Show simple item record

dc.contributor.advisorBecerra Bayona, Silvia Milena
dc.contributor.advisorSolarte David, Víctor Alfonso
dc.contributor.authorOrtiz Galvis, Brithney Johanna
dc.contributor.authorSarabia Quintero, Miguel Angel
dc.contributor.authorMartinez Tello, Andrea Juliana
dc.coverage.spatialColombiaspa
dc.date.accessioned2023-08-08T16:09:47Z
dc.date.available2023-08-08T16:09:47Z
dc.date.issued2023-07-27
dc.identifier.urihttp://hdl.handle.net/20.500.12749/21073
dc.description.abstractLas células madre mesenquimales (MSC) se utilizan en medicina regenerativa para tratar diversas enfermedades. Sin embargo, durante su expansión in vitro, un alto porcentaje muere debido a las condiciones estándar de cultivo o al tiempo transcurrido. Para el cultivo celular in vitro, hay dos parámetros importantes a tener en cuenta: 1) la fuente de factores de crecimiento, siendo el más utilizado el suero fetal bovino (FBS); sin embargo, puede causar problemas inmunológicos, contaminación por agentes infecciosos como virus, micoplasmas o bacterias, además de plantear dilemas éticos en su obtención y tener un alto costo comercial. 2) las condiciones de incubación, que generalmente presentan un 21% de oxígeno (normoxia), lo cual es elevado en comparación con las condiciones normales del tejido de las MSCs. A pesar de las limitaciones conocidas al cultivar con FBS y en condiciones de 21% de oxígeno, continúa haciéndose de esta manera sin tener en cuenta los daños colaterales que podrían causarse a las células. Por lo tanto, en este proyecto se evaluó el efecto de condiciones hipóxicas (5% de O2) y un medio no xenogénico como el plasma pobre en plaquetas (PPP), mediante el análisis del número de generaciones de población y el tiempo de duplicación de la población durante el tiempo de estudio en el cultivo, con el fin de determinar si las condiciones mencionadas son óptimas o factibles en la implementación de cultivos celulares. Con este propósito, se evaluaron dos condiciones: células cultivadas en normoxia y FBS como grupo de control, normoxia con PPP, hipoxia con FBS e hipoxia con PPP. Los resultados de esta investigación muestran que el grupo de control presentó una tasa de proliferación de 0.989 con 23 generaciones alcanzadas, mientras que los cultivos con las condiciones experimentales tuvieron una tasa de 0.978 para FBS en hipoxia con 22.36 generaciones, 0.964 para PPP en hipoxia con 13.08 generaciones y 0.945 para PPP en normoxia con 15.44 generaciones. A partir de esto, se concluye que la condición de cultivo suplementada con PPP bajo condiciones hipóxicas no es adecuada para expandir las MSCs, ya que es la que presenta la tasa de proliferación más baja y el menor número de generaciones de población en el tiempo de cultivo determinado.spa
dc.description.tableofcontents1. Planteamiento del Problema..........................................................................................10 2. Justificación...................................................................................................................12 3. Objetivos y pregunta problema .....................................................................................14 3.1 Pregunta Problema ......................................................................................................14 3.2 Objetivo General.........................................................................................................14 3.3 Objetivos Específicos .................................................................................................14 4. Marco teórico ................................................................................................................15 4.1. Células Madre, clasificación y división.....................................................................15 4.2. Células madre según su tipo y potencial de diferenciación .......................................16 4.3. Células Madre Mesenquimales (MSC)......................................................................17 4.4. Cultivo celular de MSC bajo condiciones estándar...................................................19 4.5. Extracción del PRP y PPP .........................................................................................22 4.6. Plasma rico en plaquetas (PRP).................................................................................23 4.7. Plasma pobre en plaquetas (PPP)...............................................................................24 4.8. Cultivo celular de MSC bajo condiciones hipóxicas.................................................25 5. Estado del arte ...............................................................................................................27 6. Metodología......................................................................................................................30 6.1. Obtención de PPP ......................................................................................................30 6.3. Recuento celular ........................................................................................................31 6.4. Análisis de resultados ................................................................................................33 7. Resultados.....................................................................................................................34 7.1. Cálculo de Tiempo de duplicación poblacional (TDP)..........................................34 7.2. Tasa de proliferación celular..................................................................................38 8. Análisis de resultados....................................................................................................41 8.1. Efecto del PPP como suplemento en medio de cultivo celular..............................41 8.2. El rol de la hipoxia en el cultivo celular ................................................................43 9. Conclusiones y recomendaciones..................................................................................46 10. Referencias ................................................................................................................48 ANEXOS..............................................................................................................................58spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleEvaluación de la expansión de células madre mesenquimales en condiciones hipóxicas y medio suplementado con plasma pobre en plaquetas para la posible aplicación en la medicina regenerativaspa
dc.title.translatedEvaluation of the expansion of mesenchymal stem cells in hypoxic conditions and medium supplemented with platelet-poor plasma for possible application in regenerative medicinespa
dc.degree.nameIngeniero Biomédicospa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programPregrado Ingeniería Biomédicaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsBiomedical engineeringspa
dc.subject.keywordsBiological physicsspa
dc.subject.keywordsBioengineeringspa
dc.subject.keywordsClinical engineeringspa
dc.subject.keywordsMesenchymal stem cells (MSC)spa
dc.subject.keywordsGrowing conditionsspa
dc.subject.keywordsPlatelet poor plasma (PPP)spa
dc.subject.keywordsFetal bovine serum (FBS)spa
dc.subject.keywordsPopulation doubling ratespa
dc.subject.keywordsPopulation generationsspa
dc.subject.keywordsBone marrowspa
dc.subject.keywordsCell culturespa
dc.subject.keywordsCloning cellsspa
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.relation.referencesAlmalki, S. G., & Agrawal, D. K. (2016). Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation; Research in Biological Diversity, 92(1–2), 41–51. https://doi.org/10.1016/j.diff.2016.02.005spa
dc.relation.referencesAlvarado-Moreno, J. A., & Mayani, H. (2007). El ciclo celular y su papel en la biología de las células progenitoras hematopoyéticas. Gaceta medica de Mexico, 143(2), 149–161. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=15150spa
dc.relation.referencesAntebi, B., Rodriguez, L.A., Walker, K.P. et al. Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Res Ther 9, 265 (2018). https://doi.org/10.1186/s13287-018-1007-xspa
dc.relation.referencesBadimon, L., Oñate, B., & Vilahur, G. (2015). Células madre mesenquimales derivadas de tejido adiposo y su potencial reparador en la enfermedad isquémica coronaria. Revista española de cardiologia, 68(7), 599–611. https://doi.org/10.1016/j.recesp.2015.02.025spa
dc.relation.referencesBeccia, E., Carbone, A., Cecchino, L. R., Pedicillo, M. C., Annacontini, L., Lembo, F., Di Gioia, S., Parisi, D., Angiolillo, A., Pannone, G., Portincasa, A., & Conese, M. (2021). Adipose Stem Cells and Platelet-Rich Plasma Induce Vascular-Like Structures in a Dermal Regeneration Template. Tissue engineering. Part A, 27(9-10), 631–641. https://doi.org/10.1089/ten.TEA.2020.0175spa
dc.relation.referencesBui, H. T. H. (2020, 4 noviembre). Influences of Xeno-Free Media on Mesenchymal Stem Cell Expansion for Clinical Application. SpringerLink. https://link.springer.com/article/10.1007/s13770-020-00306- z?error=cookies_not_supported&code=6a08e5ba-c19a-4018-a4cf-c97ea67e0a96#citeasspa
dc.relation.referencesBuravkova, L. B., Andreeva, E. R., Gogvadze, V., & Zhivotovsky, B. (2014). Mesenchymal stem cells and hypoxia: where are we? Mitochondrion, 19 Pt A, 105–112. https://doi.org/10.1016/j.mito.2014.07.005spa
dc.relation.referencesCarmen Lagunas Cruz, M., Mendiola, A. V., & Cruz, I. S. (2014). Ciclo celular: Mecanismos de regulación. Vertientes. Revista Especializada en Ciencias de la Salud, 17(2). http://revistas.unam.mx/index.php/vertientes/article/view/51694spa
dc.relation.referencesChen, C. F., & Liao, H. T. (2018). Platelet-rich plasma enhances adipose-derived stem cell-mediated angiogenesis in a mouse ischemic hindlimb model. World Journal of Stem Cells, 10(12), 212–227. https://doi.org/10.4252/wjsc.v10.i12.212spa
dc.relation.referencesChen, J., Cheng, Y., Fu, Y., Zhao, H., Tang, M., Zhao, H., Lin, N., Shi, X., Lei, Y., Wang, S., Huang, L., Wu, W., & Tan, J. (2020). Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation. Stem Cell Research & Therapy, 11(1), 97. https://doi.org/10.1186/s13287-020-01610-0spa
dc.relation.referencesChisini, L. A., Karam, S. A., Noronha, T. G., Sartori, L., San Martin, A. S., Demarco, F. F., & Conde, M. (2017). Platelet-Poor Plasma as a Supplement for Fibroblasts Cultured in Platelet-Rich Fibrin. Acta stomatologica Croatica, 51(2), 133–140. https://doi.org/10.15644/asc51/2/6spa
dc.relation.referencesChisini, L., Conde, M., Grazioli, G., Martin, A., Carvalho, R., Nör, J., & Demarco, F. (2017). Venous Blood Derivatives as FBS-Substitutes for Mesenchymal Stem Cells: A Systematic Scoping Review. Brazilian Dental Journal, 28(6), 657-668. doi: 10.1590/0103- 6440201701646spa
dc.relation.referencesCIBIOGEM. (2019). CIBIOGEM. gob.mx. https://conacyt.mx/cibiogem/index.php/11-letraspa
dc.relation.referencesEgger, D., Lavrentieva, A., Kugelmeier, P., & Kasper, C. (2022). Physiologic isolation and expansion of human mesenchymal stem/stromal cells for manufacturing of cell‐based therapy products. Engineering in Life Sciences, 22(3–4), 361–372. https://doi.org/10.1002/elsc.202100097spa
dc.relation.referencesEjtehadifar, M., Shamsasenjan, K., Movassaghpour, A., Akbarzadehlaleh, P., Dehdilani, N., Abbasi, P., Molaeipour, Z., & Saleh, M. (2015). The effect of hypoxia on mesenchymal stem cell biology. Advanced Pharmaceutical Bulletin, 5(2), 141–149. https://doi.org/10.15171/apb.2015.021spa
dc.relation.referencesFelthaus, O., Prantl, L., Skaff-Schwarze, M., Klein, S., Anker, A., Ranieri, M., & Kuehlmann, B. (2017). Effects of different concentrations of Platelet-rich Plasma and Platelet-Poor Plasma on vitality and differentiation of autologous Adipose tissue-derived stem cells. Clinical hemorheology and microcirculation, 66(1), 47–55. https://doi.org/10.3233/CH-160203spa
dc.relation.referencesFormigli, L., Benvenuti, S., Mercatelli, R., Quercioli, F., Tani, A., Mirabella, C., Dama, A., Saccardi, R., Mazzanti, B., Cellai, I., & Zecchi-Orlandini, S. (2012). Dermal matrix scaffold engineered with adult mesenchymal stem cells and platelet-rich plasma as a potential tool for tissue repair and regeneration. Journal of tissue engineering and regenerative medicine, 6(2), 125–134. https://doi.org/10.1002/term.405spa
dc.relation.referencesFormigli, L., Benvenuti, S., Mercatelli, R., Quercioli, F., Tani, A., Mirabella, C., Dama, A., Saccardi, R., Mazzanti, B., Cellai, I., & Zecchi-Orlandini, S. (2012). Dermal matrix scaffold engineered with adult mesenchymal stem cells and platelet-rich plasma as a potential tool for tissue repair and regeneration. Journal of tissue engineering and regenerative medicine, 6(2), 125–134. https://doi.org/10.1002/term.405spa
dc.relation.referencesFraga, A., Ribeiro, R., & Medeiros, R. (2009). Hipoxia tumoral: Papel del factor inducible por hipoxia. Actas Urologicas Espanolas, 33(9), 941–951. https://doi.org/10.4321/s0210-48062009000900003spa
dc.relation.referencesFu, X., Liu, G., Halim, A., Ju, Y., Luo, Q., & Song, A. G. (2019). Mesenchymal stem cell migration and tissue repair. Cells (Basel, Switzerland), 8(8), 784. https://doi.org/10.3390/cells8080784spa
dc.relation.referencesGao, S., Xiang, C., Qin, K. & Sun, C. (2018). Mathematical Modeling Reveals the Role of Hypoxia in the Promotion of Human Mesenchymal Stem Cell Long-Term Expansion. Stem Cells International, 2018, 1-13. https://doi.org/10.1155/2018/9283432spa
dc.relation.referencesGarcia, G. A., Oliveira, R. G., Dariolli, R., Rudge, M. V. C., Barbosa, A. M. P., Floriano, J. F., & Ribeiro-Paes, J. T. (2022). Isolation and characterization of farm pig adipose tissue-derived mesenchymal stromal/stem cells. Brazilian Journal of Medical and Biological Research, 55, e12343. https://doi.org/10.1590/1414-431X2022e12343spa
dc.relation.referencesHaque, N., Rahman, M. T., Abu Kasim, N. H., & Alabsi, A. M. (2013). Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. TheScientificWorldJournal, 2013, 1–12. https://doi.org/10.1155/2013/632972spa
dc.relation.referencesHatakeyama, I., Marukawa, E., Takahashi, Y., Omura, K. (2014). Effects of platelet-poor plasma, platelet-rich plasma, and platelet-rich fibrin on healing of extraction sockets with buccal dehiscence in dogs. Tissue engineering. Part A, 20(3-4), 874–882. https://doi.org/10.1089/ten.TEA.2013.0058spa
dc.relation.referencesJochems, C. E. A., van der Valk, J. B. F., Stafleu, F. R., & Baumans, V. (2002). The use of fetal bovine serum: ethical or scientific problem? Alternatives to Laboratory Animals: ATLA, 30(2), 219–227. https://doi.org/10.1177/026119290203000208spa
dc.relation.referencesKolios, G., & Moodley, Y. (2013). Introduction to stem cells and regenerative medicine. Respiration; International Review of Thoracic Diseases, 85(1), 3–10. https://doi.org/10.1159/000345615spa
dc.relation.referencesKumar, S., & Vaidya, M. (2016). Hypoxia inhibits mesenchymal stem cell proliferation through HIF1α-dependent regulation of P27. Molecular And Cellular Biochemistry, 415(1-2), 29-38. doi: 10.1007/s11010-016-2674-5.spa
dc.relation.referencesLavrentieva, A. (2010, 16 julio). Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells - Cell Communication and Signaling. BioMed Central. https://biosignaling.biomedcentral.com/articles/10.1186/1478-811X-8-18spa
dc.relation.referencesLavrentieva, A., Hoffmann, A., & Lee-Thedieck, C. (2020). Limited potential or unfavorable manipulations? Strategies toward efficient mesenchymal stem/stromal cell applications. Frontiers in Cell and Developmental Biology, 8, 316. https://doi.org/10.3389/fcell.2020.00316spa
dc.relation.referencesLe, A., Enweze, L., DeBaun, M. R., & Dragoo, J. L. (2019). Platelet-Rich Plasma. Clinics in sports medicine, 38(1), 17–44. https://doi.org/10.1016/j.csm.2018.08.001spa
dc.relation.referencesMansilla E. Díaz Aquino V. Zambón D. Marin GH. Mártire K. Roque G. etal.Couldmetabolicsyndrome.lipodystrophy.andagingbemesenchymalstemcellexhaustionsy ndromes?StemCellsInt.2011;943216.http://dx.doi.org/10.4061/2011/943216spa
dc.relation.referencesMartínez, C. E., Gómez, R., Kalergis, A. M., & Smith, P. C. (2019). Comparative effect of platelet-rich plasma, platelet-poor plasma, and fetal bovine serum on the proliferative response of periodontal ligament cell subpopulations. Clinical oral investigations, 23(5), 2455–2463. https://doi.org/10.1007/s00784-018-2637-1spa
dc.relation.referencesMartínez, C. E., Smith, P. C., & Palma Alvarado, V. A. (2015). The influence of platelet-derived products on angiogenesis and tissue repair: a concise update. Frontiers in Physiology, 6, 290. https://doi.org/10.3389/fphys.2015.00290spa
dc.relation.referencesMohamed-Ahmed, S., Fristad, I., Lie, S. A., Suliman, S., Mustafa, K., Vindenes, H., & Idris, S. B. (2018). Adipose-derived and bone marrow mesenchymal stem cells: a donor matched comparison. Stem Cell Research & Therapy, 9(1). https://doi.org/10.1186/s13287- 018-0914-1spa
dc.relation.referencesMoussavi-Harami, F., Duwayri, Y., Martin, J. A., Moussavi-Harami, F., & Buckwalter, J. A. (2004). Oxygen effects on senescence in chondrocytes and mesenchymal stem cells: consequences for tissue engineering. The Iowa Orthopaedic Journal, 24, 15–20.spa
dc.relation.referencesNATIONAL LIBRARY OF MEDICINE. (1979, enero). THE NLM TECHNICAL BULLETIN. THE NLM TECHNICAL BULLETIN. https://www.nlm.nih.gov/hmd/manuscripts/nlmarchives/techbull/117-128-1979.pdfspa
dc.relation.referencesPacifici, L., Casella, F., & Maggiore, C. (2002). Plasma arricchito di piastrine (PRP): metodi di estrazione e potenzialità d'uso [Platelet rich plasma (PRP): potentialities and techniques of extraction]. Minerva stomatologica, 51(7-8), 341–350.spa
dc.relation.referencesPlasma Rico en Plaquetas vs Plasma Pobre en Plaquetas | National Stem Cell Clinic. (2022). Retrieved 19 August 2022, from https://www.nationalstemcellclinic.com/plasma rico-en-plaquetas-vs-plasma-pobre-en-plaquetasspa
dc.relation.referencesQiu, P., Song, W., Niu, Z., Bai, Y., Li, W., Pan, S., Peng, S., & Hua, J. (2013). Platelet-derived growth factor promotes the proliferation of human umbilical cord-derived mesenchymal stem cells: PDGF PROMOTES THE PROLIFERATION OF hUC-MSCs. Cell Biochemistry and Function, 31(2), 159–165. https://doi.org/10.1002/cbf.2870spa
dc.relation.referencesSantos, F. (2022). Retrieved 2 September 2022, from https://onlinelibrary.wiley.com/doi/10.1002/bit.25187spa
dc.relation.referencesShaikh, M. V., Kala, M., & Nivsarkar, M. (2016). CD90 a potential cancer stem cell marker and a therapeutic target. Cancer Biomarkers: Section A of Disease Markers, 16(3), 301–307. https://doi.org/10.3233/CBM-160590spa
dc.relation.referencesSilva-Carvalho, A. É., Neves, F. A. R., & Saldanha-Araujo, F. (2020). The immunosuppressive mechanisms of mesenchymal stem cells are differentially regulated by platelet poor plasma and fetal bovine serum supplemented media. International Immunopharmacology, 79(106172), 106172. https://doi.org/10.1016/j.intimp.2019.106172spa
dc.relation.referencesSylakowski, K., Bradshaw, A., & Wells, A. (2020). Mesenchymal stem cell/multipotent stromal cell augmentation of wound healing: Lessons from the physiology of matrix and hypoxia support. The American Journal of Pathology, 190(7), 1370–1381. https://doi.org/10.1016/j.ajpath.2020.03.017spa
dc.relation.referencesWenger, R. H., Kurtcuoglu, V., Scholz, C. C., Marti, H. H., & Hoogewijs, D. (2015). Frequently asked questions in hypoxia research. Hypoxia (Auckland, N.Z.), 3, 35– 43. https://doi.org/10.2147/HP.S92198spa
dc.relation.referencesWu, D., & Yotnda, P. (2022). Induction and Testing of Hypoxia in Cell Culture. Retrieved 1 September 2022, from https://pubmed.ncbi.nlm.nih.gov/21860378/spa
dc.relation.referencesYang, YH.K., Ogando, C.R., Wang See, C. et al. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther 9, 131 (2018). https://doi.org/10.1186/s13287-018-0876-3spa
dc.relation.referencesZakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: past, present, and future. Stem cell research & therapy, 10(1), 68. https://doi.org/10.1186/s13287-019-1165-5spa
dc.relation.referencesZhao, A., Shah, K., Freitag, J., Cromer, B., & Sumer, H. (2020). Differentiation Potential of Early- and Late-Passage Adipose-Derived Mesenchymal Stem Cells Cultured under Hypoxia and Normoxia. Stem Cells International, 2020, 1-11. doi: 10.1155/2020/8898221spa
dc.relation.referencesZheng, X., Baker, H., Hancock, W. S., Fawaz, F., McCaman, M., & Pungor, E., Jr. (2006). Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnology Progress, 22(5), 1294–1300. https://doi.org/10.1021/bp060121ospa
dc.contributor.cvlacSolarte David, Víctor Alfonso [0001329391]spa
dc.contributor.cvlacBecerra Bayona, Silvia Milena [0001568861]spa
dc.contributor.googlescholarBecerra Bayona, Silvia Milena [es&oi=ao]spa
dc.contributor.orcidSolarte David, Víctor Alfonso [0000-0002-9856-1484]spa
dc.contributor.orcidBecerra Bayona, Silvia Milena [0000-0002-4499-5885]spa
dc.contributor.researchgateBecerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]spa
dc.subject.lembIngeniería biomédicaspa
dc.subject.lembIngenieríaspa
dc.subject.lembBiofísicaspa
dc.subject.lembBioingenieríaspa
dc.subject.lembMedicinaspa
dc.subject.lembBiomédicaspa
dc.subject.lembMédula óseaspa
dc.subject.lembCultivo de célulasspa
dc.subject.lembCélulas de clonaciónspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishMesenchymal stem cells (MSC) are used in regenerative medicine to treat various diseases. However, during its expansion in vitro, a high percentage dies due to standard culture conditions or time. For culture, medium supplemented with fetal bovine serum is usually used, which can cause immune problems, contamination and which, in turn, is expensive. In addition, apart from the incubation at 37 °C, the environment is in normal atmospheric oxygen conditions (normoxia) that differs from the physiological niche of the cells (hypoxia). Despite the known limitations, these methods continue to be used without taking into account the collateral damage that may be caused to the cells. Therefore, in this project the effect of hypoxic conditions (5% O2) and non-xenogeneic medium such as platelet-poor plasma (PPP) was evaluated by analyzing the number of population generations and population doubling time during the study. time in culture, in order to determine if the conditions presented above are optimal or feasible in the implementation of cell cultures. The evaluation was performed using four different culture conditions, which comprise normoxia with FBS as control group, normoxia with PPP, hypoxia with FBS and hypoxia with PPP. Through this research, we sought to evaluate the effect of the proposed experimental conditions for the expansion of MSCs, establishing the time and rate of population doubling. The control presented a proliferation rate of 0.989 and the cultures with the experimental conditions had a rate greater than 0.940, the condition in hypoxia supplemented with FBS being closest to the control with a value of 0.978. In addition, considering the population doubling time (TDP) reached by the MSCs in each one of the conditions, it was obtained that in a time of 1057 hours the cells supplemented with PPP did not exceed 15 population generations (GP) while in the same time the control reached 23 GP and in hypoxia with FBS approximately 22 GP. From this it is concluded that the culture condition in hypoxia with FBS is the one that presents more similarities to the control and can improve cell expansion, reduce oxidative stress, among others. On the other hand, the use of PPP is not recommended since its doubling time is considerably higher than the control.spa
dc.subject.proposalCélulas madre mesenquimales (MSC)spa
dc.subject.proposalCondiciones de cultivospa
dc.subject.proposalHipoxiaspa
dc.subject.proposalNormoxiaspa
dc.subject.proposalPlasma pobre en plaquetas (PPP)spa
dc.subject.proposalSuero fetal de bovino (FBS)spa
dc.subject.proposalTasa de duplicación poblacionalspa
dc.subject.proposalGeneraciones poblacionalesspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.relation.uriapolohttps://apolo.unab.edu.co/en/persons/v%C3%ADctor-alfonso-solarte-davidspa
dc.contributor.apolounabSolarte David, Víctor Alfonso [víctor-alfonso-solarte-david]spa
dc.contributor.apolounabBecerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]spa
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa
dc.contributor.linkedinBecerra Bayona, Silvia Milena [silvia-becerra-3174455a]


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia