relation.referencesLee, J., Rowlands, D., Jackson, N., Leadbetter, R., Wada, T., & James, D. (2017). An Architectural Based Framework for the Distributed Collection, Analysis and Query from Inhomogeneous Time Series Data Sets and Wearables for Biofeedback Applications. Algorithms, 10(1), 23. https://doi.org/10.3390/a10010023spa
dc.relation.referencesLi, L., Xu, Q., Chandrasekhar, V., Lim, J. H., Tan, C., & Mukawa, M. A. (2017). A Wearable Virtual Usher for Vision-Based Cognitive Indoor Navigation. IEEE Transactions on Cybernetics, 47(4), 841–854. https://doi.org/10.1109/TCYB.2016.2530407spa
dc.relation.referencesLi, Q., Alemzadeh, H., Kalbarczyk, Z., & Iyer, R. K. (2015). A Fault-tolerant Hardware Architecture for Robust Wearable Heart Rate Monitoring. Proceedings of the 9th International Conference on Pervasive Computing Technologies for Healthcare, 185–192. https://doi.org/10.4108/icst.pervasivehealth.2015.259289spa
dc.relation.referencesLian, Y. (2017). Energy efficient system architecture for wireless wearable biomedical sensors. In Custom Integrated Circuits Conference (CICC), 2017.spa
dc.relation.referencesMa, Y.-C., Chao, Y.-P., & Tsai, T.-Y. (2013). Smart-clothes — Prototyping of a health monitoring platform. 2013 IEEE Third International Conference on Consumer Electronics ¿ Berlin (ICCE-Berlin), 60–63. https://doi.org/10.1109/ICCE-Berlin.2013.6698063spa
dc.relation.referencesMahajan, R., Morshed, B. I., & Bidelman, G. M. (2016). Design and validation of a wearable “DRL-less” EEG using a novel fully-reconfigurable architecture. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (Vol. 2016–Octob, pp. 4999–5002). https://doi.org/10.1109/EMBC.2016.7591850spa
dc.relation.referencesMann, S. (1996). Smart clothing: the shift to wearable computing. Communications of the ACM, 39(8), 23–24. https://doi.org/10.1145/232014.232021spa
dc.relation.referencesMann, S. (1997). Wearable computing: A first step toward personal imaging. Computer, 30(2), 25–32. https://doi.org/10.1109/2.566147spa
dc.relation.referencesManufacturing Co, M. (2018). Piezoelectric Sound Components P37E.pdf. Retrieved from https://www.murata.com/~/media/webrenewal/support/library/catalog/products/sound/p37e.ashx?la=en-gbspa
dc.relation.referencesMarsili, I. A., Pisetta, V., Ricciardi, E., Andrighetti, A. O., Ravelli, F., Nollo, G., & Kessler, F. B. (2016). Optimized Algorithms for Atrial Fibrillation Detection by Wearable Tele-Holter Devices, 16–19.spa
dc.relation.referencesMartinez-Tabares, F. J., Costa-Salas, Y. J., Cuesta-Frau, D., & Castellanos-Dominguez, G. (2016). Multiobjective Design of Wearable Sensor Systems for Electrocardiogram Monitoring. Journal of Sensors, 2016. https://doi.org/10.1155/2016/2418065spa
dc.relation.referencesMartinez-Tabares, Jaramillo-Garzon, F. J. J. A., & Castellanos-Dominguez, G. (2014). Multiobjective Optimization-based Design of Wearable Electrocardiogram Monitoring Systems. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3029–3032).spa
dc.relation.referencesMazima, J. K. N., Kisangiri, M., & Machuve, D. (2013). Design of Low Cost Blood Pressure and Body Temperature interface. International Journal of Emerging Science and Engineering (IJESE), 1(10), 109–114.spa
dc.relation.referencesMeneses Arevalo, A., & Toloza Cano, D. C. (2008). Proyecto diseño y construcción de una plataforma de telemedicina para el monitoreo de bioseñales. https://doi.org/10.13140/RG.2.1.3907.1601spa
dc.relation.referencesMicrochip. (2008). 2.7V 4-Channel/8-Channel 10-Bit A/D Converters with SPI Serial Interface, 1–40. Retrieved from https://cdn-shop.adafruit.com/datasheets/MCP3008.pdfspa
dc.relation.referencesMinTIC. Emprendimiento digital en Colombia: retos y oportunidades (2016). Retrieved from http://www.mintic.gov.co/portal/604/w3-article-14644.htmlspa
dc.relation.referencesMInTIC. (2014). El Presidente Santos presentó el Plan Vive Digital 2014-2018 en ANDICOM 2014. Retrieved July 9, 2017, from http://www.mintic.gov.co/portal/604/w3-article-7080.htmlspa
dc.relation.referencesMolina-markham, A., Peterson, R., Skinner, J., Yun, T., Golla, B., Freeman, K., … Kotz, D. (2014). Amulet : A secure architecture for mHealth applications for low-power wearable devices, (November), 1–6. https://doi.org/10.1145/2676431.2676432spa
dc.relation.referencesNakamura, Y., & Kanehira, T. (2016). SenStick 2: ultra tiny all-in-one sensor with wireless charging. Demo: Ubicomp/ISWC 2016, 337–340. https://doi.org/10.1145/2968219.2971399spa
dc.relation.referencesNational_Instruments. (2015). The Engineer’s Guide to Signal Conditioning.spa
dc.relation.referencesNichols, J., Rothrock, B., Chau, D. H., & Myers, B. A. (2006). Huddle: automatically generating interfaces for systems of multiple connected appliances. Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology, 279–288. https://doi.org/10.1145/1166253.1166298spa
dc.relation.referencesOng, C. F., Hicks, J. L., & Delp, S. L. (2016). Simulation-Based Design for Wearable Robotic Systems: An Optimization Framework for Enhancing a Standing Long Jump. IEEE Transactions on Biomedical Engineering, 63(5), 894–903. https://doi.org/10.1109/TBME.2015.2463077spa
dc.relation.referencesOudjida, A. K., Berrandjia, M. L., Tiar, R., Liacha, A., & Tahraoui, K. (2009). FPGA Implementation of I2C & SPI Protocols: a Comparative Study. Retrieved from https://pdfs.semanticscholar.org/1d2f/07058952940b9a43af0abe07f92cf85f7476.pdfspa
dc.relation.referencesPang, Z., Tian, J., & Chen, Q. (2014). Intelligent packaging and intelligent medicine box for medication management towards the Internet-of-Things. International Conference on Advanced Communication Technology, ICACT, 2(6), 352–360. https://doi.org/10.1109/ICACT.2014.6779193spa
dc.relation.referencesPapazoglou, P. M. (2014). Towards a Low Cost Open Architecture Wearable Sensor Network for Health Care Applications. https://doi.org/10.1145/2674396.2674404spa
dc.relation.referencesPatel, P., & Cassou, D. (2015). Enabling high-level application development for the Internet of Things. The Journal of Systems & Software, 103, 62–84. https://doi.org/10.1016/j.jss.2015.01.027spa
dc.relation.referencesPrasad, S. J. K., Priyanka, D. C., & Talasila, V. (2014). A framework for classifying physiological tremor variants employing principal component analysis. Proceedings of International Conference on Circuits, Communication, Control and Computing, I4C 2014, (November), 173–176. https://doi.org/10.1109/CIMCA.2014.7057784spa
dc.relation.referencesRault, T., Bouabdallah, A., Challal, Y., & Marin, F. (2015). Energy-efficient architecture for wearable sensor networks. IFIP Wireless Days, 2015–Janua(January). https://doi.org/10.1109/WD.2014.7020803spa
dc.relation.referencesRescio, G., Leone, A., Montagna, G., & Siciliano, P. (2014). Open and Low Power Near Field Communication- based Platform in Healthcare Applications, 14–17.spa
dc.relation.referencesRhydo Technologies (P) Ltd. (2011). SIM900 GSM/GPRS RS232 Modem -User Manual. Retrieved from www.rhydolabz.comspa
dc.relation.referencesRoger Aarenstrup. (2015). Managing Model-Based Design. Retrieved from https://es.mathworks.com/solutions/model-based-design/managing-model-based-design/?requestedDomain=www.mathworks.comspa
dc.relation.referencesRosner, D., Jurba, A. T., Tataroiu, R., Ilas, C., Vasile, S., & Matei, S. (2015). Wearable medication reminder architecture enhancement: Focus group based assessment and scenario based testing. Proceedings - 2015 20th International Conference on Control Systems and Computer Science, CSCS 2015, 279–284. https://doi.org/10.1109/CSCS.2015.139spa
dc.relation.referencesRuiz Arcos, R., Cerón, M., Ruiz González, L., Segur, F. G., Valle Cervantes, G., Elizondo Villarreal, J. A., & Urbina-medina, H. (2010). Fiebre en pediatría. Revista Mexicana de Pediatría, 77(1), 3–8. Retrieved from http://www.medigraphic.com/rmp/spa
dc.relation.referencesShrivastava, A. K., & Joshi, H. (2013). Design, Implementation and Functional Verification of Serial Communication Protocols (SPI and I2C) on FPGAs. Retrieved from http://ijtir.hctl.org/vol4/IJTIR_Article_201307005.pdfspa
dc.relation.referencesSiewiorek, D. (2002). New frontiers of application design. Communications of the ACM, 45(12), 79–82. https://doi.org/10.1145/585597.585619spa
dc.relation.referencesSiewiorek, D., Finger, S., Terk, M., Subrahmanian, E., Kasbach, C., Prinz, F., … Weiss, L. (1996). Rapid Design and Manufacture of Wearable Computers. Communications of the Acm, 39(2), S.63-70.spa
dc.relation.referencesSingh, N. K., & Ricke, D. O. (2016). Towards an Open Data Framework for Body Sensor Networks Supporting Bluetooth Low Energy. In Wearable and Implantable Body Sensor Networks (BSN), 2016 IEEE 13th International Conference on (pp. 396–401).spa
dc.relation.referencesSmailagic, A., Siewiorek, D., Martin, R., & Stivoric, J. (1998). Very Rapid Prototyping of Wearable Computers: A Case Study of VuMan 3 Custom versus Off-the-Shelf Design Methodologies. Design Automation for Embedded Systems, 3(3), 219–232. https://doi.org/10.1023/A:1008850609458spa
dc.relation.referencesSmarr, B. L., Burnett, D. C., Mesri, S. M., Pister, K. S. J., & Kriegsfeld, L. J. (2016). A Wearable Sensor System with Circadian Rhythm Stability Estimation for Prototyping Biomedical Studies. IEEE Transactions on Affective Computing, 7(3), 220–230. https://doi.org/10.1109/TAFFC.2015.2511762spa
dc.relation.referencesSwan, M. (2008). Sensor Mania! The Internet of Things, Wearable Computing, Objective Metrics, and the Quantified Self 2.0. Journal of Sensor and Actuator Networks, 1(3), 217–253. https://doi.org/10.3390/jsan1030217spa
dc.relation.referencesTexas_Instruments. (1986). AN-460 LM34/LM35 Precision Monolithic Temperature Sensors. Retrieved from http://www.ti.com/lit/an/snoa748c/snoa748c.pdfspa
dc.relation.referencesThe_MathWorks_Inc. (2016). Energy monitoring - ThingSpeak IoT Channel ID: 45572. Retrieved March 14, 2018, from https://thingspeak.com/channels/45572spa
dc.relation.referencesThe_MathWorks_Inc. (2018a). Analog Input Using SPI - MATLAB & Simulink Example - MathWorks America Latina. Retrieved March 7, 2018, from https://la.mathworks.com/help/supportpkg/raspberrypiio/examples/analog-input-using-spi.htmlspa
dc.relation.referencesThe_MathWorks_Inc. (2018b). Modeling a Fitness Watcher. Retrieved March 12, 2018, from https://www.mathworks.com/examples/stateflow/mw/stateflow_product-sf_fitness-modeling-a-fitness-watcherspa
dc.relation.referencesThe_MathWorks_Inc. (2018c). Raspberry Pi Support from Simulink - Hardware Support - MATLAB & Simulink. Retrieved April 4, 2017, from https://www.mathworks.com/hardware-support/raspberry-pi-simulink.htmlspa
dc.relation.referencesThe_MathWorks_Inc. (2018d). Signal Routing - MATLAB & Simulink - MathWorks America Latina. Retrieved March 12, 2018, from https://la.mathworks.com/help/simulink/signal-routing.htmlspa
dc.relation.referencesThe_MathWorks_Inc. (2018e). Soporte de Simulink para Raspberry Pi - Soporte Hardware - MATLAB & Simulink. Retrieved March 8, 2018, from https://la.mathworks.com/hardware-support/raspberry-pi-simulink.htmlspa
dc.relation.referencesThe_MathWorks_Inc. (2018f). Stateflow - MATLAB & Simulink. Retrieved March 11, 2018, from https://la.mathworks.com/products/stateflow.htmlspa
dc.relation.referencesThe_MathWorks_Inc. (2018g). ThingSpeak Documentation - MathWorks America Latina. Retrieved March 8, 2018, from https://la.mathworks.com/help/thingspeak/spa
dc.relation.referencesThe Ebbits project. (2018). ebbits - News. Retrieved March 26, 2018, from http://www.ebbits-project.eu/news.phpspa
dc.relation.referencesTorchio, M., Magni, L., Gopaluni, R. B., Braatz, R. D., & Raimondo, D. M. (2016). LIONSIMBA: A Matlab Framework Based on a Finite Volume Model Suitable for Li-Ion Battery Design, Simulation, and Control. Journal of The Electrochemical Society, 163(7), A1192–A1205. https://doi.org/10.1149/2.0291607jesspa
dc.relation.referencesTsoutsouras, V., Xydis, S., & Soudris, D. (2014). A HW/SW Framework Emulating Wearable Devices For Remote Wound Monitoring and Management. Proceedings of the 4th International Conference on Wireless Mobile Communication and Healthcare - “Transforming Healthcare through Innovations in Mobile and Wireless Technologies,” (317894), 369–372. https://doi.org/10.4108/icst.mobihealth.2014.257371spa
dc.relation.referencesUIT-T. (2012). UIT-T Rec. Y.2060 (06/2012) Descripción general de Internet de los objetos. Sector de Normalización de Las Telecomunicaciones de La UIT, (2012-06–15), 20.spa
dc.relation.referencesVan Den Bossche, A., Dalce, R., & Val, T. (2016). OpenWiNo: An open hardware and software framework for fast-prototyping in the IoT. 2016 23rd International Conference on Telecommunications, ICT 2016. https://doi.org/10.1109/ICT.2016.7500490spa
dc.relation.referencesVan der Meulen, R., & Forni, amy A. (2017). Gartner Says Worldwide Wearable Device Sales to Grow 17 Percent in 2017. Retrieved March 14, 2018, from https://www.gartner.com/newsroom/id/3790965spa
dc.relation.referencesWang, A., Chen, L., & Xu, W. (2017). XPro: A Cross-End Processing Architecture for Data Analytics in wearables. Isca’17, 69–80. https://doi.org/10.1145/3079856.3080219spa
dc.relation.referencesWang, X., Desalvo, N., Zhao, X., Feng, T., Loveland, K. A., Shi, W., & Gnawali, O. (2014). Eye contact reminder system for people with autism. Mobile Computing, Applications and Services (MobiCASE), 2014 6th International Conference on, 160–163. https://doi.org/10.4108/icst.mobicase.2014.257796spa
dc.relation.referencesWebRTC. (2018). WebRTC Home | WebRTC. Retrieved March 26, 2018, from https://webrtc.org/spa
dc.relation.referencesWeis, T., Knoll, M., Ulbrich, A., Mühl, G., & Brändie, A. (2007). Rapid prototyping for pervasive applications. IEEE Pervasive Computing, 6(2), 76–84. https://doi.org/10.1109/MPRV.2007.41spa
dc.relation.referencesWentzel, J., Velleman, E., & Geest, T. Van Der. (2016). Wearables for All : Development of Guidelines to Stimulate Accessible Wearable Technology Design. Proceedings of the 13th Web for All Conference, 1–4. https://doi.org/10.1145/2899475.2899496spa
dc.relation.referencesWilde, A., Ojuroye, O., & Torah, R. (2016). Prototyping a voice-controlled smart home hub wirelessly integrated with a wearable device. Proceedings of the International Conference on Sensing Technology, ICST, 2016–March, 71–75. https://doi.org/10.1109/ICSensT.2015.7438367spa
dc.relation.referencesWoods, V., & Meulen, R. van der. (2016). Gartner Says Worldwide Wearable Devices Sales to Grow 18.4 Percent in 2016. Retrieved January 25, 2018, from https://www.gartner.com/newsroom/id/3198018spa
dc.relation.referencesAbdali-Mohammadi, F., Bajalan, V., & Fathi, A. (2015). Toward a Fault Tolerant Architecture for Vital Medical-Based Wearable Computing. Journal of Medical Systems, 39(12), 149. https://doi.org/10.1007/s10916-015-0347-7 Abeyruwan, S. W., Sarkar, D., Sikder, F., & Visser, U. (2016). Semi-Automatic Extraction of Training Examples From Sensor Readings for Fall Detection and Posture Monitoring. IEEE Sensors Journal, 16(13), 5406–5415. https://doi.org/10.1109/JSEN.2016.2559804 Ahn, Y., Jayalath, D., & Oloyede, A. (2016). A framework for modularised wearable adaptive biofeedback devices. 2016 IEEE 18th International Conference on E-Health Networking, Applications and Services, Healthcom 2016. https://doi.org/10.1109/HealthCom.2016.7749528 Aleksy, M., & Rissanen, M. J. (2014). Utilizing wearable computing in industrial service applications. Journal of Ambient Intelligence and Humanized Computing, 5(4), 443–454. https://doi.org/10.1007/s12652-012-0114-2 Andersen, M. P., Fierro, G., & Culler, D. E. (2016). System Design for a Synergistic, Low Power Mote/BLE Embedded Platform. 2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN 2016 - Proceedings. https://doi.org/10.1109/IPSN.2016.7460722 Bannach, D., Amft, O., & Lukowicz, P. (2008). Rapid Prototyping of Activity Recognition Applications. IEEE Pervasive Computing, 7(2), 22–31. https://doi.org/10.1109/MPRV.2008.36 Bauer, M., Boussard, M., Bui, N., & Carrez, F. (2013). Final Architectural Reference Model for IoT, (257521), 53–59. Retrieved from http://www.iot-a.eu/public/public-documents/d1.5/at_download/file Biswas, D., Maharatna, K., Panic, G., Mazomenos, E. B., Achner, J., Klemke, J., … Ortmann, S. (2017). Low-Complexity Framework for Movement Classification Using Body-Worn Sensors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 25(4), 1537–1578. https://doi.org/10.1109/TVLSI.2016.2641046 Carulli, M., Bordegoni, M., & Cugini, U. (2017). Evaluating Industrial Products in an Innovative Visual-Olfactory Environment, 1–10. CEA-IoT. (2016). Qué es el CEA-IoT | CEA-IoT. Retrieved May 8, 2017, from http://www.cea-iot.org/que-es/ Chan, G. J., Lin, D. H., Yi, C. W., & Tseng, C. C. (2016). A two-layer hierarchical framework for activity sequence recognition by wearable sensors. 18th Asia-Pacific Network Operations and Management Symposium, APNOMS 2016: Management of Softwarized Infrastructure - Proceedings. https://doi.org/10.1109/APNOMS.2016.7737259 Chu, B. N. N. Y., & Luptow, W. (2017). CE Standards of Interest: Wearables and Wireless TV. IEEE Consumer Electronics Magazine, (April), 114–117. Cobo, D., & Daza, P. (2011). Signos vitales en pediatría. Revista Gastrohnup, 13(1), 58–70. Retrieved from http://bibliotecadigital.univalle.edu.co/bitstream/10893/5810/1/15 signos.pdf Colciencias. (2017). Convocatoria para cofinanciar proyectos de Investigación Aplicada, Desarrollo Tecnológico e Innovación con TIC en sectores estratégicos orientados al mejoramiento de la productividad y competitividad del sector TIC | COLCIENCIAS. Retrieved July 10, 2017, from http://www.colciencias.gov.co/convocatorias/innovacion/convocatoria-para-cofinanciar-proyectos-investigacion-aplicada-desarrollo Consejo Internacional Del Sistema Nacional De Salud. (2003). Guia Descriptiva De Ortoprótesis Tomo II Ortesis de Miembro Superior y Miembro Inferior. Retrieved from https://www.msssi.gob.es/profesionales/prestacionesSanitarias/CarteraDeServicios/ContenidoCS/6PrestacionOrtoprotesica/docs/GuiaDescriptivaOrtoprotesisTomo2.pdf Costa, B., Pires, P. F., & Delicato, F. C. (2016). Modeling IoT Applications with SysML4IoT. Proceedings of SEAA 2016 — 42nd Euromicro Conference on Software Engineering and Advanced Applications. https://doi.org/10.1109/SEAA.2016.19 Costa, B., Pires, P. F., Delicato, F. C., Li, W., & Zomaya, A. Y. (2016). Design and Analysis of IoT Applications: A Model-Driven Approach. Proceedings - 2016 IEEE 14th International Conference on Dependable, Autonomic and Secure Computing, DASC 2016, 2016 IEEE 14th International Conference on Pervasive Intelligence and Computing, PICom 2016, 2016 IEEE 2nd International Conference on Big Data, 392–399. https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.81 Datta, S. K., Bonnet, C., Gyrard, A., Ferreira Da Costa, R. P., & Boudaoud, K. (2015). Applying Internet of Things for personalized healthcare in smart homes. 2015 24th Wireless and Optical Communication Conference, WOCC 2015, 164–169. https://doi.org/10.1109/WOCC.2015.7346198 Delabrida, S. E., Dangelo, T., Oliveira, R. A. R., & Loureiro, A. A. F. (2016). Building Wearables for Geology - An Operating System Approach. Proceedings - 2015 Brazilian Symposium on Computing Systems Engineering, SBESC 2015, 148–153. https://doi.org/10.1109/SBESC.2015.35 DelCore, A., & Herrera, A. (2015). Sustainable Solar Headlamp: An Open Source Consumer Medical Device. IEEE International Conference on Consumer Electronics, 395–397. Design Spark. (2016). Raspberry Pi 3 to Raspberry Pi 2 Comparison. Retrieved March 14, 2018, from https://www.rs-online.com/designspark/raspberry-pi-3-to-raspberry-pi-2-comparison Duval, J.-F. (2016). FlexSEA : flexible, scalable electronics architecture for wearable robotic applications. In 6th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) June 26-29, 2016. UTown, Singapore (pp. 1236–1241). Retrieved from http://dspace.mit.edu/handle/1721.1/98647%0Ahttp://dspace.mit.edu/bitstream/1721.1/98647/1/920678184-MIT.pdf Duval, J. F., & Herr, H. M. (2016). FlexSEA: Flexible, Scalable Electronics Architecture for wearable robotic applications. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 2016–July, 1236–1241. https://doi.org/10.1109/BIOROB.2016.7523800 Eichberg, M. (2001). Introduction to Software Engineering. Retrieved from http://stg-tud.github.io/eise/WS11-EiSE-07-Domain_Modeling.pdf Etemadi, M., Inan, O. T., Heller, J. A., Hersek, S., Klein, L., & Roy, S. (2016). A Wearable Patch to Enable Long-Term Monitoring of Environmental, Activity and Hemodynamics Variables. IEEE Transactions on Biomedical Circuits and Systems, 10(2), 280–288. https://doi.org/10.1109/TBCAS.2015.2405480 Gajos, K., & Weld, D. S. (2004). SUPPLE: automatically generating user interfaces. Proceedings of the 9th International Conference on Intelligent User Interface - IUI ’04, 93. https://doi.org/10.1145/964442.964461 Ganguly, P., Senior, D. E., Chakrabarti, A., & Parimi, P. V. (2017). Sensitive transmit receive architecture for body wearable RF plethysmography sensor. Asia-Pacific Microwave Conference Proceedings, APMC, 2–5. https://doi.org/10.1109/APMC.2016.7931277 Gargiulo, G. D., Bifulco, P., Cesarelli, M., McEwan, A., & Wabnitz, A. (2014). Open platform, 32-channel, portable, data-logger with 32 pga control lines for wearable medical device development. Electronics Letters, 50(16), 1127–1129. https://doi.org/10.1049/el.2014.1791 Gartseev, I. B., & Safonov, I. V. (2017). Rapid Prototyping of the Learning-based Functionality for Wearable Devices. Proceedings of the 2017 International Conference on Mechatronics Systems and Control Engineering, 42–46. https://doi.org/10.1145/3045714.3045721 Ghasemzadeh, H., & Jafari, R. (2013). Ultra low-power signal processing in wearable monitoring systems: A tiered screening architecture with optimal bit resolution. Transactions on Embedded Computing Systems, 13(1), 9. https://doi.org/10.1145/2501626.2501636 Gómez Maureira, M. A., Oldenhof, D., & Teernstra, L. (2014). ThingSpeak – an API and Web Service for the Internet of Things. World Wide Web. Retrieved from http://mediatechnology.leiden.edu/images/uploads/docs/wt2014_thingspeak.pdf Gonzalo-de-liria, C. R., & Méndez, M. (2011). Fiebre sin foco. In Protocolos diagnóstico-terapéuticos de la AEP: Infectología pediátrica (pp. 37–45). https://doi.org/10.4321/S0212-71992007000700015 Graham, D., & Zhou, G. (2016). Prototyping Wearables: A Code-First Approach to the Design of Embedded Systems. IEEE Internet of Things Journal, 3(5), 806–815. https://doi.org/10.1109/JIOT.2016.2537148 Gurluk, H. (2016). Concept of an adaptive augmented vision based assistance system for air traffic control towers. In AIAA/IEEE Digital Avionics Systems Conference - Proceedings (Vol. 2016–Decem, pp. 1–10). https://doi.org/10.1109/DASC.2016.7777975 Haller, S., Serbanati, A., Bauer, M., & Carrez, F. (2013). A domain model for the internet of things. Proceedings - 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, GreenCom-iThings-CPSCom 2013, (Section II), 411–417. https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.87 Hermanis, A., Cacurs, R., Nesenbergs, K., Greitans, M., & Selavo, L. (2015). Demonstration Abstract : Wearable Sensor Grid Architecture For Body Posture And Surface Detection And Rehabilitation, 414–415. Hester, J., Peters, T., Yun, T., Peterson, R., Skinner, J., Golla, B., … Sorber, J. (2016). Amulet: An Energy-Efficient, Multi-Application Wearable Platform. Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, 216–229. https://doi.org/10.1145/2994551.2994554 Hiremath, S., Yang, G., & Mankodiya, K. (2015). Wearable Internet of Things: Concept, architectural components and promises for person-centered healthcare. Proceedings of the 2014 4th International Conference on Wireless Mobile Communication and Healthcare - “Transforming Healthcare Through Innovations in Mobile and Wireless Technologies”, MOBIHEALTH 2014, 304–307. https://doi.org/10.1109/MOBIHEALTH.2014.7015971 Huang, Q., Mei, Y., Wang, W., & Zhang, Q. (2016). Battery-free sensing platform for wearable devices: The synergy between two feet. Proceedings - IEEE INFOCOM, 2016–July. https://doi.org/10.1109/INFOCOM.2016.7524543 ISO, IEEE, & IEC. ISO/IEC/IEEE 24765 Systems and software engineering — Vocabulary (2010). Jamaluddin, F. N., Ahmad, S. A., Noor, S. B. N., & Hasan, W. Z. W. (2014). Low cost and wearable multichannel surface electromyography data acquisition system architecture. Journal of Engineering Science and Technology, 9(Spec. Issue on Applied Engineering and Sciences (SAES2013), October 2014), 98–106. Janak, J., & Schulzrinne, H. (2016). Framework for rapid prototyping of distributed IoT applications powered by WebRTC - IEEE Xplore Document. 2016 Principles, Systems and Applications of IP Telecommunications (IPTComm), 1–7. Retrieved from http://ieeexplore.ieee.org/document/7780249/ Jara, A. J., Bocchi, Y., Genoud, D., Thomas, I., & Lambrinos, L. (2015). Enabling federated emergencies and Public Safety Answering Points with wearable and mobile Internet of Things support: An approach based on EENA and OMA LWM2M emerging standards. IEEE International Conference on Communications, 2015–Septe, 679–684. https://doi.org/10.1109/ICC.2015.7248400 Kaiser, C., Fischer, T. V., Schmeltzpfenning, T., Stöhr, M., & Artschwager, A. (2014). Case study: Mass customisation of individualized orthotics - The FASHION-ABLE virtual development and production framework. Procedia CIRP, 21, 105–110. https://doi.org/10.1016/j.procir.2014.03.189 Khaleel, H., Conzon, D., Kasinathan, P., Brizzi, P., Pastrone, C., Pramudianto, F., … Paralic, M. (2015). Heterogeneous applications, tools, and methodologies in the car manufacturing industry through an iot approach. IEEE Systems Journal, PP(99), 1–12. https://doi.org/10.1109/JSYST.2015.2469681 Khor, I. (2014). LM35 Precision Monolithic Temperature Sensors. Kruger, C. P., & Hancke, G. P. (2014). Benchmarking Internet of things devices. Proceedings - 2014 12th IEEE International Conference on Industrial Informatics, INDIN 2014, 611–616. https://doi.org/10.1109/INDIN.2014.6945583 Kugler, P., Nordhus, P., & Eskofier, B. (2013). Shimmer, Cooja and Contiki: A new toolset for the simulation of on-node signal processing algorithms. 2013 IEEE International Conference on Body Sensor Networks, BSN 2013. https://doi.org/10.1109/BSN.2013.6575497 Kullman, K. (2016). Prototyping bodies: a post-phenomenology of wearable simulations. Design Studies, 47, 73–90. https://doi.org/10.1016/j.destud.2016.08.004 Landazabal, E., & Talavera, J. (2016). Oportunidades de apropiación de tecnología vestible en la industria santandereana. In CIINATIC. Bucaramanga, Santander: CIINATIC. Retrieved from http://docs.wixstatic.com/ugd/6e2c11_c12c6c82e8e24e95b123ff92fb6ba44a.pdf Latella, C., Kuppuswamy, N., & Nori, F. (2016). Wear DY: Wearable dynamics. A prototype for human whole-body force and motion estimation. AIP Conference Proceedings, 1749. https://doi.org/10.1063/1.4954494 Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440. https://doi.org/10.1016/j.bushor.2015.03.008 Lee, J., Rowlands, D., Jackson, N., Leadbetter, R., Wada, T., & James, D. (2017). An Architectural Based Framework for the Distributed Collection, Analysis and Query from Inhomogeneous Time Series Data Sets and Wearables for Biofeedback Applications. Algorithms, 10(1), 23. https://doi.org/10.3390/a10010023 Li, L., Xu, Q., Chandrasekhar, V., Lim, J. H., Tan, C., & Mukawa, M. A. (2017). A Wearable Virtual Usher for Vision-Based Cognitive Indoor Navigation. IEEE Transactions on Cybernetics, 47(4), 841–854. https://doi.org/10.1109/TCYB.2016.2530407 Li, Q., Alemzadeh, H., Kalbarczyk, Z., & Iyer, R. K. (2015). A Fault-tolerant Hardware Architecture for Robust Wearable Heart Rate Monitoring. Proceedings of the 9th International Conference on Pervasive Computing Technologies for Healthcare, 185–192. https://doi.org/10.4108/icst.pervasivehealth.2015.259289 Lian, Y. (2017). Energy efficient system architecture for wireless wearable biomedical sensors. In Custom Integrated Circuits Conference (CICC), 2017. Ma, Y.-C., Chao, Y.-P., & Tsai, T.-Y. (2013). Smart-clothes — Prototyping of a health monitoring platform. 2013 IEEE Third International Conference on Consumer Electronics ¿ Berlin (ICCE-Berlin), 60–63. https://doi.org/10.1109/ICCE-Berlin.2013.6698063 Mahajan, R., Morshed, B. I., & Bidelman, G. M. (2016). Design and validation of a wearable “DRL-less” EEG using a novel fully-reconfigurable architecture. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (Vol. 2016–Octob, pp. 4999–5002). https://doi.org/10.1109/EMBC.2016.7591850 Mann, S. (1996). Smart clothing: the shift to wearable computing. Communications of the ACM, 39(8), 23–24. https://doi.org/10.1145/232014.232021 Mann, S. (1997). Wearable computing: A first step toward personal imaging. Computer, 30(2), 25–32. https://doi.org/10.1109/2.566147 Manufacturing Co, M. (2018). Piezoelectric Sound Components P37E.pdf. Retrieved from https://www.murata.com/~/media/webrenewal/support/library/catalog/products/sound/p37e.ashx?la=en-gb Marsili, I. A., Pisetta, V., Ricciardi, E., Andrighetti, A. O., Ravelli, F., Nollo, G., & Kessler, F. B. (2016). Optimized Algorithms for Atrial Fibrillation Detection by Wearable Tele-Holter Devices, 16–19. Martinez-Tabares, F. J., Costa-Salas, Y. J., Cuesta-Frau, D., & Castellanos-Dominguez, G. (2016). Multiobjective Design of Wearable Sensor Systems for Electrocardiogram Monitoring. Journal of Sensors, 2016. https://doi.org/10.1155/2016/2418065 Martinez-Tabares, Jaramillo-Garzon, F. J. J. A., & Castellanos-Dominguez, G. (2014). Multiobjective Optimization-based Design of Wearable Electrocardiogram Monitoring Systems. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3029–3032). Mazima, J. K. N., Kisangiri, M., & Machuve, D. (2013). Design of Low Cost Blood Pressure and Body Temperature interface. International Journal of Emerging Science and Engineering (IJESE), 1(10), 109–114. Meneses Arevalo, A., & Toloza Cano, D. C. (2008). Proyecto diseño y construcción de una plataforma de telemedicina para el monitoreo de bioseñales. https://doi.org/10.13140/RG.2.1.3907.1601 Microchip. (2008). 2.7V 4-Channel/8-Channel 10-Bit A/D Converters with SPI Serial Interface, 1–40. Retrieved from https://cdn-shop.adafruit.com/datasheets/MCP3008.pdf MinTIC. Emprendimiento digital en Colombia: retos y oportunidades (2016). Retrieved from http://www.mintic.gov.co/portal/604/w3-article-14644.html MInTIC. (2014). El Presidente Santos presentó el Plan Vive Digital 2014-2018 en ANDICOM 2014. Retrieved July 9, 2017, from http://www.mintic.gov.co/portal/604/w3-article-7080.html Molina-markham, A., Peterson, R., Skinner, J., Yun, T., Golla, B., Freeman, K., … Kotz, D. (2014). Amulet : A secure architecture for mHealth applications for low-power wearable devices, (November), 1–6. https://doi.org/10.1145/2676431.2676432 Nakamura, Y., & Kanehira, T. (2016). SenStick 2: ultra tiny all-in-one sensor with wireless charging. Demo: Ubicomp/ISWC 2016, 337–340. https://doi.org/10.1145/2968219.2971399 National_Instruments. (2015). The Engineer’s Guide to Signal Conditioning. Nichols, J., Rothrock, B., Chau, D. H., & Myers, B. A. (2006). Huddle: automatically generating interfaces for systems of multiple connected appliances. Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology, 279–288. https://doi.org/10.1145/1166253.1166298 Ong, C. F., Hicks, J. L., & Delp, S. L. (2016). Simulation-Based Design for Wearable Robotic Systems: An Optimization Framework for Enhancing a Standing Long Jump. IEEE Transactions on Biomedical Engineering, 63(5), 894–903. https://doi.org/10.1109/TBME.2015.2463077 Oudjida, A. K., Berrandjia, M. L., Tiar, R., Liacha, A., & Tahraoui, K. (2009). FPGA Implementation of I2C & SPI Protocols: a Comparative Study. Retrieved from https://pdfs.semanticscholar.org/1d2f/07058952940b9a43af0abe07f92cf85f7476.pdf Pang, Z., Tian, J., & Chen, Q. (2014). Intelligent packaging and intelligent medicine box for medication management towards the Internet-of-Things. International Conference on Advanced Communication Technology, ICACT, 2(6), 352–360. https://doi.org/10.1109/ICACT.2014.6779193 Papazoglou, P. M. (2014). Towards a Low Cost Open Architecture Wearable Sensor Network for Health Care Applications. https://doi.org/10.1145/2674396.2674404 Patel, P., & Cassou, D. (2015). Enabling high-level application development for the Internet of Things. The Journal of Systems & Software, 103, 62–84. https://doi.org/10.1016/j.jss.2015.01.027 Prasad, S. J. K., Priyanka, D. C., & Talasila, V. (2014). A framework for classifying physiological tremor variants employing principal component analysis. Proceedings of International Conference on Circuits, Communication, Control and Computing, I4C 2014, (November), 173–176. https://doi.org/10.1109/CIMCA.2014.7057784 Rault, T., Bouabdallah, A., Challal, Y., & Marin, F. (2015). Energy-efficient architecture for wearable sensor networks. IFIP Wireless Days, 2015–Janua(January). https://doi.org/10.1109/WD.2014.7020803 Rescio, G., Leone, A., Montagna, G., & Siciliano, P. (2014). Open and Low Power Near Field Communication- based Platform in Healthcare Applications, 14–17. Rhydo Technologies (P) Ltd. (2011). SIM900 GSM/GPRS RS232 Modem -User Manual. Retrieved from www.rhydolabz.com Roger Aarenstrup. (2015). Managing Model-Based Design. Retrieved from https://es.mathworks.com/solutions/model-based-design/managing-model-based-design/?requestedDomain=www.mathworks.com Rosner, D., Jurba, A. T., Tataroiu, R., Ilas, C., Vasile, S., & Matei, S. (2015). Wearable medication reminder architecture enhancement: Focus group based assessment and scenario based testing. Proceedings - 2015 20th International Conference on Control Systems and Computer Science, CSCS 2015, 279–284. https://doi.org/10.1109/CSCS.2015.139 Ruiz Arcos, R., Cerón, M., Ruiz González, L., Segur, F. G., Valle Cervantes, G., Elizondo Villarreal, J. A., & Urbina-medina, H. (2010). Fiebre en pediatría. Revista Mexicana de Pediatría, 77(1), 3–8. Retrieved from http://www.medigraphic.com/rmp/ Shrivastava, A. K., & Joshi, H. (2013). Design, Implementation and Functional Verification of Serial Communication Protocols (SPI and I2C) on FPGAs. Retrieved from http://ijtir.hctl.org/vol4/IJTIR_Article_201307005.pdf Siewiorek, D. (2002). New frontiers of application design. Communications of the ACM, 45(12), 79–82. https://doi.org/10.1145/585597.585619 Siewiorek, D., Finger, S., Terk, M., Subrahmanian, E., Kasbach, C., Prinz, F., … Weiss, L. (1996). Rapid Design and Manufacture of Wearable Computers. Communications of the Acm, 39(2), S.63-70. Singh, N. K., & Ricke, D. O. (2016). Towards an Open Data Framework for Body Sensor Networks Supporting Bluetooth Low Energy. In Wearable and Implantable Body Sensor Networks (BSN), 2016 IEEE 13th International Conference on (pp. 396–401). Smailagic, A., Siewiorek, D., Martin, R., & Stivoric, J. (1998). Very Rapid Prototyping of Wearable Computers: A Case Study of VuMan 3 Custom versus Off-the-Shelf Design Methodologies. Design Automation for Embedded Systems, 3(3), 219–232. https://doi.org/10.1023/A:1008850609458 Smarr, B. L., Burnett, D. C., Mesri, S. M., Pister, K. S. J., & Kriegsfeld, L. J. (2016). A Wearable Sensor System with Circadian Rhythm Stability Estimation for Prototyping Biomedical Studies. IEEE Transactions on Affective Computing, 7(3), 220–230. https://doi.org/10.1109/TAFFC.2015.2511762 Swan, M. (2008). Sensor Mania! The Internet of Things, Wearable Computing, Objective Metrics, and the Quantified Self 2.0. Journal of Sensor and Actuator Networks, 1(3), 217–253. https://doi.org/10.3390/jsan1030217 Texas_Instruments. (1986). AN-460 LM34/LM35 Precision Monolithic Temperature Sensors. Retrieved from http://www.ti.com/lit/an/snoa748c/snoa748c.pdf The_MathWorks_Inc. (2016). Energy monitoring - ThingSpeak IoT Channel ID: 45572. Retrieved March 14, 2018, from https://thingspeak.com/channels/45572 The_MathWorks_Inc. (2018a). Analog Input Using SPI - MATLAB & Simulink Example - MathWorks America Latina. Retrieved March 7, 2018, from https://la.mathworks.com/help/supportpkg/raspberrypiio/examples/analog-input-using-spi.html The_MathWorks_Inc. (2018b). Modeling a Fitness Watcher. Retrieved March 12, 2018, from https://www.mathworks.com/examples/stateflow/mw/stateflow_product-sf_fitness-modeling-a-fitness-watcher The_MathWorks_Inc. (2018c). Raspberry Pi Support from Simulink - Hardware Support - MATLAB & Simulink. Retrieved April 4, 2017, from https://www.mathworks.com/hardware-support/raspberry-pi-simulink.html The_MathWorks_Inc. (2018d). Signal Routing - MATLAB & Simulink - MathWorks America Latina. Retrieved March 12, 2018, from https://la.mathworks.com/help/simulink/signal-routing.html The_MathWorks_Inc. (2018e). Soporte de Simulink para Raspberry Pi - Soporte Hardware - MATLAB & Simulink. Retrieved March 8, 2018, from https://la.mathworks.com/hardware-support/raspberry-pi-simulink.html The_MathWorks_Inc. (2018f). Stateflow - MATLAB & Simulink. Retrieved March 11, 2018, from https://la.mathworks.com/products/stateflow.html The_MathWorks_Inc. (2018g). ThingSpeak Documentation - MathWorks America Latina. Retrieved March 8, 2018, from https://la.mathworks.com/help/thingspeak/ The Ebbits project. (2018). ebbits - News. Retrieved March 26, 2018, from http://www.ebbits-project.eu/news.php Torchio, M., Magni, L., Gopaluni, R. B., Braatz, R. D., & Raimondo, D. M. (2016). LIONSIMBA: A Matlab Framework Based on a Finite Volume Model Suitable for Li-Ion Battery Design, Simulation, and Control. Journal of The Electrochemical Society, 163(7), A1192–A1205. https://doi.org/10.1149/2.0291607jes Tsoutsouras, V., Xydis, S., & Soudris, D. (2014). A HW/SW Framework Emulating Wearable Devices For Remote Wound Monitoring and Management. Proceedings of the 4th International Conference on Wireless Mobile Communication and Healthcare - “Transforming Healthcare through Innovations in Mobile and Wireless Technologies,” (317894), 369–372. https://doi.org/10.4108/icst.mobihealth.2014.257371 UIT-T. (2012). UIT-T Rec. Y.2060 (06/2012) Descripción general de Internet de los objetos. Sector de Normalización de Las Telecomunicaciones de La UIT, (2012-06–15), 20. Van Den Bossche, A., Dalce, R., & Val, T. (2016). OpenWiNo: An open hardware and software framework for fast-prototyping in the IoT. 2016 23rd International Conference on Telecommunications, ICT 2016. https://doi.org/10.1109/ICT.2016.7500490 Van der Meulen, R., & Forni, amy A. (2017). Gartner Says Worldwide Wearable Device Sales to Grow 17 Percent in 2017. Retrieved March 14, 2018, from https://www.gartner.com/newsroom/id/3790965 Wang, A., Chen, L., & Xu, W. (2017). XPro: A Cross-End Processing Architecture for Data Analytics in wearables. Isca’17, 69–80. https://doi.org/10.1145/3079856.3080219 Wang, X., Desalvo, N., Zhao, X., Feng, T., Loveland, K. A., Shi, W., & Gnawali, O. (2014). Eye contact reminder system for people with autism. Mobile Computing, Applications and Services (MobiCASE), 2014 6th International Conference on, 160–163. https://doi.org/10.4108/icst.mobicase.2014.257796 WebRTC. (2018). WebRTC Home | WebRTC. Retrieved March 26, 2018, from https://webrtc.org/ Weis, T., Knoll, M., Ulbrich, A., Mühl, G., & Brändie, A. (2007). Rapid prototyping for pervasive applications. IEEE Pervasive Computing, 6(2), 76–84. https://doi.org/10.1109/MPRV.2007.41 Wentzel, J., Velleman, E., & Geest, T. Van Der. (2016). Wearables for All : Development of Guidelines to Stimulate Accessible Wearable Technology Design. Proceedings of the 13th Web for All Conference, 1–4. https://doi.org/10.1145/2899475.2899496 Wilde, A., Ojuroye, O., & Torah, R. (2016). Prototyping a voice-controlled smart home hub wirelessly integrated with a wearable device. Proceedings of the International Conference on Sensing Technology, ICST, 2016–March, 71–75. https://doi.org/10.1109/ICSensT.2015.7438367 Woods, V., & Meulen, R. van der. (2016). Gartner Says Worldwide Wearable Devices Sales to Grow 18.4 Percent in 2016. Retrieved January 25, 2018, from https://www.gartner.com/newsroom/id/3198018 Yang, T., Xie, D., Li, Z., & Zhu, H. (2017). Recent advances in wearable tactile sensors : Materials , sensing mechanisms , and device performance. Materials Science & Engineering R, 115, 1–37. https://doi.org/10.1016/j.mser.2017.02.001spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000069035*
dc.contributor.cvlacCabrera Cruz, José Daniel [0000069035]
dc.contributor.googlescholarhttps://scholar.google.es/citations?hl=es#user=hses_w0AAAAJ*
dc.contributor.googlescholarCabrera Cruz, José Daniel [0000069035]
dc.contributor.orcidhttps://orcid.org/0000-0002-1815-5057*
dc.contributor.orcidCabrera Cruz, José Daniel [0000-0002-1815-5057]
dc.contributor.researchgatehttps://www.researchgate.net/profile/Jose_Cabrera_Cruz*
dc.contributor.researchgateCabrera Cruz, José Daniel [Jose_Cabrera_Cruz]
dc.subject.lembTelemáticaspa
dc.subject.lembFrameworkspa
dc.subject.lembPrograma para computadorspa
dc.subject.lembIngeniería de sistemasspa
dc.subject.lembTelemáticaspa
dc.subject.lembInvestigacionesspa
dc.subject.lembNuevas tecnologíasspa
dc.description.abstractenglishThe purpose of this project is to facilitate the design, simulation and functional prototyping of wearable IoT devices. These wearable devices are computational elements with a great capacity for interaction with people and communication with the Internet. These devices present an opportunity for ecosystems where it is necessary to implement technology-based development and innovation, as in Colombia, a country that has policies aimed at this horizon. However, the process of developing such equipment in a competitive environment that develops at the speed of cutting-edge technology is considered complex due to factors such as development time, the interdisciplinary nature of the necessary work team and the need to implement advanced functionalities in line with current technological development. To address these difficulties, the framework called Frame-WIoT was proposed, using a design approach based on models with which the inherent difficulties in the development of wearable devices could be addressed. The work considered to design a generic architecture that allows to represent wearable devices, according to the scientific documentation. The next step was to implement the components of the architecture in a simulation environment, Simulink, with the aim of formalizing the generic design of the previous point. Finally, the simulation and prototyping components that were evaluated with the construction of a functional device prototype were generated.eng
dc.subject.proposalDiseñospa
dc.subject.proposalSimulaciónspa
dc.subject.proposalPrototipadospa
dc.subject.proposalIOTspa
dc.subject.proposalVestiblespa
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.contributor.researchgroupGrupo de Investigación Pensamiento Sistémico - GPSspa
dc.contributor.researchgroupGrupo de Investigaciones Clínicasspa
dc.contributor.apolounabCabrera Cruz, José Daniel [josé-daniel-cabrera-cruz]
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa
dc.contributor.linkedinCabrera Cruz, José Daniel [josé-daniel-cabrera-cruz-23900b10]


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia