Show simple item record

dc.contributor.authorHeredia Gómez, Juan F.
dc.contributor.authorRueda Gómez, Juan P.
dc.contributor.authorTalero Sarmiento, Leonardo H.
dc.contributor.authorRamírez Acuña, Juan S.
dc.contributor.authorCoronado Silva, Roberto A.
dc.date.accessioned2024-09-06T15:04:13Z
dc.date.available2024-09-06T15:04:13Z
dc.date.issued2020-10-19
dc.identifier.issnISSN: 1657-2831spa
dc.identifier.issne-ISSN: 2539-2115spa
dc.identifier.urihttp://hdl.handle.net/20.500.12749/26394
dc.description.abstractUna correcta cosecha Cacao implica determinar si la mazorca se encuentra en un adecuado estado de madurez. No obstante, este proceso suele darse de manera artesanal y basarse en atributos como el tamaño y color de la mazorca, características que difieren según la variedad cultivada, lo cual dificulta su estandarización. Con el fin de simplificar la cantidad de variables y presentar un método automatizado, el presente trabajo propone desarrollar una herramienta portable, de bajo costo, y hecha a medida, la cual hace uso de una red neuronal convolucional para indicar si una mazorca de cacao se encuentra en el momento oportuno para ser cosechada. Entre los principales resultados del presente trabajo se encuentran: 1) la construcción de tres conjuntos de datos etiquetados (1992 imágenes cada uno), y 2) un sistema embebido con una precisión de 34.83% mAP (mean Average Precision). Finalmente, se demuestra estadísticamente que el tamaño de las imágenes (4033x4033 p, 1009x1009 p y 505x505 p) no incide sobre la eficacia del entrenamiento.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Autónoma de Bucaramanga UNABspa
dc.relationhttps://revistas.unab.edu.co/index.php/rcc/article/view/4030/3341spa
dc.relation.urihttps://revistas.unab.edu.co/index.php/rcc/issue/view/267spa
dc.sourceVol. 21 Núm. 2 (2020): Revista Colombiana de Computación (Julio-Diciembre); 42-55spa
dc.subjectCacaospa
dc.subjectClasificación de Imágenesspa
dc.subjectDetección de objetosspa
dc.subjectMadurezspa
dc.subjectReconocimiento de Imágenesspa
dc.subjectYOLOspa
dc.subjectRaspberry Pispa
dc.titleDeterminación de la madurez de mazorcas de Cacao, haciendo uso de redes neuronales convolucionales en un sistema embebidospa
dc.title.translatedCocoa pods ripeness estimation, using convolutional neural networks in an embedded systemeng
dc.type.driverinfo:eu-repo/semantics/article
dc.type.localArtículospa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.subject.keywordsCocoaeng
dc.subject.keywordsImage classificationeng
dc.subject.keywordsObject detectioneng
dc.subject.keywordsImage classificationeng
dc.subject.keywordsYOLOeng
dc.subject.keywordsRipenesseng
dc.subject.keywordsRaspberry pieng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga UNABspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.relation.referencesAlston, J., Pardey, P., & Ruttan, V. (2008). Research Lags Revisited: Concepts and Evidence from U.S. Agriculture. University of Minnesota, Department of Applied Economics, Staff Papers.
dc.relation.referencesArenga, D. Z. H., Dela Cruz, J. C., & Arenga, D. Z. H. (2017). Ripeness classification of cocoa through acoustic sensing and machine learning. 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), 2018-Janua, 1–6. https://doi.org/10.1109/HNICEM.2017.8269438
dc.relation.referencesArguello Castellanos, O., Mejia Florez, L. A., Contreras Mayorga, N., & Toloza Ochoa, J. A. (1999). Manual de caracterización morfoagronómica de clones elite de cacao (Theobroma cacao L.) en el noriente colombiano.
dc.relation.referencesCAOBISCO/ECA/FCC. (2015). Cocoa Beans : Chocolate & Cocoa Industry Quality Requirements.
dc.relation.referencesCaragea, C. (2009). Mean Average Precision. En L. Liu & M. T. Özsu (Eds.), Encyclopedia of Database Systems (p. 1703). Springer US. https://doi.org/10.1007/978-0-387-39940-9_3032
dc.relation.referencesChamo, A., D, A., Babura, B., & Karaye, A. K. (2017). Influence of Agronomic Practices on Crop Production. International Journal of Sciences: Basic and Applied Research (IJSBAR), Vol. 31, 61–66. https://gssrr.org/index.php/JournalOfBasicAndApplied/article/view/6688
dc.relation.referencesCORPOICA. (2015). Misión para la transformación del campo. Diagnóstico. 1–71.
dc.relation.referencesCORPOICA. (2020). Teobroma Corpoica la Suiza.
dc.relation.referencesCubillos, A., Garcia, M., S., A., R, G., & Tarazona Díaz, M. (2019). Study of the physical and chemical changes during the maturation of three cocoa clones, EET8, CCNN51 and ICS60. Journal of the Science of Food and Agriculture, 99. https://doi.org/10.1002/jsfa.9882
dc.relation.referencesEl-Bendary, N., El Hariri, E., Hassanien, A. E., & Badr, A. (2015). Using machine learning techniques for evaluating tomato ripeness. Expert Systems with Applications, 42(4), 1892–1905. https://doi.org/10.1016/j.eswa.2014.09.057
dc.relation.referencesElhariri, E., El-Bendary, N., Hussein, A. M. M., Hassanien, A. E., & Badr, A. (2014). Bell pepper ripeness classification based on support vector machine. 2014 International Conference on Engineering and Technology (ICET), 1–6. https://doi.org/10.1109/ICEngTechnol.2014.7016802
dc.relation.referencesHamza, R., & Chtourou, M. (2018). Apple Ripeness Estimation Using Artificial Neural Network. 2018 International Conference on High Performance Computing & Simulation (HPCS), 229–234. https://doi.org/10.1109/HPCS.2018.00049
dc.relation.referencesHuffman, W. (2009). Technology and Innovation in World Agriculture: Prospects for 2010-2019. Iowa State University, Department of Economics, Staff General Research Papers.
dc.relation.referencesKipli, K., Zen, H., Sawawi, M., Mohamad Noor, M. S., Julai, N., Junaidi, N., Shafiq Mohd Razali, M. I., Chin, K. L., & Wan Masra, S. M. (2018). Image Processing Mobile Application For Banana Ripeness Evaluation. 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA), 1–5. https://doi.org/10.1109/ICASSDA.2018.8477600
dc.relation.referencesLakens, D., Fockenberg, D. A., Lemmens, K. P. H., Ham, J., & Midden, C. J. H. (2013). Brightness differences influence the evaluation of affective pictures. Cognition & Emotion, 27(7), 1225–1246. https://doi.org/10.1080/02699931.2013.781501
dc.relation.referencesLe, T.-T., Lin, C.-Y., & Piedad, E. J. (2019). Deep learning for noninvasive classification of clustered horticultural crops – A case for banana fruit tiers. Postharvest Biology and Technology, 156, 110922. https://doi.org/https://doi.org/10.1016/j.postharvbio.2019.05.023
dc.relation.referencesLeón-Roque, N., Abderrahim, M., Nuñez-Alejos, L., Arribas, S. M., & Condezo-Hoyos, L. (2016). Prediction of fermentation index of cocoa beans (Theobroma cacao L.) based on color measurement and artificial neural networks. Talanta, 161, 31–39. https://doi.org/10.1016/j.talanta.2016.08.022
dc.relation.referencesLin, T. (2015). LabelImg. https://github.com/tzutalin/labelImg
dc.relation.referencesMachado Cuellar, L., Ordoñez Espinosa, C., Katherine, Y., Cruz, L., & Suárez Salazar, J. (2018). Organoleptic quality assessment of Theobroma cacao L. in cocoa farms in northern Huila, Colombia. Acta Agronómica, 67. https://doi.org/10.15446/acag.v67n1.66572
dc.relation.referencesMazen, F. M. A., & Nashat, A. A. (2019). Ripeness Classification of Bananas Using an Artificial Neural Network. Arabian Journal for Science and Engineering, 44(8), 6901–6910. https://doi.org/10.1007/s13369-018-03695-5
dc.relation.referencesMhaski, R. R., Chopade, P. B., & Dale, M. P. (2015). Determination of ripeness and grading of tomato using image analysis on Raspberry Pi. 2015 Communication, Control and Intelligent Systems (CCIS), 214–220. https://doi.org/10.1109/CCIntelS.2015.7437911
dc.relation.referencesMustafa, N. B. A., Fuad, N. A., Ahmed, S. K., Abidin, A. A. Z., Ali, Z., Yit, W. B., & Sharrif, Z. A. M. (2008). Image processing of an agriculture produce: Determination of size and ripeness of a banana. 2008 International Symposium on Information Technology, 1–7. https://doi.org/10.1109/ITSIM.2008.4631636
dc.relation.referencesNguyễn, H. V. H., Lê, H. M., & Savage, G. P. (2018). Effects of maturity at harvesting and primary processing of cocoa beans on oxalate contents of cocoa powder. Journal of Food Composition and Analysis, 67, 86–90. https://doi.org/https://doi.org/10.1016/j.jfca.2018.01.007
dc.relation.referencesO’Brien, J. F., & Farid, H. (2012). Exposing photo manipulation with inconsistent reflections. ACM Transactions on Graphics, 31(1), 1–11. https://doi.org/10.1145/2077341.2077345
dc.relation.referencesPark, T. (2020). Darknet with NNPACK. https://github.com/digitalbrain79/darknet-nnpack
dc.relation.referencesPerez B, M. A., & Contreras M, J. D. (2017). Instructivo de buenas prácticas de cosecha y pos-cosecha. En Swisscontact Colombia.
dc.relation.referencesPolder, G., van der Heijden, G. W. A. M., & Young, I. T. (2002). Spectral Image Analysis for Measuring Ripeness of Tomatoes. Transactions of the ASAE, 45(4), 1155–1161.
dc.relation.referencesRamos Ospino, A. del C., & Gómez Álvarez, M. S. (2019). Caracterización fenotípica y genotípica de aislados de cacao (Theobroma Cacao L.) de Dibulla, Guajira (Vol. 8, Número 5).
dc.relation.referencesRedmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement.
dc.relation.referencesRiskiawan, H. Y., Puspitasari, T. D., Hasanah, F. I., Wahyono, N. D., & Kurnianto, M. F. (2018). Identifying Cocoa ripeness using K-Nearest Neighbor (KNN) Method. 2018 International Conference on Applied Science and Technology (iCAST), 354–357. https://doi.org/10.1109/iCAST1.2018.8751633
dc.relation.referencesRupanagudi, S. R., Ranjani, B. S., Nagaraj, P., & Bhat, V. G. (2014). A cost effective tomato maturity grading system using image processing for farmers. 2014 International Conference on Contemporary Computing and Informatics (IC3I), 7–12. https://doi.org/10.1109/IC3I.2014.7019591
dc.relation.referencesSaad, H., & Hussain, A. (2006). Classification for the Ripeness of Papayas Using Artificial Neural Network (ANN) and Threshold Rule. 2006 4th Student Conference on Research and Development, 132–136. https://doi.org/10.1109/SCORED.2006.4339325
dc.relation.referencesSaadl, H., Ismaie, A. P., Othmanl, N., Jusohl, M. H., Naim, N. F., & Ahmad, N. A. (2009). Recognizing the ripeness of bananas using artificial neural network based on histogram approach. ICSIPA09 - 2009 IEEE International Conference on Signal and Image Processing Applications, Conference Proceedings, 536–541. https://doi.org/10.1109/ICSIPA.2009.5478715
dc.relation.referencesSamui, P., Roy, S., & Balas, V. (2017). Handbook of Neural Computation 1st Edition.
dc.relation.referencesSantos Pereira, L. F., Barbon, S., Valous, N. A., & Barbin, D. F. (2018). Predicting the ripening of papaya fruit with digital imaging and random forests. Computers and Electronics in Agriculture, 145, 76–82. https://doi.org/10.1016/j.compag.2017.12.029
dc.relation.referencesSimbolon, Z. K., Syakry, S. A., Mulyadi, & Syahroni, M. (2019). Separation of the Mature Level of Papaya Callina Fruit Automatically Based on Color (RGB) uses Digital Image Processing. IOP Conference Series: Materials Science and Engineering, 536, 12127. https://doi.org/10.1088/1757-899X/536/1/012127
dc.relation.referencesTaiwo, A., & Bart-Plange, A. (2016). Factors Responsible For Post-Harvest Losses And Their Effects On Rice Producing Farmers: A Case Study Of Afife And Aveyime Rice Projectsin The Volta Region Of Ghana. International Research Journal of Engineering and Technology (IRJET), 3, 1014–1022.
dc.relation.referencesTan, D. S., Leong, R. N., Laguna, A. F., Ngo, C. A., Lao, A., Amalin, D. M., & Alvindia, D. G. (2018). AuToDiDAC: Automated Tool for Disease Detection and Assessment for Cacao Black Pod Rot. Crop Protection, 103, 98–102. https://doi.org/https://doi.org/10.1016/j.cropro.2017.09.017
dc.relation.referencesTaofik, A., Ismail, N., Gerhana, Y. A., Komarujaman, K., & Ramdhani, M. A. (2018). Design of Smart System to Detect Ripeness of Tomato and Chili with New Approach in Data Acquisition. IOP Conference Series: Materials Science and Engineering, 288, 12018. https://doi.org/10.1088/1757-899X/288/1/012018
dc.relation.referencesTřebický, V., Fialová, J., Kleisner, K., & Havlíček, J. (2016). Focal Length Affects Depicted Shape and Perception of Facial Images. PLOS ONE, 11(2), e0149313. https://doi.org/10.1371/journal.pone.0149313
dc.relation.referencesYen, D., & Nguyễn, H. (2018). Effects of maturity stages and fermentation of cocoa beans on total phenolic contents and antioxidant capacities in raw cocoa powder. Vietnam Journal of Biotechnology, 14, 743–752. https://doi.org/10.15625/1811-4989/14/4/12309
dc.relation.referencesZhang, L., Jia, J., Gui, G., Hao, X., Gao, W., & Wang, M. (2018). Deep Learning Based Improved Classification System for Designing Tomato Harvesting Robot. IEEE Access, 6, 67940–67950. https://doi.org/10.1109/ACCESS.2018.2879324
dc.relation.referencesZhu, M. (2004). Recall, precision and average precision.
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishA correct cocoa harvest involves determining a pod maturity. However, this farm activity is usually handmade, using criteria such as Size and Color of the pod; those characteristics differ according to the cocoa variety, making it difficult to standardize. For this reason, this work proposes an automated method to simplify the number of variables to develop a portable, low-cost, and custom-made tool, which makes use of a convolutional neural network to indicate whether a cocoa pod is found it at the right time to harvest. The main results of this work are: 1) the construction of three labeled data sets (1992 images each), and 2) we developed an embedded system with a 34.83% mAP (mean Average Precision) accuracy. Finally, variance analysis demonstrates that image size (i.e., 4033x4033 p, 1009x1009 p, and 505x505 p) does not affect accuracy.eng
dc.identifier.doihttps://doi.org/10.29375/25392115.4030
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record