Mostrar el registro sencillo del ítem

dc.contributor.advisorGelvez Lizarazo, Oscar Mauricio
dc.contributor.advisorHerrera Celis, Jose Luis
dc.contributor.advisorArdila Gómez, Sergio Andrés
dc.contributor.authorArdila Sánchez, Raúl Leonardo
dc.contributor.authorPeñuela Osorio, Camilo Eduardo
dc.coverage.spatialBucaramanga (Santander, Colombia)spa
dc.coverage.temporal2021spa
dc.date.accessioned2023-02-02T16:57:25Z
dc.date.available2023-02-02T16:57:25Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.12749/18905
dc.description.abstractLos desafíos actuales que presentan los métodos de separación de componentes de fluidos no newtonianos implican demora en algunos procedimientos, baja disponibilidad de los instrumentales, altos precios y baja calidad de algunos componentes separados. Debido a esto, existe la necesidad de crear métodos de separación que presente resultados en un tiempo corto, para mejorar posteriores análisis, además que sea autónomo, tenga bajos costos, que no altere las características de los componentes, pero aun así brinde una alta confiabilidad. El presente estudio busca desarrollar un mecanismo tipo prueba de concepto que se base en microcanales para la separación de los componentes de fluidos no newtonianos, por medio de la impresión 3d para crear un instrumento de microfluídica, el cual consta de 3 canales de 2 mm, 5 mm y 10 mm, para observar la variación de cada uno de los canales y cuál separa de mejor manera. En los resultados del proyecto el canal de 10 mm presenta mejores resultados en la separación de componentes de tamaño superior a 2 μm con resultados constantes en las diferentes pruebas con valores superiores al 80 %, debido a que cuentan con una mayor cantidad de área porosa para realizar el filtrado, además de atrapar la mayor cantidad de partículas en la membrana.spa
dc.description.tableofcontents1 Objetivos ........................................................................................................... 5 1.1 Objetivo general .......................................................................................... 7 1.2 Objetivos específicos .................................................................................. 7 2 Planteamiento del problema ............................................................................. 8 2.1 Definición del problema .............................................................................. 8 2.3 Justificación .............................................................................................. 10 2.4 Pregunta de investigación ......................................................................... 12 3 Estado del arte ................................................................................................ 13 4 Marco teórico .................................................................................................. 19 4.1 Fluido ........................................................................................................ 19 4.2 Mecánica de fluidos .................................................................................. 20 4.3 Microfluídica .............................................................................................. 26 4.4 Técnicas de grabado ................................................................................ 26 4.5 Sangre ...................................................................................................... 28 5 Metodología .................................................................................................... 32 5.1 Diseño de los microcanales en software CAD .......................................... 33 5.2 Simulación de separación de componentes ............................................. 45 5.3 Fabricación de los microcanales ............................................................... 53 5.4 Pruebas de los microcanales .................................................................... 56 6 Resultados ...................................................................................................... 61 6.1 Conteo de las micelas............................................................................... 61 6.2 Medición de los diámetros de las partículas ............................................. 64 7 Conclusiones .................................................................................................. 82 8 Bibliografía ...................................................................................................... 84spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleConstrucción de un mecanismo tipo prueba de concepto de microfluídica basado en microcanales para la separación de componentes en fluidos no newtonianos por características físicasspa
dc.title.translatedConstruction of a microfluidics proof-of-concept type mechanism based on microchannels for the separation of components in non-Newtonian fluids by physical characteristicsspa
dc.degree.nameIngeniero Biomédicospa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programPregrado Ingeniería Biomédicaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsBiomedical engineeringspa
dc.subject.keywordsEngineeringspa
dc.subject.keywordsMedical electronicsspa
dc.subject.keywordsBiological physicsspa
dc.subject.keywordsBioengineeringspa
dc.subject.keywordsMedical instruments and apparatusspa
dc.subject.keywordsMedicinespa
dc.subject.keywordsBiomedicalspa
dc.subject.keywordsClinical engineeringspa
dc.subject.keywordsFluidspa
dc.subject.keywordsMechanicsspa
dc.subject.keywordsMicrofluidicsspa
dc.subject.keywordsEngravingspa
dc.subject.keywordsTechniquesspa
dc.subject.keywordsBloodspa
dc.subject.keywordsBody fluidsspa
dc.subject.keywordsComputer aided designspa
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.relation.referencesNAGLA, Madhu. (2016). Microfluidic Blood Cell Preparation: Now and Beyond. En: HHS Public Access. Vol. 176, No. 1, (My, 2016); p. 1-32.spa
dc.relation.referencesL. JACKSON, Emily & HANG, Lu. (2011). Advances in Microfluidic Cell Separation and Manipulation. En: Curr Opin Chem Eng, Vol. 23, No. 1, (Nov, 2011); p. 1-12.spa
dc.relation.referencesOMS. Cáncer. Organización Mundial De la Salud, (2021); p. 1.spa
dc.relation.referencesTAN, Siun Chee & CHIN YIAP, Beow. (2009). DNA, RNA, and Protein Extraction: The Past and the Present. En: Journal of Biomedicine and Biotechnology, Vol. 2009, (Nov, 2009); p. 1–10.spa
dc.relation.referencesBASU, Debdatta & KULKARNI, Rajendra. (2014). Overview of Blood Components and Their Preparation. En: Indian Journal of Anesthesia, Vol. 58, No. 5, (Sep, 2014); p. 529–37.spa
dc.relation.referencesHELWA, Inas, et al. (2017). A Comparative Study of Serum Exosome Isolation Using Differential Ultracentrifugation and Three Commercial Reagents. (En, 2017); p. 1– 22.spa
dc.relation.referencesBANTSCHEFF, Marcus & SCHIRLE, Markus. (2007). Quantitative Mass Spectrometry in Proteomics: A Critical Review. (Ag, 2007); p. 1017–31.spa
dc.relation.referencesWU, Mengxi, et al. (2017). Isolation of Exosomes from Whole Blood by Integrating Acoustics and Microfluidics. En: Proceedings of the National Academy of Sciences of the United States of America, Vol. 114, No. 40, (En, 2017); p. 10584–89spa
dc.relation.referencesLU, Madeleine, et al. Traditional and Emerging Technologies for Washing and Volume Reducing Blood Products. En: Journal of Blood Medicine, Vol. 10, (2019): p. 37–46.spa
dc.relation.referencesSTROOCK, Abraham. Chapter 17 – MICROFLUIDICS. Optical Biosensors, (2008).spa
dc.relation.referencesMADADI, Hojjat, et al. (2015). Self-Driven Filter-Based Blood Plasma Separator Microfluidic Chip for Point-of-Care Testing. En: Biofabrication, Vol. 7, No. 2, (My, 2015); p. 2500–7.spa
dc.relation.referencesCENCIC, A., et al. Porcine Blood Cell Separation by Porous Cellulose Acetate Membranes. En: Kluwer Academic Publisher, (2000); p. 165–71.spa
dc.relation.referencesISLAM, Zahurul & YING YIN, Tsui. Quasi-3D Modeling and Efficient Simulation of Laminar Flows in Microfluidic Devices. En: Sensors (Switzerland), Vol. 16, No. 10, (2016).spa
dc.relation.referencesZAVATTIERI P. Mechanics of Biological Systems and Materials. En: Zimmerman KB, editor. Conference Proceedings of the Society for Exoerimental Mechanics Series. Bethel: Spring Nature; (2015); p. 161–8.spa
dc.relation.referencesZAVATTIERI P. Mechanics of Biological Systems and Materials. En: Zimmerman KB, editor. Conference Proceedings of the Society for Exoerimental Mechanics Series. Bethel: Spring Nature; (2015); p. 161–8.spa
dc.relation.referencesKAROLAK, A., & REJNIAK, K. A. Mathematical Modeling of Tumor Organoids: Toward Personalized Medicine. Bethesda; Cancer Drug Discovery and Development, 2018. 225p.spa
dc.relation.referencesKISHOR, Rahul, et al. (2017). Real Time Size-Dependent Particle Segregation and Quantitative Detection in a Surface Acoustic Wave-Photoacoustic Integrated Microfluidic System. En: Sensors and Actuators, Vol. 252, (Jun, 2017); p. 568–76.spa
dc.relation.referencesWANG, Zixiang, et al. High-Throughput Isolation of Fetal Nucleated Red Blood Cells by Multifunctional Microsphere-Assisted Inertial Microfluidics. En: Biomedical Microdevices, Vol. 22, No. 4, (Oct, 2020); p. 75.spa
dc.relation.referencesBEHZAD, Nasseri, et al. (2019). Point-of-Care Microfluidic Devices for Pathogen Detection. En: Biosens Bioelectron, Vol. 176, No. 3, (Oct, 2019); p. 139–48.spa
dc.relation.referencesGAO, Yuan, et al. (2020). Acoustic Microfluidic Separation Techniques and Bioapplications: A Review. En: Micromachines, Vol. 11, No. 10, (Oct, 2020); p. 1–9.spa
dc.relation.referencesZHANG, Yaolong & CHEN, Xueye. (2020). Dielectrophoretic Microfluidic Device for Separation of Red Blood Cells and Platelets: A Model-Based Study. En: Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 42, No. 2, (En, 2020); p. 1–11.spa
dc.relation.referencesDAI, Li, et al. (2020). Microfluidics-Based Microwave Sensor. En: Sensors and Actuators, A: Physical, Vol. 309, (My, 2020); p. 1–16.spa
dc.relation.referencesCHEN, Tianyou, et al. (2021). Nanomaterials Meet Microfluidics: Improved Analytical Methods and High-Throughput Synthetic Approaches. En: TRAC - Trends in Analytical Chemistry, Vol. 142, (Abr, 2021); p. 1– 9.spa
dc.relation.referencesFARAHINIA, A., et al. (2021). Novel Microfluidic Approaches to Circulating Tumor Cell Separation and Sorting of Blood Cells: A Review. En: Advanced Materials and Devices, Vol. 6, No. 3, (Mrz, 2021); p. 303–20.spa
dc.relation.referencesSINGH, Renu, et al. (2014). Microbial Separation from a Complex Matrix by a Hand- Held Microfluidic Device. En: Royal Society of Chemistry, Vol. 53, No. 78, (Sept, 2017), p. 10788–91.spa
dc.relation.referencesJUNG, Taekeon, et al. Continuous, Rapid Concentration of Foodborne Bacteria (Staphylococcus Aureus, Salmonella Typhimurium, and Listeria Monocytogenes) Using Magnetophoresis-Based Microfluidic Device. En: Food Control, Vol. 114, (En, 2020); p. 107–229.spa
dc.relation.referencesLAGE, Eduardo. Fluidos. Revista de Ciência Elementar, Vol. 6, No. 4, (2018).spa
dc.relation.referencesHERNÁNDEZ, Juan Pablo y FAYAD, Ramón. Mecánica de Fluidos En Ingeniería. Barcelona: Oficina de Publicacions Acadèmiques Digitals de la UPC, 2012. 382p.spa
dc.relation.referencesCOTOS MORALES, Raúl Carlos. Mecánica de Fluidos. Impulsión de Fluidos. Chimbote: Ediciones Carolina, 2019. 55p.spa
dc.relation.referencesDUARTE, A., et al. (1996). The Rise of a Liquid in a Capillary Tube Revisited: A Hydrodynamical Approach. En: American Journal of Physics, Vol. 64, No. 4, (Apr, 1996); p. 413–18.spa
dc.relation.referencesSbweb. Fenómenos Capilares. {En línea}. {Noviembre del 2021}. Disponible en: (www.sc.ehu.es/sbweb/fisica/fluidos/tension/capilar/capilar).spa
dc.relation.referencesHOLMES, Douglas, et al. (2006). Confined Fluid Flow: Microfluidics and Capillarity. En: Angewandte Chemie International Edition Nature, Vol. 43, No. 7101, (2004); p. 2508–11.spa
dc.relation.referencesRAPP, Bastian E. Introduction Microfluidics: Modelling Rapp Mechanics and Mathematics. En: Micro and Nano Technologies, (2017); p. 3–7.spa
dc.relation.referencesBRAGHERI, Francesca, et al. Microfluidics. Micro and Nano Technologies, (2016); p. 310–34.spa
dc.relation.referencesBURKLUND, Alison, et al. Advances in Diagnostic Microfluidics. En: Gregory S B T - Advances in Clinical Chemistry Makowski, Vol. 95, (2020); p. 1–72.spa
dc.relation.referencesSEGURA, Nerea. (2007). Fabricación de Microdispositivos de Magneto-Impedancia Por Fotolitografía. Lejona, 2017, 43p. Trabajo de investigación (Grado en ingeniería electrónica). Universidad del País Vasco. Facultad de Ciencia y Tecnología. Departamento de ingeniería electrónica.spa
dc.relation.referencesFiltros Anoia S.A. Filtro Membrana Acetato de Celulosa. {En línea}. {Noviembre del 2021}. Disponible en: (https://fanoia.com/filtros-membrana/filtro-membrana-acetatode- celulosa/).spa
dc.relation.referencesROSS, Michael. Histología, Texto y Atlas color con Biología Celular y Molecular. 6° Edición. Bogotá: Editorial Médica panamericana, 2012. 1009p.spa
dc.relation.referencesAL-SHAHERI, Fawaz, et al. Blood Biomarkers for Differential Diagnosis and Early Detection of Pancreatic Cancer. En: Cancer Treatment Reviews, Vol. 96, (2021); p. 102–193.spa
dc.relation.referencesDALY, Róisín & O’DRISCOLL, Lorraine. “Extracellular Vesicles in Blood: Are They Viable as Diagnostic and Predictive Tools in Breast Cancer?”. En: Drug Discovery Today, Vol. 26, No. 3, (2021); p. 778–785.spa
dc.relation.referencesYU, Zhonghao, et al. (2011). Diferencias Entre El Plasma Humano y Los Perfiles de Metabolitos Séricos. En: PLOS ONE, (Jul, 2011); p. 1-7.spa
dc.relation.referencesARIZNAVARRETA, C., et al. Fisiología Humana. 3° Edición, Bogotá: Mc Graw Hill Interamericana, 2015. 1208pspa
dc.relation.referencesBECKER, Fernando, et al. Fisiología Humana. 3° Edición. España: McGraw-Hill Interamerican, 2015. 1208p.spa
dc.relation.referencesHERNÁNDEZ SAMPIERI, Roberto, et al. Metodología de La Investigación. 6° Edición. México: McGRAW-HILL Edication, 2014. 634pspa
dc.relation.referencesMONTALVO ARENAS, Cesar Eduardo. Blood Tissue and Hematopoiesis. En: National Autonomous University of Mexico, (2010); p. 1-45.spa
dc.relation.referencesBIENVENUE, A., et al. (2003). Rheological Properties of Concentrated Skim Milk: Importance of Soluble Minerals in the Changes in Viscosity during Storage. Journal of Dairy Science, Vol. 86, No. 12, (Dic, 2003); p. 3813–21.spa
dc.relation.referencesLÓPEZ, Ángela & BARRIGA, Diego. La Leche, Composición y Características. Instituto de Investigación y Formación Agraria y Pesquera, (2016); p. 36.spa
dc.relation.referencesULRICH, Karl & EPPINGER, Steven. Diseño y Desarrollo de Productos. 5a Edición. Bogotá: Mc Graw Hill Education, 2000. 434p.spa
dc.relation.referencesO’CONNELL, A., et al. (2017). The Effect of Storage Conditions on the Composition and Functional Properties of Blended Bulk Tank Milk. En: Journal of Dairy Science, Vol. 100, No. 2, (Oct, 2017); p. 991–1003.spa
dc.relation.referencesGUARACA P., EVELYN C. & GUARACA Ligia. (2017). Guía Técnica Para La Pasteurización de La Leche. En: Journal of Physics A: Mathematical and Theoretical, Vol. 44, No. 8, (My, 2011); p. 1-10.spa
dc.contributor.cvlacArdila Gómez, Sergio Andrés [0000010754]spa
dc.contributor.cvlacGelvez Lizarazo, Oscar Mauricio [0001342623]spa
dc.contributor.googlescholarArdila Gómez, Sergio Andrés [YjfNgsMAAAAJ]
dc.contributor.orcidArdila Gómez, Sergio Andrés [0000-0002-2115-1225]spa
dc.contributor.orcidGelvez Lizarazo, Oscar Mauricio [0000-0001-6858-5293]spa
dc.contributor.researchgateGelvez Lizarazo, Oscar Mauricio [Oscar-Gelvez-Lizarazo]spa
dc.subject.lembIngeniería biomédicaspa
dc.subject.lembIngenieríaspa
dc.subject.lembBiofísicaspa
dc.subject.lembBioingenieríaspa
dc.subject.lembMedicinaspa
dc.subject.lembBiomédicaspa
dc.subject.lembLíquidos corporalesspa
dc.subject.lembOsmosisspa
dc.subject.lembDiseño con ayuda de computadorspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishThe current challenges presented by methods of separating non-Newtonian fluid components involve delays in some procedures, low availability of instruments, high prices, and low quality of some separated components. Due to this, there is a need to create separation methods that present results in a short time, to improve subsequent analysis, in addition to being autonomous, having low costs, that does not alter the characteristics of the components, but still providing high reliability. The present paper seeks to develop a proof-of-concept type mechanism that is based on microchannels for the separation of non-Newtonian fluid components, through 3d printing to create a microfluidics instrument, which consists of 3 channels of 2 mm, 5 mm, and 10 mm, to observe the variation of each of the channels and which one separates better. In the results of the project, the 10 mm channel presents better results in the separation of components larger than 2 μm with constant results in the different tests with values greater than 80%, since they have a greater amount of porous area for performing the filtering, in addition to trapping the largest number of particles in the membrane.spa
dc.subject.proposalIngeniería clínicaspa
dc.subject.proposalElectrónica médicaspa
dc.subject.proposalInstrumentos y aparatos médicosspa
dc.subject.proposalFluidospa
dc.subject.proposalMecánicaspa
dc.subject.proposalMicrofluídicaspa
dc.subject.proposalTécnicas de grabadospa
dc.subject.proposalSangrespa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.relation.uriapolohttps://apolo.unab.edu.co/en/persons/oscar-mauricio-gelvez-lizarazospa
dc.contributor.apolounabGelvez Lizarazo, Oscar Mauricio [oscar-mauricio-gelvez-lizarazo]spa
dc.contributor.apolounabArdila Gómez, Sergio Andrés [sergio-andres-ardila-gomez]
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa
dc.contributor.linkedinArdila Gómez, Sergio Andrés [sergio-andres-ardila-gomez-b93167150]


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia