Show simple item record

dc.contributor.advisorSotaquirá Gutierrez, Ricardo
dc.contributor.authorOrellana Hernández, Martha Lucía
dc.date.accessioned2020-06-26T21:32:18Z
dc.date.available2020-06-26T21:32:18Z
dc.date.issued2007
dc.identifier.urihttp://hdl.handle.net/20.500.12749/3322
dc.description.abstractEl entendimiento de los sistemas complejos, incluyendo tanto su estructura como su comportamiento en el tiempo, es necesario para abordar apropiadamente la solución de problemas del mundo real, caracterizado por su creciente nivel de complejidad. Ante esta necesidad, los ambientes de aprendizaje interactivos, o micromundos basados en el computador, se presentan como una herramienta de apoyo que, utilizando modelos y simulaciones, permita el ejercicio de nuestros modelos mentales y el mejoramiento de la toma de decisiones ante la naturaleza compleja y en ocasiones contra-intuitiva de estos sistemas. Mientras la comunidad en SD ya ha venido trabajando en estos ambientes de aprendizaje, la incursión de AB en el campo del modelado y la simulación es más reciente y lo son también sus trabajos en el campo del aprendizaje. Este trabajo pretende explorar el aporte que podría tener la integración de los dos paradigmas, SD y AB, en un ambiente de aprendizaje interactivo, utilizando como caso de estudio un micromundo orientado al entendimiento de los sistemas complejos.
dc.description.tableofcontentsINTRODUCCIÓN 1. MARCO TEÓRICO 1.1 MODELADO Y SIMULACIÓN 1.1.1 Modelos 1.1.2 Simulaciones 1.1.3 Sistemas Complejos 1.1.4 Pensamiento Sistémico 1.2 DOS PARADIGMAS DE MODELADO 1.2.1 Dinámica de Sistemas (System Dynamics: SD) 1.2.2 Basado en Agentes (Agent Based: AB) 1.3 AMBIENTES DE APRENDIZAJE INTERACTIVOS 1.3.1 Teorías del aprendizaje 1.3.2 Micromundos 2. ESTADO DEL ARTE 2.1 SD VERSUS AB 2.1.1 Estudios conjuntos de SD y AB 2.1.2 Resumen de características de los dos paradigmas 2.1.3 Herramientas software 2.2 AB, SD, Y EL APRENDIZAJE 2.2.1 Elementos de un ambiente de aprendizaje interactivo 2.2.2 SD y el aprendizaje 2.2.3 AB y el aprendizaje 3. REDISEÑO DE UN MICROMUNDO APLICANDO LA INTEGRACIÓN DE LOS DOS PARADIGMAS: SD Y AB 3.1 CONSIDERACIONES 3.2 HIPÓTESIS 3.3 CASO DE ESTUDIO 3.4 MODELADO Y SIMULACIÓN 3.5 MICROMUNDO 3.6 VALIDACIÓN 4. ANÁLISIS DE RESULTADOS 5. CONCLUSIONES 6. TRABAJOS FUTUROS Y RECOMENDACIONES BIBLIOGRAFÍA ANEXOSspa
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleAgentes inteligentes y dinámica de sistemas: consideraciones para su integración en el modelado y la simulación en informática educativaspa
dc.title.translatedIntelligent agents and system dynamics: Considerations for their integration in computer modeling and simulation in educational Informaticseng
dc.degree.nameMagíster en Ciencias Computacionales
dc.coverageBucaramanga (Colombia)
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNAB
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingeniería
dc.publisher.programMaestría en Ciencias Computacionales
dc.description.degreelevelMaestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.localTesisspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.subject.keywordsComputer simulation
dc.subject.keywordsSmart agents
dc.subject.keywordsComputer program
dc.subject.keywordsSystems analysis
dc.subject.keywordsSystems engineering
dc.subject.keywordsComputational science
dc.subject.keywordsInvestigations
dc.subject.keywordsAnalysis
dc.subject.keywordsEducational technology
dc.subject.keywordsSystem dynamics
dc.subject.keywordsModeling and simulation based on agents
dc.subject.keywordsEducational informatics
dc.subject.keywordsMicroworlds
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponamereponame:Repositorio Institucional UNAB
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.relation.referencesOrellana Hernández, Martha Lucía, Sotaquirá, Ricardo (2007). Agentes inteligentes y dinámica de sistemas. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB
dc.relation.referencesAldrich, C. (2003). Six Criteria of an Educational Simulation. Learning Circuits.
dc.relation.referencesBonabeau, E. (2002 a). Agent-based modeling: Methods and techniques for simulating human systems. Proceedings of the National Academy of Sciences of the United States of America, 99 Suppl 3: 7280-7287.
dc.relation.referencesBonabeau, E. (2002 b). Predicting the Unpredictable. Harvard Business Review, Marzo.
dc.relation.referencesBousquet, F., Barreteau, O., D’Aquino, P., Etienne, M., Boissau, S., Aubert, S., Le Page, C., Babin, D., & Castella, J.C. (2002) Multi-agent Systems and Role Games : Collective Learning Processes for Ecosystem Management. In M. Janssen, editor. Complexity and ecosystem management: The theory and practice of multi-agent approaches. Edward Elgar Publishers
dc.relation.referencesBorshchev, A & Filippov, A. (2004). From System Dynamics and Discrete Event to Practical Agent Based Modeling: Rehaznos, Techniques, Tools. Presented at the 2004 International Conference of the System Dynamics Society. July 25 – 29, Keble College, Oxford, England.
dc.relation.referencesCenter for the Study of Complex Systems, CSCS. University of Michigan. Consulta realizada en Noviembre de 2006: http://www.cscs.umich.edu/
dc.relation.referencesCenter for the Study of Institutions, Population, and Environmental Change, CIPEC, at Indiana University. (2002). Meeting the Challenge of Complexity. Proceedings of a Special Workshop on Land-Use/Land-Cover Change, Irvine, California.
dc.relation.referencesCenter on Social and Economic Dynamics, CSED. The Road to Agent-based Models. The Brookings Institution. Massachusetts. Consulta realizada en Noviembre de 2006: http://www.brookings.edu/es/dynamics/models/history.htm
dc.relation.referencesCraig, S.D., Gholson, B., & Driscoll D. M. (2002). Animated Pedagogical Agents in Multimedia Educational Environments: Effects of Agent Properties, Picture Features, and Redundancy. Journal of Educational Psychology, 94 (2), 428–434.
dc.relation.referencesDavidsen, P., Spector, J. M., & Milrad, M. (1999). Learning in and about Simple Dynamic Systems. Proceedings of the 17th International Conference of the System Dynamics Society, in Wellington, New Zealand
dc.relation.referencesDoran, J. (2000). Hard Problems in the use of Agent Based Modelling. University of Essex. Proceedings of the Fifth International Conference on Logic and Methodology. Cologne.
dc.relation.referencesEpstein , J. M. & Axtell, R. L. (1996). Growing Artificial Societies: Social Science From the Bottom Up. Washington, DC: Brookings Institution Press MIT Press.
dc.relation.referencesForrester, J. W. (1961). Industrial Dynamics. Massachusetts Institute of Technology, MIT Press.
dc.relation.referencesGalarneau, L. (2005). Authentic Learning Experiences Through Play: Games, Simulations and the Construction of Knowledge. The University of Waikato. Proceedings of DiGRA (Digital Games Research Association). Conference: Changing Views – Worlds in Play
dc.relation.referencesGalvis P., A. H. (1992). Ingeniería de Software Educativo. Santafé de Bogotá : Ediciones UniAndes.
dc.relation.referencesGilbert, N. & Bankes, S. (2002). Platforms and methods for agent-based modeling [Abstract]. Proceedings of the National Academy of Sciences of the United States of America, 99, Suppl 3: 7197-7198
dc.relation.referencesGilbert, N. & Troitzsch, K. (2005). Simulation for the Social Scientist (2a ed.). Milton Keynes: Open University Press
dc.relation.referencesGilbert, N., den Besten, M., Bontovics, A., Craenen, B.G.W., Divina, F., Eiben, A.E., et al. (2006). Emerging Artificial Societies Through Learning. Journal of Artificial Societies and Social Simulation 9(2).
dc.relation.referencesGilbert, N., den Besten, M., Bontovics, A., Craenen, B.G.W., Divina, F., Eiben, A.E., et al. (2006). Emerging Artificial Societies Through Learning. Journal of Artificial Societies and Social Simulation 9(2).
dc.relation.referencesGrossler, A., Stotz, M. & Schieritz, N. (2003). A Software Interface Between System Dynamics and Agent-Based Simulations. Presented at the 2003 System Dynamics Conference, New York City
dc.relation.referencesHerrington, J., & Oliver, R. (1995). Critical characteristics of situated learning: Implications for the instructional design of multimedia. In J. Pearce & A. Ellis (Eds.) Learning with technology, ASCILITE’95 Conference Proceedings, (pp. 235-262). Melbourne: ASCILITE
dc.relation.referencesJager, W. (2000). Modelling consumer behaviour. Doctoral thesis. Groningen: University of Groningen, Centre for Environmental and Traffic psychology
dc.relation.referencesJennings, N. R., Sycara, K., Wooldridge, M. (1998). A Roadmap of Agent Research and Development. Autonomous Agents and Multi-agent Systems, 1(1), 7-38
dc.relation.referencesJennings, N. R. (2000). On agent-based software engineering. Artificial Intelligence, 117(2), 277-296.
dc.relation.referencesJonassen, D.H. (1992). Hypertext as Cognitive Tools. In Kommes P.A.M, Jonassen, D.H. & Mayes, J.T. (Eds), Cognitive Tools for Learning: Proceedings of the NATO Advanced Study Institute, 147-148.
dc.relation.referencesJonassen, D.H., Carr, Ch. & Yueh, H. (1998). Computers as Mindtools for Engaging Learners in Critical Thinking. TechTrends, 43(2), 24-32
dc.relation.referencesJulián, V., Botti, V. (2003). Estudio de Métodos de Desarrollo de Sistemas Multiagente. Revista Iberoamericana de Inteligencia Artificial, 18, 65-80.
dc.relation.referencesKalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied Cognitive Psychology, 13, 351–371
dc.relation.referencesLave, J. (1988). Cognition in Practice: Mind, mathematics, and culture in everyday life. Cambridge, UK: Cambridge University Press.
dc.relation.referencesLeelawong, K., Viswanath, K., Davis, J., Biswas, G., Vye, N., & Belynne, K. (2003). Teachable Agents: Learning by Teaching Environments for Science Domains. Proceedings of the 15th Annual Conference on Innovative Applications of Artificial Intelligence (IAAI), Acapulco, Mexico, 109-116
dc.relation.referencesLorenz, T. M. & Bassi, A. M. (2005). Comprehensibility as a discrimination criterion for agent-based modelling and System Dynamics: an empirical approach. Proceedings of the 23rd International Conference of the System Dynamics Society July 17-21, Boston.
dc.relation.referencesMaier, F. H. & Grossler, A. (2000) What are we talking about? A taxonomy of computer smulations to support learning. System Dynamics Review, 16 (2), 135 – 14
dc.relation.referencesMartin, M., Piquet, E., Le Page, C., Guerrin, F. (2001). Magmas : A multi-agents system based on dynamical models coupling ; application to animal wastes management. In : Simulation in industry. 13th European Simulation Symposium, October 18-20, Marseille, France
dc.relation.referencesMitchell, M. (2006). Complex Systems: Network Thinking. Portland State University and Santa Fe Institute. Enviado para publicación.
dc.relation.referencesMoreno, R., Mayer, R., Spires, H., & Lester, J. (2002). The Case for Social Agency in Computer-Based Teaching: ¿Do Students Learn More Deeply When They Interact With Animated Pedagogical Agents? Cognition and instruction, 19(2), 177-213.
dc.relation.referencesNovak, J. D. & Cañas, A.J. (2006). The Theory Underlying Concept Maps and How to Construct Them. Technical Report IHMC CmapTools, Florida Institute for Human and Machine Cognition
dc.relation.referencesOdell, J. (2002). Agents and Complex Systems. Journal of Object Technology, 1(2), JulyAugust, 35-45
dc.relation.referencesParunak, H.V.D., Savit, R. & Riolo, R. L.. (1998). Agent-.Based Modeling vs. EquationBased Modeling: A Case Study and Users’s Guide. In Sichman, J.S., Conte, R., and Gilbert, N. (Eds.), Multi-Agent Systems and Agent-Based Simulation, Springer Verla
dc.relation.referencesPérez P., A. L. , Hoyos, S., Moreno, G. & Díaz, I. (2004). Integración de Técnicas de Inteligencia Artificial y Dinámica de Sistemas: Un Caso de Aplicación para la Toma de Decisiones sobre Acciones de Mejoramiento de Gestión Tecnológica en Empresas de Distribución Eléctrica. II Encuentro Colombiano de Dinámica de Sistemas. Santa Marta, Colombia.
dc.relation.referencesRichmond, B. (1993). Systems thinking: critical thinking skills for the 1990s and beyond. System Dynamics Review, 9(2), 113-33
dc.relation.referencesRieber, L. P. (1994). Computers, Graphics and Learning. Madison, WI: Brown and Benchmark
dc.relation.referencesSawicka, A., Molkenthin, R. (2005). Cognitive Load Dynamics: How to Increase Effectiveness of System Dynamics-Based Learning Environments. Proceedings of the 23rd International Conference of the System Dynamics Society, Boston.
dc.relation.referencesSchieritz, N. (2002). Integrating System Dynamics and Agent-Based Modeling. Proceedings of the 20th International Conference of the System Dynamics Society, Palermo
dc.relation.referencesSchieritz, N. & Grössler, A. (2003). Emergent Structures in Supply Chains - A Study Integrating Agent-Based and System Dynamics Modeling. Proceedings of the 36th Hawaii International Conference on System Sciences.
dc.relation.referencesSchieritz, N. & Milling, P. (2003). Modeling the Forest or Modeling the Trees. A Comparison of System Dynamics and Agent-Based Simulation. Proceedings of the 21st International Conference of the System Dynamics Society, New York.
dc.relation.referencesSchieritz, N. (2004). Exploring the Agent Vocabulary – Emergence and Evolution in System Dynamics. In: Coyle, Jonathan et al. (Hrsg.): Proceedings of the 22nd International Conference of the System Dynamics Society, Oxford
dc.relation.referencesScholl, H. J. (2001a). Agent-based and System Dynamics Modeling : A Call for Cross Study and Joint Research. Proceedings of the 34th Hawaii International Conference on System Sciences
dc.relation.referencesScholl, H. J. (2001b). Looking Across the Fence: Comparing Findings From SD Modeling Efforts With those of Other Modeling Techniques. Presented at 2001 Annual International Conference of the System Dynamics Society, Atlanta, GA.
dc.relation.referencesShalizi, C. R. (2006). Methods and techniques of complex systems science: an overview. Center for the Study of Complex Systems, University of Michigan.
dc.relation.referencesSenge, P. (1994). La Quinta disciplina en la práctica. Barcelona, España: Ediciones Granica S.A.
dc.relation.referencesSpector, J. M. & Davidsen, P. I. (1998). Constructing Learning Environments Using System Dynamics. Journal of Courseware Engineering 1, 5-12.
dc.relation.referencesSterman, J. (1989). Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision making Experiment. Management Science, 35(3), 321-339
dc.relation.referencesSterman, J. D. (1994). Learning in and about complex systems. System Dynamics Review, 10 (2-3), 291 – 330.
dc.relation.referencesSterman, J. D. (2002). All models are wrong: reflections on becoming a systems scientist [Abstract]. System Dynamics Review, 18 (4), 501–531
dc.relation.referencesWakeland, W.W., Gallaher, E.J., Macovsky, L.M. & Aktipis, C.A. (2004). A comparison of system dynamics and agent-based simulation applied to the study of cellular receptor dynamics. Proceedings of the 37th Annual Hawaii International Conferen
dc.relation.referencesWooldridge, M. (2002). An Introduction to Multiagent Systems. John Wiley & Sons, Ltd
dc.relation.referencesZambonelli, F., Jennings, N. R. & Wooldridge, M. (2003). Developing Multiagent Systems: The Gaia Methodology. ACM Transactions on Software Engineering and Methodology, 12 (3), 317-370.
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000639095
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=57189464324
dc.subject.lembSimulación por computadoresspa
dc.subject.lembAgentes inteligentesspa
dc.subject.lembPrograma para computadorspa
dc.subject.lembAnálisis de sistemasspa
dc.subject.lembIngeniería de sistemasspa
dc.subject.lembCiencia computacionalesspa
dc.subject.lembInvestigacionesspa
dc.subject.lembAnálisisspa
dc.subject.lembTecnología educativaspa
dc.contributor.corporatenameInstituto Tecnológico de Estudios Superiores de Monterrey (ITESM)
dc.description.abstractenglishThe understanding of complex systems, including both their structure and their behavior over time, is necessary to properly address the solution of problems in the real world, characterized by its increasing level of complexity. Given this need, interactive learning environments, or computer-based microworlds, are presented as a support tool that, using models and simulations, allows the exercise of our mental models and the improvement of decision-making in the face of complex nature. and sometimes counter-intuitive to these systems. While the SD community has already been working on these learning environments, AB's foray into the field of modeling and simulation is more recent and so are its work in the field of learning. This work aims to explore the contribution that the integration of the two paradigms, SD and AB, could have in an interactive learning environment, using as a case study a microworld oriented to the understanding of complex systems.
dc.subject.proposalDinámica de sistemas
dc.subject.proposalModelado y simulación basados en agentes
dc.subject.proposalInformática educativa
dc.subject.proposalMicromundo
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia