Mostrar el registro sencillo del ítem

dc.contributor.advisorSolarte David, Víctor Alfonso
dc.contributor.advisorBecerra Bayona, Silvia Milena
dc.contributor.authorAlfonso Hernández, Andrés Felipe
dc.contributor.authorToloza Martínez, Diego Andrés
dc.contributor.authorMuriel Albadan, Juan Camilo
dc.coverage.spatialBucaramanga (Santander, Colombia)spa
dc.coverage.temporal2022spa
dc.date.accessioned2023-03-01T16:16:38Z
dc.date.available2023-03-01T16:16:38Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/20.500.12749/19152
dc.description.abstractEn la actualidad, la popularidad de la mamoplastia de aumento ha acrecentado hasta el punto en que es una de las intervenciones quirúrgicas con índole estético más realizadas a nivel global (Kontoes & Gounnaris, 2017). No obstante, el implante tras el proceso de cicatrización puede generar una cápsula fibrosa, la cual recubre el implante, provocando dolor significativo, lo que puede llevar a una reintervención (Headon et al., 2015) (Kzhyshkowska et al., 2015). Teniendo en cuenta que este proceso de cicatrización se lleva a cabo principalmente por una respuesta inmune, en la cual se asocia una fase inflamatoria. Por ende, resulta idóneo evaluar la respuesta inflamatoria que provocará el biomaterial para su uso en implantes mamarios. Sin embargo, actualmente los modelos que permiten estimar con precisión la respuesta inmune que pueden mediar la cicatrización de este tipo de implantes, son en su mayoría in vivo. El presente proyecto se centra en la realización de una prueba de concepto, con el fin de determinar si la maduración de monocitos a macrófagos in vitro podría ser utilizada como ensayo de tamizaje de la respuesta proinflamatoria en materiales para implantes mamarios. Para ello, se utilizó monocitos (línea celular THP-1), los cuales se incubaron con el biomaterial de interés con el fin de evaluar su maduración a macrófago como indicativo indirecto de una respuesta pro-inflamatoria. Esta diferenciación se evaluó, determinando el cambio morfológico de los monocitos asociado a estructuras específicas como el núcleo y citoplasma, para esto se usaron tinciones fluorescentes tales como DAPI y Rodamina. La morfología fue analizada principalmente asociando su cambio en la circularidad como evidencia de transformación, además de adherencia al plato de cultivo. Los resultados evidenciaron que las células tratadas con el implante no presentaron una diferencia significativa en el tamaño del núcleo con respecto al control y el tamaño del citoplasma y circularidad presentan diferencias estadísticas respecto a las CTPMA, estas características morfológicas impiden clasificar las CTI como macrófagos M0. Demostrando que el implante silicona utilizado es compatible con los monocitos dentro de un ambiente controlado. Puesto que, 5 no generó una respuesta inmune significativa, característica que se considera normal al usar un implante que se encuentra habilitado para su uso en personas.spa
dc.description.tableofcontentsProblema u Oportunidad Marco Teórico Estado del arte Metodología Resultados Y Análisis De Resultados Conclusiones Y Recomendaciones Referencias Anexosspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleDesarrollo de un test in vitro para la evaluación de la maduración de monocitos a macrófagos como posible predictor de una respuesta pro inflamatoria en implantes mamariosspa
dc.title.translatedDevelopment of an in vitro test for the evaluation of monocyte maturation at macrophages as a possible predictor of a proinflammatory response in breast implantsspa
dc.degree.nameIngeniero Biomédicospa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programPregrado Ingeniería Biomédicaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsBiomedical engineeringspa
dc.subject.keywordsEngineeringspa
dc.subject.keywordsMedical electronicsspa
dc.subject.keywordsBiological physicsspa
dc.subject.keywordsBioengineeringspa
dc.subject.keywordsMedical instruments and apparatusspa
dc.subject.keywordsMedicinespa
dc.subject.keywordsBiomedicalspa
dc.subject.keywordsClinical engineeringspa
dc.subject.keywordsMammoplastyspa
dc.subject.keywordsCapsular contracture in implantsspa
dc.subject.keywordsIn vitrospa
dc.subject.keywordsFluorescence stainingspa
dc.subject.keywordsCell morphologyspa
dc.subject.keywordsCell activationspa
dc.subject.keywordsBreast implantsspa
dc.subject.keywordsMonocytesspa
dc.subject.keywordsMacrophagespa
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.relation.referencesAl-Maawi, S., Orlowska, A., Sader, R., Kirkpatrick, C. J., & Ghanaati, S. (2017). In vivo cellular reactions to different biomaterials-Physiological and pathological aspects and their consequences. Pubmed. https://doi.org/10.1016/j.smim.2017.06.001spa
dc.relation.referencesAnderson, J. M. (2001). Biological Responses to Materials. Annual Review of Materials Research, 31, 81-110. https://doi.org/https://doi.org/10.1146/annurev.matsci.31.1.81spa
dc.relation.referencesAnderson, J. M., Rodriguez, A., & Chang, D. T. (2008). Foreign body reaction to biomaterials. Semin Immunol, 20(2), 86-100. https://doi.org/10.1016/j.smim.2007.11.004spa
dc.relation.referencesBarr, S., Hill, E. W., & Bayat, A. (2017). Functional biocompatibility testing of silicone breast implants and a novel classification system based on surface roughness. J Mech Behav Biomed Mater, 75, 75-81. https://doi.org/10.1016/j.jmbbm.2017.06.030spa
dc.relation.referencesBroughton, G., 2nd, Janis, J. E., & Attinger, C. E. (2006). The basic science of wound healing. Plast Reconstr Surg, 117(7 Suppl), 12S-34S. https://doi.org/10.1097/01.prs.0000225430.42531.c2spa
dc.relation.referencesCaputa, G., Flachsmann, L. J., & Cameron, A. M. (2019). Macrophage metabolism: a woundhealing perspective. Immunol Cell Biol, 97(3), 268-278. https://doi.org/10.1111/imcb.12237spa
dc.relation.referencesChanput, W., Mes, J. J., & Wichers, H. J. (2014). THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol, 23(1), 37-45. https://doi.org/10.1016/j.intimp.2014.08.002spa
dc.relation.referencesColaris, M. J. L., Ruhl, T., & Beier, J. P. (2022). Effects of Silicone Breast Implants on Human Cell Types In Vitro: A Closer Look on Host and Implant. Aesthetic Plast Surg. https://doi.org/10.1007/s00266-021-02762-xspa
dc.relation.referencesEspinoza, V. E., & Emmady, P. D. (2022). Histology, Monocytes. In StatPearls. https://www.ncbi.nlm.nih.gov/pubmed/32491550spa
dc.relation.referencesFujiwara, N., & Kobayashi, K. (2005). Macrophages in inflammation. Curr Drug Targets Inflamm 58 Allergy, 4(3), 281-286. https://doi.org/10.2174/1568010054022024spa
dc.relation.referencesGenin, M., Clement, F., Fattaccioli, A., Raes, M., & Michiels, C. (2015). M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer, 15, 577. https://doi.org/10.1186/s12885-015-1546-9spa
dc.relation.referencesHeadon, H., Kasem, A., & Mokbel, K. (2015). Capsular Contracture after Breast Augmentation: An Update for Clinical Practice. Arch Plast Surg, 42(5), 532-543. https://doi.org/10.5999/aps.2015.42.5.532spa
dc.relation.referencesHeden, P., Jernbeck, J., & Hober, M. (2001). Breast augmentation with anatomical cohesive gel implants: the world's largest current experience. Clin Plast Surg, 28(3), 531-552. https://www.ncbi.nlm.nih.gov/pubmed/11471959spa
dc.relation.referencesHirsch, C. (2016). Culturing and differentiating THP-1 cells. EMPAspa
dc.relation.referencesItaliani, P., & Boraschi, D. (2014). From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front Immunol, 5, 514. https://doi.org/10.3389/fimmu.2014.00514spa
dc.relation.referencesKim, H. S., Kim, S., Shin, B. H., Heo, C. Y., Faruq, O., Van Anh, L. T., Donmez, N., Chien, P. N., Shin, D. S., Nam, S. Y., & Baek, R. M. (2021). Silicone Implants Immobilized with Interleukin-4 Promote the M2 Polarization of Macrophages and Inhibit the Formation of Fibrous Capsules. Polymers (Basel), 13(16). https://doi.org/10.3390/polym13162630spa
dc.relation.referencesKirkpatrick, C. J., Krump-Konvalinkova, V., Unger, R. E., Bittinger, F., Otto, M., & Peters, K. (2002). Tissue response and biomaterial integration: the efficacy of in vitro methods. Biomol Eng, 19(2-6), 211-217. https://doi.org/10.1016/s1389-0344(02)00019-9spa
dc.relation.referencesKontoes, P., & Gounnaris, G. (2017). Complications of Fat Transfer for Breast Augmentation. Aesthetic Plast Surg, 41(5), 1078-1082. https://doi.org/10.1007/s00266-017-0911-2spa
dc.relation.referencesKratofil, R. M., Kubes, P., & Deniset, J. F. (2017). Monocyte Conversion During Inflammation and Injury. Arterioscler Thromb Vasc Biol, 37(1), 35-42. 59 https://doi.org/10.1161/ATVBAHA.116.308198spa
dc.relation.referencesKzhyshkowska, J., Gudima, A., Riabov, V., Dollinger, C., Lavalle, P., & Vrana, N. E. (2015). Macrophage responses to implants: prospects for personalized medicine. J Leukoc Biol, 98(6), 953-962. https://doi.org/10.1189/jlb.5VMR0415-166Rspa
dc.relation.referencesLamers, E., Walboomers, X. F., Domanski, M., Prodanov, L., Melis, J., Luttge, R., Winnubst, L., Anderson, J. M., Gardeniers, H. J., & Jansen, J. A. (2012). In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates. Nanomedicine, 8(3), 308- 317. https://doi.org/10.1016/j.nano.2011.06.013spa
dc.relation.referencesLee, H. S., Stachelek, S. J., Tomczyk, N., Finley, M. J., Composto, R. J., & Eckmann, D. M. (2013). Correlating macrophage morphology and cytokine production resulting from biomaterial contact. J Biomed Mater Res A, 101(1), 203-212. https://doi.org/10.1002/jbm.a.34309spa
dc.relation.referencesMadhvi, A., Mishra, H., Leisching, G. R., Mahlobo, P. Z., & Baker, B. (2019). Comparison of human monocyte derived macrophages and THP1-like macrophages as in vitro models for M. tuberculosis infection. Comp Immunol Microbiol Infect Dis, 67, 101355. https://doi.org/10.1016/j.cimid.2019.101355spa
dc.relation.referencesMartin, K. E., & Garcia, A. J. (2021). Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater, 133, 4-16. https://doi.org/10.1016/j.actbio.2021.03.038spa
dc.relation.referencesMcManus., L., & Mitchell, R. (2014). Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanismsspa
dc.relation.referencesMempin, M., Hu, H., Chowdhury, D., Deva, A., & Vickery, K. (2018). The A, B and C's of Silicone Breast Implants: Anaplastic Large Cell Lymphoma, Biofilm and Capsular Contracture. Materials (Basel), 11(12). https://doi.org/10.3390/ma11122393spa
dc.relation.referencesMunoz-Pinto, D. J., Jimenez-Vergara, A. C., Gharat, T. P., & Hahn, M. S. (2015). Characterization of sequential collagen-poly(ethylene glycol) diacrylate interpenetrating networks and 60 initial assessment of their potential for vascular tissue engineering. Biomaterials, 40, 32– 42. https://doi.org/10.1016/j.biomaterials.2014.10.051spa
dc.relation.referencesNamnoum, J. D., Largent, J., Kaplan, H. M., Oefelein, M. G., & Brown, M. H. (2013). Primary breast augmentation clinical trial outcomes stratified by surgical incision, anatomical placement and implant device type. J Plast Reconstr Aesthet Surg, 66(9), 1165-1172. https://doi.org/10.1016/j.bjps.2013.04.046spa
dc.relation.referencesOrekhov AN, O. V., Nikiforov NG, Myasoedova VA, Grechko AV, Romanenko EB, Zhang D, Chistiakov DA. (2019). Monocyte differentiation and macrophage polarization. Vessel Plus. https://doi.org/10.20517/2574-1209.2019.04spa
dc.relation.referencesParadkar, P. H., Mishra, L. S., Joshi, J. V., Dandekar, S. P., Vaidya, R. A., & Vaidya, A. B. (2017). In vitro macrophage activation: A technique for screening anti-inflammatory, immunomodulatory and anticancer activity of phytomolecules. Indian J Exp Biol, 55(3), 133-141. https://www.ncbi.nlm.nih.gov/pubmed/30184414spa
dc.relation.referencesPatiño, A. C. G., & Palacio, T. G. (2009). ESTANDARIZACIÓN DE DOS TÉCNICAS PARA EVALUAR ACTIVIDAD Y VIABILIDAD CELULAR IN VITRO EN RESPUESTA A BIOMATERIALES UAO. http://hdl.handle.net/10614/1111spa
dc.relation.referencesPearson, R. M. (1986). In-vitro techniques: can they replace animal testing? Pubmed. https://doi.org/10.1093/oxfordjournals.humrep.a136473spa
dc.relation.referencesProost, P., Wuyts, A., & van Damme, J. (1996). The role of chemokines in inflammation. Int J Clin Lab Res, 26(4), 211-223. https://doi.org/10.1007/BF02602952spa
dc.relation.referencesSaeidnia, S., Manayi, A., & Abdollahi, M. (2015). From in vitro Experiments to in vivo and Clinical Studies; Pros and Cons. Curr Drug Discov Technol, 12(4), 218-224. https://doi.org/10.2174/1570163813666160114093140spa
dc.relation.referencesStein, H., Foss, H. D., Durkop, H., Marafioti, T., Delsol, G., Pulford, K., Pileri, S., & Falini, B. (2000). CD30(+) anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood, 96(12), 3681-3695. 61 https://www.ncbi.nlm.nih.gov/pubmed/11090048spa
dc.relation.referencesVan Zele, D., & Heymans, O. (2004). Breast implants. A review. Acta Chir Belg, 104(2), 158- 165. https://doi.org/10.1080/00015458.2004.11679528spa
dc.relation.referencesWolfram, D., Rainer, C., Niederegger, H., Piza, H., & Wick, G. (2004). Cellular and molecular composition of fibrous capsules formed around silicone breast implants with special focus on local immune reactions. Pubmed. https://doi.org/10.1016/j.jaut.2004.03.005spa
dc.relation.referencesXia, Z., & Triffitt, J. T. (2006). A review on macrophage responses to biomaterials. Biomed Mater, 1(1), R1-9. https://doi.org/10.1088/1748-6041/1/1/R01spa
dc.relation.referencesYao, Y., Xu, X. H., & Jin, L. (2019). Macrophage Polarization in Physiological and Pathological Pregnancy. Front Immunol, 10, 792. https://doi.org/10.3389/fimmu.2019.00792spa
dc.contributor.cvlacSolarte David, Víctor Alfonso [0001329391]spa
dc.contributor.cvlacBecerra Bayona, Silvia Milena [0001568861]spa
dc.contributor.googlescholarBecerra Bayona, Silvia Milena [5wr21EQAAAAJ]spa
dc.contributor.orcidSolarte David, Víctor Alfonso [0000-0002-9856-1484]spa
dc.contributor.orcidBecerra Bayona, Silvia Milena [0000-0002-4499-5885]spa
dc.contributor.scopusBecerra Bayona, Silvia Milena [36522328100]spa
dc.contributor.researchgateBecerra Bayona, Silvia Milena [Silvia_Becerra-Bayona]spa
dc.subject.lembIngeniería biomédicaspa
dc.subject.lembIngenieríaspa
dc.subject.lembBiofísicaspa
dc.subject.lembBioingenieríaspa
dc.subject.lembMedicinaspa
dc.subject.lembBiomédicaspa
dc.subject.lembImplantes mamariosspa
dc.subject.lembMonocitosspa
dc.subject.lembMacrófagospa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishCurrently, the popularity of augmentation mammoplasty has increased to the point where it is one of the most performed cosmetic surgeries globally (Kontoes & Gounnaris, 2017). However, the implant after the healing process can generate a fibrous capsule, which covers the implant, causing significant pain, which can lead to a reoperation (Headon et al., 2015) (Kzhyshkowska et al., 2015). Taking into account that this healing process is carried out mainly by an immune response, in which an inflammatory phase is associated. Therefore, it is ideal to evaluate the inflammatory response that the biomaterial will cause for its use in breast implants. However, currently the models that make it possible to accurately estimate the immune response that can mediate the healing of this type of implants are mostly in vivo. This project focuses on carrying out a proof of concept, in order to determine if the maturation of monocytes to macrophages in vitro could be used as a screening test for the proinflammatory response in materials for breast implants. For this, monocytes (THP-1 cell line) were used, which were incubated with the biomaterial of interest in order to evaluate their maturation into macrophages as an indirect indicator of a pro-inflammatory response. This differentiation was evaluated, determining the morphological change of monocytes associated with specific structures such as the nucleus and cytoplasm, for this, fluorescent stains such as DAPI and Rhodamine were used. The morphology was mainly analyzed associating its change in circularity as evidence of transformation, as well as adherence to the culture dish. The results showed that the cells treated with the implant did not present a significant difference in the size of the nucleus with respect to the control and the size of the cytoplasm and circularity present statistical differences with respect to the CTPMA, these morphological characteristics prevent classifying the ITC as M0 macrophages. Demonstrating that the silicone implant used is compatible with monocytes within a controlled environment. Since 5 did not generate a significant immune response, a characteristic that is considered normal when using an implant that is approved for use in people.spa
dc.subject.proposalIngeniería clínicaspa
dc.subject.proposalElectrónica médicaspa
dc.subject.proposalInstrumentos y aparatos médicosspa
dc.subject.proposalMamoplastiaspa
dc.subject.proposalContractura capsular en implantesspa
dc.subject.proposalTinción de fluorescenciaspa
dc.subject.proposalMorfología celularspa
dc.subject.proposalActivación celularspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.relation.uriapolohttps://apolo.unab.edu.co/en/persons/v%C3%ADctor-alfonso-solarte-davidspa
dc.contributor.apolounabSolarte David, Víctor Alfonso [víctor-alfonso-solarte-david]spa
dc.contributor.apolounabBecerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]spa
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa
dc.contributor.linkedinBecerra Bayona, Silvia Milena [silvia-becerra-3174455a]


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia