Mostrar el registro sencillo del ítem

dc.contributor.advisorSolarte David, Víctor Alfonso
dc.contributor.advisorBecerra Bayona, Silvia Milena
dc.contributor.authorRojas Cárdenas, Luis David
dc.coverage.spatialBucaramanga (Santander, Colombia)spa
dc.coverage.temporal2022spa
dc.date.accessioned2023-02-20T14:22:21Z
dc.date.available2023-02-20T14:22:21Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/20.500.12749/19050
dc.description.abstractLa diabetes mellitus es una enfermedad que en la actualidad se considera un problema de salud pública y se estima que afecte a más de 700 millones de personas adultas en los años venideros. Una de sus principales complicaciones son las úlceras crónicas de pie diabético (UCPD), lesiones cutáneas que en la actualidad no tienen tratamientos 100% efectivos y que afectan de manera significativa la calidad de vida de quienes la padecen, lo que ha incrementado la necesidad de encontrar tratamientos que mejoren el proceso de cicatrización de este tipo de heridas. Por lo anterior, en el presente proyecto se ha sido utilizado piel de tilapia roja, un desecho de la industria acuícola, para extraer colágeno y con este elaborar hidrogeles, los cuales se reticularon con plasma pobre en plaquetas (PPP), una fracción de la sangre que no ha sido frecuentemente utilizada para la investigación. El proceso de extracción de colágeno ácido soluble permitió obtener un rendimiento en base seca cercano al 40%, y a partir de este, fabricar los hidrogeles y reticularlos con el PPP, obteniendo una dinámica adecuada en cuanto a la liberación de proteínas. Estos hidrogeles se sometieron a diferentes ensayos con el fin de determinar sus propiedades mecánicas y físicas, encontrando módulos de compresión similares a los de las capas internas de la piel, así como una capacidad de hinchamiento óptima, lo que les permitiría entregar la humedad necesaria a la herida durante el proceso de cicatrización. Finalmente, a partir de pruebas in vitro, se determinó que el lixiviado producido por los hidrogeles mantiene la viabilidad celular en un periodo de 48 horas, al permitir la proliferación de fibroblastos de la línea celular HT1080. Estos resultados indican que los hidrogeles fabricados en el presente estudio podrían ser una alternativa terapéutica para el tratamiento de las UCPD.spa
dc.description.tableofcontentsCapítulo 1. Problemática identificada........................................................................................... 10 Planteamiento del problema ...................................................................................................... 10 Justificación............................................................................................................................... 11 Pregunta problema..................................................................................................................... 13 Objetivo general ........................................................................................................................ 13 Objetivos específicos................................................................................................................. 13 Capítulo 2. Marco teórico ............................................................................................................. 15 La piel........................................................................................................................................ 15 Propiedades mecánicas......................................................................................................... 16 Biomateriales............................................................................................................................. 17 El colágeno................................................................................................................................ 18 Estructura del colágeno......................................................................................................... 19 Propiedades y aplicaciones del colágeno ............................................................................. 20 Fuentes y proceso de extracción del colágeno...................................................................... 22 Plasma pobre en plaquetas (PPP).............................................................................................. 25 Hidrogeles ................................................................................................................................. 25 Úlceras crónicas de pie diabético (UCPD)................................................................................ 26 Tratamientos actuales para las UCPD ................................................................................. 28 Capítulo 3. Estado del arte ............................................................................................................ 29 Capítulo 4. Metodología ............................................................................................................... 33 Extracción de colágeno a partir de piel de tilapia roja .............................................................. 33 Preparación de la piel de tilapia roja ................................................................................... 34 Blanqueamiento de la piel ..................................................................................................... 34 Desengrasado de la piel ........................................................................................................ 34 Hidrólisis básica de la piel.................................................................................................... 35 Extracción ácida de la piel.................................................................................................... 35 Salting-out del precipitado .................................................................................................... 35 Diálisis del colágeno ............................................................................................................. 36 Liofilización del colágeno ..................................................................................................... 36 Rendimiento de extracción de colágeno ácido soluble (ASC)............................................... 36 Elaboración de hidrogeles......................................................................................................... 37 Hidrogeles de colágeno (HC)................................................................................................. 37 Hidrogeles de PPP y colágeno (HC+PPP)............................................................................... 38 Hidrogeles de PPP (HPPP)..................................................................................................... 38 Concentración de proteínas en los hidrogeles...................................................................... 39 Pruebas mecánicas..................................................................................................................... 40 Prueba mecánica de compresión (PMC)............................................................................... 40 Prueba mecánica de tensión (PMT)...................................................................................... 41 Prueba de hinchamiento........................................................................................................ 41 Prueba de degradación de los hidrogeles............................................................................. 42 Ensayo de citotoxicidad ............................................................................................................ 42 Prueba de proliferación celular con lixiviados de hidrogeles.............................................. 42 Análisis estadísticos.................................................................................................................. 45 Capítulo 5. Resultados y análisis.................................................................................................. 46 Extracción de colágeno a partir de piel de tilapia roja .............................................................. 46 Elaboración de hidrogeles de colágeno puro, PPP puro y colágeno + PPP .............................. 50 Concentración de proteínas inmovilizadas y liberadas por los hidrogeles................................ 52 Caracterización mecánica de los hidrogeles.............................................................................. 56 Evaluación del módulo de compresión.................................................................................. 56 Evaluación del módulo de Young .......................................................................................... 62 Evaluación de la capacidad de hinchamiento de los hidrogeles........................................... 63 Degradación de los hidrogeles.............................................................................................. 66 Ensayo de proliferación celular utilizando lixiviados de los hidrogeles................................... 69 Análisis de resultados................................................................................................................ 72 Capítulo 6. Conclusiones y recomendaciones .............................................................................. 82 Referencias.................................................................................................................................... 84 Anexos .......................................................................................................................................... 96spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleDesarrollo de un apósito tipo hidrogel de plasma pobre en plaquetas y colágeno extraído de piel de tilapia con potencial uso para el tratamiento de úlceras crónicas de pie diabéticospa
dc.title.translatedDevelopment of a platelet-poor plasma hydrogel-type dressing and collagen extracted from tilapia skin with potential use for the treatment of chronic diabetic foot ulcersspa
dc.degree.nameIngeniero Biomédicospa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programPregrado Ingeniería Biomédicaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsBiomedical engineeringspa
dc.subject.keywordsEngineeringspa
dc.subject.keywordsMedical electronicsspa
dc.subject.keywordsBiological physicsspa
dc.subject.keywordsBioengineeringspa
dc.subject.keywordsMedical instruments and apparatusspa
dc.subject.keywordsMedicinespa
dc.subject.keywordsBiomedicalspa
dc.subject.keywordsClinical engineeringspa
dc.subject.keywordsCollagenspa
dc.subject.keywordsCytotoxicityspa
dc.subject.keywordsFibroblastsspa
dc.subject.keywordsHydrogelsspa
dc.subject.keywordsPlatelet poor plasmaspa
dc.subject.keywordsMellitus diabetesspa
dc.subject.keywordsFoot diseasesspa
dc.subject.keywordsFeet (Ulcers)spa
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.relation.referencesAfonso, A. C., Oliveira, D., Saavedra, M. J., Borges, A., & Simões, M. (2021). Biofilms in Diabetic Foot Ulcers: Impact, Risk Factors and Control Strategies. International Journal of Molecular Sciences, 22(15), 25. https://doi.org/10.3390/ijms22158278spa
dc.relation.referencesAguilar Hurtado, M. (2020). Plan Territorial de Salud “Santander por el mundo.” 433–553. http://santandercompetitivo.org/media/31e7ab1122d0b7c84b7dde25e69879dd863b0a59.pdfspa
dc.relation.referencesAntoine, E. E., Vlachos, P. P., & Rylander, M. N. (2015). Tunable collagen I hydrogels for engineered physiological tissue micro-environments. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0122500spa
dc.relation.referencesAumiller, W. D., & Dollahite, H. A. (2015). Pathogenesis and management of diabetic foot ulcers. Journal of the American Academy of Physician Assistants, 28(5), 28–34. https://doi.org/10.1097/01.JAA.0000464276.44117.b1spa
dc.relation.referencesBader, D. L., & Bowker, P. (1983). Mechanical characteristics of skin and underlying tissues in vivo. Biomaterials, 4(4), 305–308. https://doi.org/10.1016/0142-9612(83)90033-9spa
dc.relation.referencesBandyk, D. F. (2018). The diabetic foot: Pathophysiology, evaluation, and treatment. Seminars in Vascular Surgery, 31(2–4), 43–48. https://doi.org/10.1053/j.semvascsurg.2019.02.001spa
dc.relation.referencesCarretero Villanueva, N. C. (2014). Desarrollo de un hidrogel como soporte para el cultivo de células osteoprogenitoras [Universidad El Bosque]. http://hdl.handle.net/20.500.12495/5241spa
dc.relation.referencesCatoira, M. C., Fusaro, L., Di Francesco, D., Ramella, M., & Boccafoschi, F. (2019). Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science: 85 Materials in Medicine, 30(10). https://doi.org/10.1007/s10856-019-6318-7spa
dc.relation.referencesChellini, F., Tani, A., Zecchi-Orlandini, S., & Sassoli, C. (2019). Influence of platelet-rich and platelet-poor plasma on endogenous mechanisms of skeletal muscle repair/regeneration. International Journal of Molecular Sciences, 20(3). https://doi.org/10.3390/ijms20030683spa
dc.relation.referencesChen, J., Li, L., Yi, R., Xu, N., Gao, R., & Hong, B. (2016). Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus). LWT - Food Science and Technology, 66, 453–459. https://doi.org/10.1016/j.lwt.2015.10.070spa
dc.relation.referencesCheng, M., Wang, H., Yoshida, R., & Murray, M. M. (2010). Platelets and Plasma Proteins Are Both Required to Stimulate Collagen Gene Expression by Anterior Cruciate Ligament Cells in Three-Dimensional Culture. Tissue Engineering Part A, 16(5), 1479–1489. https://doi.org/10.1089/ten.tea.2009.0199spa
dc.relation.referencesChiang, N., Rodda, O. A., Kang, A., Sleigh, J., & Vasudevan, T. (2018). Clinical Evaluation of Portable Wound Volumetric Measurement Devices. Advances in Skin and Wound Care, 31(8), 374–380. https://doi.org/10.1097/01.ASW.0000540072.52782.24spa
dc.relation.referencesChisini, L. A., Karam, S. A., Noronha, T. G., Sartori, L. R. M., Martin, A. S. S., Demarco, F. F., & Conde, M. C. M. (2017). Platelet-Poor Plasma as a Supplement for Fibroblasts Cultured in Platelet-Rich Fibrin. Acta Stomatologica Croatica, 51(2), 133–140. https://doi.org/10.15644/asc51/2/6spa
dc.relation.referencesChuang, C. H., Lin, R. Z., Melero-Martin, J. M., & Chen, Y. C. (2018). Comparison of covalently and physically cross-linked collagen hydrogels on mediating vascular network formation for engineering adipose tissue. Artificial Cells, Nanomedicine and Biotechnology, 46(sup3), S434–S447. https://doi.org/10.1080/21691401.2018.1499660spa
dc.relation.referencesChung, E., Rytlewski, J. A., Merchant, A. G., Dhada, K. S., Lewis, E. W., & Suggs, L. J. (2015). Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells. Acta Biomaterialia, 17(January), 78–88. https://doi.org/10.1016/j.actbio.2015.01.012spa
dc.relation.referencesCruz, A. (2003). Biología de la cicatrización. Revista Asociación Colombiana de Dermatología y Cirugía Dermatológica, 11(1), 45–62. https://revista.asocolderma.org.co/index.php/asocolderma/article/view/623/577spa
dc.relation.referencesDinescu, S., Albu Kaya, M., Chitoiu, L., Ignat, S., Kaya, D. A., & Costache, M. (2019). Collagen-Based Hydrogels and Their Applications for Tissue Engineering and Regenerative Medicine. January, 1643–1664. https://doi.org/10.1007/978-3-319-77830- 3_54spa
dc.relation.referencesDiridollou, S., Vabre, V., Berson, M., Vaillant, L., Black, D., Lagarde, J. M., Grégoire, J. M., Gall, Y., & Patat, F. (2001). Skin ageing: Changes of physical properties of human skin in vivo. International Journal of Cosmetic Science, 23(6), 353–362. https://doi.org/10.1046/j.0412-5463.2001.00105.xspa
dc.relation.referencesEgorikhina, M. N., Aleynik, D. Y., Rubtsova, Y. P., Levin, G. Y., Charykova, I. N., Semenycheva, L. L., Bugrova, M. L., & Zakharychev, E. A. (2019). Hydrogel scaffolds based on blood plasma cryoprecipitate and collagen derived from various sources: Structural, mechanical and biological characteristics. Bioactive Materials, 4(June 2019), 334–345. https://doi.org/10.1016/j.bioactmat.2019.10.003spa
dc.relation.referencesFalanga, V. (2020). Bioengineered skin constructs. In Principles of Tissue Engineering. INC. https://doi.org/10.1016/B978-0-12-818422-6.00073-3spa
dc.relation.referencesFang, S. (2018). Development of collagen-based scaffolds for differentiation of induced 87 pluripotent stem cells [Binghamton University]. https://orb.binghamton.edu/dissertation_and_theses/87spa
dc.relation.referencesFleck, C. A., & Simman, R. (2010). Modern collagen wound dressings: Function and purpose. Journal of the American College of Certified Wound Specialists, 2(3), 50–54. https://doi.org/10.1016/j.jcws.2010.12.003spa
dc.relation.referencesGe, B., Wang, H., Li, J., Liu, H., Yin, Y., Zhang, N., & Qin, S. (2020). Comprehensive Assessment of Nile Tilapia Skin (Oreochromis niloticus) Collagen Hydrogels for Wound Dressings. Marine Drugs, 18(4), 178. https://doi.org/10.3390/md18040178spa
dc.relation.referencesGeerligs, M. (2010). Skin layer mechanics. In Skin layer mechanics (Issue 2010).spa
dc.relation.referencesGrover, C. N., Cameron, R. E., & Best, S. M. (2012). Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 10, 62–74. https://doi.org/10.1016/j.jmbbm.2012.02.028spa
dc.relation.referencesGu, L., Shan, T., Ma, Y. xuan, Tay, F. R., & Niu, L. (2019). Novel Biomedical Applications of Crosslinked Collagen. Trends in Biotechnology, 37(5), 464–491. https://doi.org/10.1016/j.tibtech.2018.10.007spa
dc.relation.referencesHolmes, C., Wrobel, J. S., Maceachern, M. P., & Boles, B. R. (2013). Collagen-based wound dressings for the treatment of diabetes-related foot ulcers: A systematic review. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 6, 17–29. https://doi.org/10.2147/DMSO.S36024spa
dc.relation.referencesHoudek, M. T., Wyles, C. C., Stalboerger, P. G., Terzic, A., Behfar, A., & Moran, S. L. (2016). 88 Collagen and Fractionated Platelet-Rich Plasma Scaffold for Dermal Regeneration. Plastic and Reconstructive Surgery, 137(5), 1498–1506. https://doi.org/10.1097/PRS.0000000000002094spa
dc.relation.referencesHyland, J. C. (2007). Skin and connective tissue disorders. Molecular Pathology in Clinical Practice, Md, 191–203. https://doi.org/10.1007/978-0-387-33227-7_16spa
dc.relation.referencesInternational Diabetes Federation. (2021). IDF Diabetes Atlas 2021 (10th ed.).spa
dc.relation.referencesIsaza López, J. A. (2019). Mechanical Behavior of Skin in Function of its Layers Thickness. Universidad Nacional de Colombia.spa
dc.relation.referencesJafari, H., Lista, A., Siekapen, M. M., Ghaffari-Bohlouli, P., Nie, L., Alimoradi, H., & Shavandi, A. (2020). Fish collagen: Extraction, characterization, and applications for biomaterials engineering. Polymers, 12(10), 1–37. https://doi.org/10.3390/polym12102230spa
dc.relation.referencesJoodaki, H., & Panzer, M. B. (2018). Skin mechanical properties and modeling: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(4), 323–343. https://doi.org/10.1177/0954411918759801spa
dc.relation.referencesKalra, A., & Lowe, A. (2016). An Overview of Factors Affecting the Skins Youngs Modulus. Journal of Aging Science, 4(2). https://doi.org/10.4172/2329-8847.1000156spa
dc.relation.referencesKarami, A., Tebyanian, H., Sayyad Soufdoost, R., Motavallian, E., Barkhordari, A., & Nourani, M. R. (2019). Extraction and Characterization of Collagen with Cost-Effective Method from Human Placenta for Biomedical Applications. World Journal of Plastic Surgery, 8(3), 352–358. https://doi.org/10.29252/wjps.8.3.352spa
dc.relation.referencesKhan, Y., M. Khan, M., & Raza Farooqui, M. (2017). Diabetic foot ulcers: a review of current 89 management. International Journal of Research in Medical Sciences, 5(11), 4683. https://doi.org/10.18203/2320-6012.ijrms20174916spa
dc.relation.referencesKiran, A. S. K., & Ramakrishna, S. (2021). Biomaterials: Basic principles. An Introduction to Biomaterials Science and Engineering, 82–93. https://doi.org/10.1142/9789811228186_0004spa
dc.relation.referencesLi, J., Wang, M., Qiao, Y., Tian, Y., Liu, J., Qin, S., & Wu, W. (2018). Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering. Process Biochemistry, 74, 156–163. https://doi.org/10.1016/j.procbio.2018.07.009spa
dc.relation.referencesLim, J. Z. M., Ng, N. S. L., & Thomas, C. (2017). Prevention and treatment of diabetic foot ulcers. Journal of the Royal Society of Medicine, 110(3), 104–109. https://doi.org/10.1177/0141076816688346spa
dc.relation.referencesLiu, C. Y., Matsusaki, M., & Akashi, M. (2015). Cell effects on the formation of collagen triple helix fibers inside collagen gels or on cell surfaces. Polymer Journal, 47(5), 391–399. https://doi.org/10.1038/pj.2015.2spa
dc.relation.referencesMartínez-Correa, E., Osorio-Delgado, M. A., Henao-Tamayo, L. J., & Castro-Herazo, C. I. (2020). Systemic classification of wound dressings: A review. Revista Mexicana de Ingenieria Biomedica, 41(1), 5–28. https://doi.org/10.17488/RMIB.41.1.1spa
dc.relation.referencesMeisenberg, G., & Simmons, W. (2018). Principles of Medical Biochemistry (4th ed.). Elsevier Inc.spa
dc.relation.referencesMeyer, M. (2019). Processing of collagen based biomaterials and the resulting materials 90 properties. BioMedical Engineering Online, 18(1), 1–74. https://doi.org/10.1186/s12938- 019-0647-0spa
dc.relation.referencesMinAgricultura - SIOC. (2020). Cadena de la Acuicultura 3°Trimestre 2020. https://sioc.minagricultura.gov.co/Acuicultura/Documentos/2020-09-30 Cifras Sectoriales.pdfspa
dc.relation.referencesMisiura, M., Guszczyn, T., Oscilowska, I., Baszanowska, W., Palka, J., & Miltyk, W. (2021). Platelet-rich plasma promotes the proliferation of human keratinocytes via a progression of the cell cycle. A role of prolidase. International Journal of Molecular Sciences, 22(2), 1–14. https://doi.org/10.3390/ijms22020936spa
dc.relation.referencesMonteiro-Soares, M., Boyko, E. J., Jeffcoate, W., Mills, J. L., Russell, D., Morbach, S., & Game, F. (2020). Diabetic foot ulcer classifications: A critical review. Diabetes/Metabolism Research and Reviews, 36(S1), 1–16. https://doi.org/10.1002/dmrr.3272spa
dc.relation.referencesMontero, A., Quílez, C., Valencia, L., Girón, P., Jorcano, J. L., & Velasco, D. (2021). Effect of fibrin concentration on the in vitro production of dermo‐epidermal equivalents. International Journal of Molecular Sciences, 22(13). https://doi.org/10.3390/ijms22136746spa
dc.relation.referencesNatesan, S., Stone, R., Coronado, R. E., Wrice, N. L., Kowalczewski, A. C., Zamora, D. O., & Christy, R. J. (2019). PEGylated Platelet-Free Blood Plasma-Based Hydrogels for FullThickness Wound Regeneration. Advances in Wound Care, 8(7), 323–340. https://doi.org/10.1089/wound.2018.0844spa
dc.relation.referencesNguyen, T. U., Watkins, K. E., & Kishore, V. (2019). Photochemically crosslinked cell-laden methacrylated collagen hydrogels with high cell viability and functionality. Journal of Biomedical Materials Research - Part A, September 2018, 1541–1550. 91 https://doi.org/10.1002/jbm.a.36668spa
dc.relation.referencesOsidak, E. O., Kalabusheva, E. P., Alpeeva, E. V., Belousov, S. I., Krasheninnikov, S. V., Grigoriev, T. E., Domogatsky, S. P., Vorotelyak, E. A., & Chermnykh, E. S. (2021). Concentrated collagen hydrogels: A new approach for developing artificial tissues. Materialia, 20(September), 101217. https://doi.org/10.1016/j.mtla.2021.101217spa
dc.relation.referencesOwczarzy, A., Kurasiński, R., Kulig, K., Rogóż, W., Szkudlarek, A., & Maciążek-Jurczyk, M. (2020). Collagen-structure, properties and application. Engineering of Biomaterials, 156, 17–23. https://doi.org/10.34821/eng.biomat.156.2020.17-23spa
dc.relation.referencesPankajakshan, D., Voytik-Harbin, S. L., Nör, J. E., & Bottino, M. C. (2020). Injectable Highly Tunable Oligomeric Collagen Matrices for Dental Tissue Regeneration. ACS Applied Bio Materials, 3(2), 859–868. https://doi.org/10.1021/acsabm.9b00944spa
dc.relation.referencesPawlaczyk, M., Lelonkiewicz, M., & Wieczorowski, M. (2013). Age-dependent biomechanical properties of the skin. Postepy Dermatologii i Alergologii, 30(5), 302–306. https://doi.org/10.5114/pdia.2013.38359spa
dc.relation.referencesPeppas, N. A., Slaughter, B. V., & Kanzelberger, M. A. (2012). Hydrogels. In Polymer Science: A Comprehensive Reference (Vol. 9, pp. 385–395). https://doi.org/10.1016/B978-0-444- 53349-4.00226-0spa
dc.relation.referencesPereira C., N., Suh, H. P., & Hong, J. P. (JP). (2018). Úlceras Del Pie Diabético: Importancia Del Manejo Multidisciplinario Y Salvataje Microquirúrgico De La Extremidad. Revista Chilena de Cirugía, 70(6), 535–543. https://doi.org/10.4067/s0718-40262018000600535spa
dc.relation.referencesQuintero, J., & Zapata, J. E. (2017). Optimización de la Extracción del Colágeno Soluble en 92 Ácido de Subproductos de Tilapia Roja (Oreochromis spp) mediante un Diseño de Superficie de Respuesta. Informacion Tecnologica, 28(1), 109–120. https://doi.org/10.4067/S0718-07642017000100011spa
dc.relation.referencesRatner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2013). Biomaterials Science: An Evolving, Multidisciplinary Endeavor. Biomaterials Science: An Introduction to Materials: Third Edition, xxv–xxxix. https://doi.org/10.1016/B978-0-08-087780-8.00153-4spa
dc.relation.referencesRamírez Rojas, D., Ramírez Sánchez, P., Santos Soto, J. (2022). Evaluación de las propiedades mecánicas de hidrogeles a base de colágeno de piel de tilapia con potencial uso en el tratamiento de quemaduras de segundo grado [Tesis de pregrado]. Universidad Autónoma de Bucaramanga.spa
dc.relation.referencesRosendo Fernandez, J. and Pérez Zarauza, M., 2016. Guía Práctica de Úlceras de Pie Diabético. Santiago de Compostela: Programa Úlceras Fóraspa
dc.relation.referencesSáenz Ramírez, A. (2004). Biomateriales. Tecnología En Marcha, 17(1), 34–45.spa
dc.relation.referencesSarrigiannidis, S. O., Rey, J. M., Dobre, O., González-García, C., Dalby, M. J., & SalmeronSanchez, M. (2021). A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Materials Today Bio, 10(January). https://doi.org/10.1016/j.mtbio.2021.100098spa
dc.relation.referencesSchneider-Barthold, C., Baganz, S., Wilhelmi, M., Scheper, T., & Pepelanova, I. (2016). Hydrogels based on collagen and fibrin - Frontiers and applications. BioNanoMaterials, 17(1–2), 3–12. https://doi.org/10.1515/bnm-2015-0025spa
dc.relation.referencesSerrano Gaona, J. C. (2011). Estandarización de un proceso de extracción de colágeno a partir 93 de los residuos de fileteo de tilapia (Oreochromis sp) y cachama (Piaractus brachypomus). 85. http://www.bdigital.unal.edu.co/4880/spa
dc.relation.referencesShoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual Review of Biochemistry, 78, 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833spa
dc.relation.referencesSilvipriya, K. S., Krishna Kumar, K., Bhat, A. R., Dinesh Kumar, B., John, A., & Lakshmanan, P. (2015). Collagen: Animal sources and biomedical application. Journal of Applied Pharmaceutical Science, 5(3), 123–127. https://doi.org/10.7324/JAPS.2015.50322spa
dc.relation.referencesSnyder, R. J., & Hanft, J. R. (2009). Diabetic foot ulcers--effects on QOL, costs, and mortality and the role of standard wound care and advanced-care therapies. Ostomy/Wound Management, 55(11), 28–38. http://www.ncbi.nlm.nih.gov/pubmed/19934461spa
dc.relation.referencesSobczak-Kupiec, A., Drabczyk, A., Florkiewicz, W., Głąb, M., Kudłacik-Kramarczyk, S., Słota, D., Tomala, A., & Tyliszczak, B. (2021). Review of the applications of biomedical compositions containing hydroxyapatite and collagen modified by bioactive components. Materials, 14(9). https://doi.org/10.3390/ma14092096spa
dc.relation.referencesTaguchi, T., & Tanaka, J. (2002). Swelling behavior of hyaluronic acid and type II collagen hydrogels prepared by using conventional crosslinking and subsequent additional polymer interactions. Journal of Biomaterials Science, Polymer Edition, 13(1), 43–52. https://doi.org/10.1163/156856202753525927spa
dc.relation.referencesTechatanawat, S., Surarit, R., Suddhasthira, T., & Khovidhunkit, S. O. P. (2011). Type I collagen extracted from rat-tail and bovine Achilles tendon for dental application: A comparative study. Asian Biomedicine, 5(6), 787–798. https://doi.org/10.5372/1905-7415.0506.111spa
dc.relation.referencesTian, H., Ren, Z., Shi, L., Hao, G., Chen, J., & Weng, W. (2021). Self-assembly characterization of tilapia skin collagen in simulated body fluid with different salt concentrations. Process Biochemistry, 108(June), 153–160. https://doi.org/10.1016/j.procbio.2021.06.013spa
dc.relation.referencesVallet-Regí, M. (2022). Evolution of Biomaterials. Frontiers in Materials, 9(March), 1–5. https://doi.org/10.3389/fmats.2022.864016spa
dc.relation.referencesWillits, R. K., & Skornia, S. L. (2004). Effect of collagen gel stiffness on neurite extension. Journal of Biomaterials Science, Polymer Edition, 15(12), 1521–1531. https://doi.org/10.1163/1568562042459698spa
dc.relation.referencesWorld Health Organization. (2021). Diabetes. https://www.who.int/es/news-room/factsheets/detail/diabetesspa
dc.relation.referencesWu, M., Cronin, K., & Crane, J. S. (2022). Biochemistry, Collagen Synthesis. In StatPearls. http://www.ncbi.nlm.nih.gov/pubmed/29939531spa
dc.relation.referencesZeng, S. kui, Zhang, C. hua, Lin, H., Yang, P., Hong, P. zhi, & Jiang, Z. (2009). Isolation and characterisation of acid-solubilised collagen from the skin of Nile tilapia (Oreochromis niloticus). Food Chemistry, 116(4), 879–883. https://doi.org/10.1016/j.foodchem.2009.03.038spa
dc.relation.referencesZhang, J., Zhang, J., Zhang, N., Li, T., Zhou, X., Jia, J., Liang, Y., Sun, X., & Chen, H. (2020). The Effects of Platelet-Rich and Platelet-Poor Plasma on Biological Characteristics of BMMSCs in Vitro. Analytical Cellular Pathology, 2020. https://doi.org/10.1155/2020/8546231spa
dc.relation.referencesZhou, C., Sheng, C., Chen, J., Liang, Y., Liu, Q., Li, P., Huang, X., & Liu, B. (2022). Gradual hydrogel degradation for programable repairing full-thickness skin defect wound. Chemical 95 Engineering Journal, 450(P3), 138200. https://doi.org/10.1016/j.cej.2022.138200Afonso, A. C., Oliveira, D., Saavedra, M. J., Borges, A., & Simões, M. (2021). Biofilms in Diabetic Foot Ulcers: Impact, Risk Factors and Control Strategies. International Journal of Molecular Sciences, 22(15), 25. https://doi.org/10.3390/ijms22158278spa
dc.contributor.cvlacSolarte David, Víctor Alfonso [0001329391]spa
dc.contributor.cvlacBecerra Bayona, Silvia Milena [0001568861]spa
dc.contributor.googlescholarBecerra Bayona, Silvia Milena [5wr21EQAAAAJ]spa
dc.contributor.orcidSolarte David, Víctor Alfonso [0000-0002-9856-1484]spa
dc.contributor.orcidBecerra Bayona, Silvia Milena [0000-0002-4499-5885]spa
dc.contributor.scopusBecerra Bayona, Silvia Milena [36522328100]spa
dc.contributor.researchgateSolarte David, Víctor Alfonso [Victor-Solarte-David]spa
dc.contributor.researchgateBecerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]spa
dc.subject.lembIngeniería biomédicaspa
dc.subject.lembIngenieríaspa
dc.subject.lembBiofísicaspa
dc.subject.lembBioingenieríaspa
dc.subject.lembMedicinaspa
dc.subject.lembBiomédicaspa
dc.subject.lembDiabetes mellitusspa
dc.subject.lembEnfermedades de lo piesspa
dc.subject.lembPies (Ulceras)spa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishDiabetes mellitus is a disease that is currently considered a public health problem and is estimated to affect more than 700 million adults in the coming years. One of its main complications are chronic diabetic foot ulcers, skin lesions that currently do not have 100% effective treatments and that significantly affect the quality of life of those who suffer it, which has increased the need to find treatments that improve the healing process of this type of wounds. Therefore, in the present project red tilapia skin, a waste from the aquaculture industry, has been used to extract collagen and with this to elaborate hydrogels, which were cross-linked with platelet-poor plasma (PPP), a fraction of the blood that has not been frequently used for research. The soluble acid collagen extraction process allowed to obtain a dry base yield close to 40%, and from this, to manufacture the hydrogels and cross-link them with the PPP, obtaining an adequate dynamic in terms of protein release. These hydrogels were subjected to different tests to determine their mechanical and physical properties, finding compression modules like those of the inner layers of the skin, as well as an optimal swelling capacity, which would allow them to deliver the necessary moisture to the wound during the healing process. Finally, from in vitro tests, it was determined that the leachate produced by the hydrogels maintains cell viability in a period of 48 hours, by allowing the proliferation of fibroblasts from the HT1080 cell line. These results indicate that the hydrogels manufactured in the present study could be a therapeutic alternative for the treatment of chronic diabetic foot ulcers.spa
dc.subject.proposalIngeniería clínicaspa
dc.subject.proposalElectrónica médicaspa
dc.subject.proposalInstrumentos y aparatos médicosspa
dc.subject.proposalColágenospa
dc.subject.proposalCitotoxicidadspa
dc.subject.proposalFibroblastosspa
dc.subject.proposalHidrogelesspa
dc.subject.proposalPlasma pobre en plaquetasspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.relation.uriapolohttps://apolo.unab.edu.co/en/persons/v%C3%ADctor-alfonso-solarte-davidspa
dc.contributor.apolounabSolarte David, Víctor Alfonso [víctor-alfonso-solarte-david]spa
dc.contributor.apolounabBecerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]spa
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa
dc.contributor.linkedinBecerra Bayona, Silvia Milena [silvia-becerra-3174455a]


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia