Show simple item record

dc.contributor.advisorTello Hernández, Alejandrospa
dc.contributor.advisorGalvis Ramírez, Virgiliospa
dc.contributor.authorPrada Rocha, Angélica Maríaspa
dc.date.accessioned2020-06-26T20:01:41Z
dc.date.available2020-06-26T20:01:41Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/20.500.12749/1784
dc.description.abstractObjetivos: En este estudio se pretendió identificar los factores asociados a pérdida de células endoteliales durante la extracción extracapsular de catarata por facoemulsificación. Materiales y métodos: Se realizó un estudio observacional, longitudinal, retrospectivo de las historias clínicas de pacientes sometidos a cirugía de catarata por facoemulsificación microincisional coaxial por un único cirujano (VGR) durante los meses de Enero 2016 a Junio 2016. Resultados: Se encontró una pérdida endotelial promedio de 6.4 +/- 10%. Como factores asociados a pérdida de células endoteliales se encontraron la clasificación más avanzada de la catarata (LOCS III), el tiempo total de ultrasonido y la energía acumulada disipada (CDE por su nombre en inglés cumulative dissipated energy). Conclusión: Es preferible realizar la facoemulsificación cuando la catarata no haya alcanzado los grados más avanzados (más allá de NC2 en la clasificación LOCS III), sobretodo en pacientes con endotelios alterados que por ende tienen mayor riesgo de descompensación corneal. Adicionalmente es preferible realizar técnicas quirúrgicas para la fragmentación del núcleo en las cuales se emplee menos CDE y tiempo total de ultrasonido.spa
dc.description.tableofcontentsResumen 1. Introducción 2. Marco Teórico 2.1. Catarata y clasificación 2.2. Cirugía de facoemulsificación 2.3. Descripción de la técnica quirúrgica 2.4. Complicaciones de la cirugía de catarata por facoemulsificación 2.5. Endotelio corneal 2.6. Microscopia especular 2.7. Factores de riesgo asociados a pérdida endotelial 2.7.1. Factores dependientes del paciente 2.7.2. Factores dependientes de la cirugía [Cirugía de Catarata Microincisional (CCM)] 2.7.2.1. Técnica quirúrgica 2.7.2.2. Tamaño de incisión 2.7.2.3. Energía total de facoemulsificación, tiempo de facoemulsificación, promedio de poder en posición 3 y CDE, asociación con tipo de movimiento ultrasónico y modulación del poder. 2.7.2.4. Viscoelástico 2.7.2.5. Tiempo de aspiración y volumen de irrigación 2.7.2.6. Pérdida de células endoteliales posterior a cirugía 3. Objetivos 3.1. Objetivo General 3.2. Objetivos Específicos 4. Metodología 4.1. Tipo de Estudio 4.2. Universo y Muestra 4.3. Población 4.3.1. Criterios de selección 4.3.1.1. Criterios de Inclusión 4.3.1.2. Criterios de Exclusión 4.4. Recolección de datos 4.5. Depuración de datos y análisis 4.6. Procedimiento quirúrgico 5. Consideraciones Éticas 6. Resultados 7. Discusión 8. Conclusiones 9. Referencias bibliográficasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleDeterminación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de Santanderspa
dc.title.translatedDetermination of the factors associated with the loss of endothelial cells in phacoemulsification surgery of coaxial microincisional cataract at the Fundación Oftalmológica de Santandereng
dc.degree.nameEspecialista en Oftalmologíaspa
dc.coverageBucaramanga (Santander, Colombia)spa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ciencias de la Saludspa
dc.publisher.programEspecialización en Oftalmologíaspa
dc.description.degreelevelEspecializaciónspa
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.localTesisspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.subject.keywordsWaterfalleng
dc.subject.keywordsPhacoemulsificationeng
dc.subject.keywordsEndothelial cellseng
dc.subject.keywordsSurgeryeng
dc.subject.keywordsMedicineeng
dc.subject.keywordsOphthalmologyeng
dc.subject.keywordsResearcheng
dc.subject.keywordsEndothelial counteng
dc.subject.keywordsLoss of endothelial cellseng
dc.subject.keywordsAssociated factorseng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesPrada Rocha, Angélica María (2017). Determinación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de Santander. Bucaramanga (Santander, Colombia) : Universidad Autónoma de Bucaramanga UNABspa
dc.relation.references1. Pascolini, D., & Mariotti, S. P. (2012). Global estimates of visual impairment: 2010. The British Journal of Ophthalmology, 96(5), 614–8. https://doi.org/10.1136/bjophthalmol-2011-300539spa
dc.relation.references2. Chylack, L. T. (1993). The Lens Opacities Classification System III. Archives of Ophthalmology, 111(6), 831. https://doi.org/10.1001/archopht.1993.01090060119035spa
dc.relation.references3. Campbell, C. (1999). Observations on the optical effects of a cataract. Journal of Cataract and Refractive Surgery, 25(7), 995–1003. https://doi.org/10.1016/S0886-3350(99)00084-Xspa
dc.relation.references4. Spalton, D., & Koch, D. (2000). The constant evolution of cataract surgery. BMJ, 321(7272), 1304–1304. https://doi.org/10.1136/bmj.321.7272.1304.spa
dc.relation.references5. Minassian, D. C., Rosen, P., Dart, J. K., Reidy, A., Desai, P., Sidhu, M., … Wingate, N. (2001). Extracapsular cataract extraction compared with small incision surgery by phacoemulsification: a randomised trial. The British Journal of Ophthalmology, 85(7), 822–9. https://doi.org/10.1136/bjo.85.7.822spa
dc.relation.references6. Al Mahmood, A. M., Al-Swailem, S. A., & Behrens, A. Clear corneal incision in cataract surgery. Middle East African Journal of Ophthalmology, 21(1), 25–31. https://doi.org/10.4103/0974-9233.124084spa
dc.relation.references7. Steinert, R. F. (2010) p 704. Cataract surgery. Saunders.spa
dc.relation.references8. Cheng, J.-W., Wei, R.-L., Cai, J.-P., Xi, G.-L., Zhu, H., Li, Y., & Ma, X.-Y. (2007). Efficacy of different intraocular lens materials and optic edge designs in preventing posterior capsular opacification: a meta-analysis. American Journal of Ophthalmology, 143(3), 428–436. https://doi.org/10.1016/j.ajo.2006.11.045spa
dc.relation.references9. Zamvar, U., & Dhillon, B. (2005). Postoperative IOP prophylaxis practice following uncomplicated cataract surgery: a UK-wide consultant survey. BMC Ophthalmology, 5, 24. https://doi.org/10.1186/1471-2415-5-24spa
dc.relation.references10. Mamalis, N., Edelhauser, H. F., Dawson, D. G., Chew, J., LeBoyer, R. M., & Werner, L. (2006, February). Toxic anterior segment syndrome. Journal of Cataract and Refractive Surgery. https://doi.org/10.1016/j.jcrs.2006.01.065spa
dc.relation.references11. Berrocal, A. M., & Davis, J. L. (2002, September). Uveitis following intraocular surgery. Ophthalmology Clinics of North America. https://doi.org/10.1016/S0896-1549(02)00032-92-9spa
dc.relation.references12. Pueringer, S. L., Hodge, D. O., & Erie, J. C. (2011). RISK OF LATE INTRAOCULAR LENS DISLOCATION AFTER CATARACT SURGERY, 1980–2009: A Population-Based Study. American Journal of Ophthalmology, 152(4), 618–623. http://doi.org/10.1016/j.ajo.2011.03.009spa
dc.relation.references13. Yavas, G. F., Ozturk, F., & Kusbeci, T. (2007). Preoperative topical indomethacin to prevent pseudophakic cystoid macular edema. Journal of Cataract and Refractive Surgery, 33(5), 804–807. https://doi.org/10.1016/j.jcrs.2007.01.033spa
dc.relation.references14. Yi, D. H., & Dana, M. R. (2002). Corneal edema after cataract surgery: incidence and etiology. Seminars in Ophthalmology, 17(3–4), 110–114. https://doi.org/10.1076/soph.17.3.110.14783spa
dc.relation.references15. Ripandelli, G., Coppé, A. M., Parisi, V., Olzi, D., Scassa, C., Chiaravalloti, A., & Stirpe, M. (2007). Posterior Vitreous Detachment and Retinal Detachment after Cataract Surgery. Ophthalmology, 114(4), 692–697. https://doi.org/10.1016/j.ophtha.2006.08.045spa
dc.relation.references16. Barry, P., Seal, D. V, Gettinby, G., Lees, F., Peterson, M., & Revie, C. W. (2006). ESCRS study of prophylaxis of postoperative endophthalmitis after cataract surgery. Preliminary report of principal results from a European multicenter study. Journal of Cataract and Refractive Surgery, 32(3), 407–410. https://doi.org/10.1016/j.jcrs.2006.02.021spa
dc.relation.references17. Borasio, E., Mehta, J. S., & Maurino, V. (2006). Surgically induced astigmatism after phacoemulsification in eyes with mild to moderate corneal astigmatism. Temporal versus on-axis clear corneal incisions. Journal of Cataract and Refractive Surgery, 32(4), 565–572. https://doi.org/10.1016/j.jcrs.2005.12.104spa
dc.relation.references18. Viestenz, A., Seitz, B., & Langenbucher, A. (2005). Evaluating the eye’s rotational stability during standard photography: Effect on determining the axial orientation of toric intraocular lenses. Journal of Cataract and Refractive Surgery, 31(3), 557–561. https://doi.org/10.1016/j.jcrs.2004.07.019spa
dc.relation.references19. Krachmer, J. H., Mannis, M. J., & Holland, E. J. (2011). Cornea. Mosby/Elsevier.spa
dc.relation.references20. Waring, G. O., Bourne, W. M., Edelhauser, H. F., & Kenyon, K. R. (1982). The Corneal Endothelium. Ophthalmology, 89(6), 531–590. https://doi.org/10.1016/S0161-6420(82)34746-6spa
dc.relation.references21. Bourne, W. M. (2003). Biology of the corneal endothelium in health and disease. Eye (London, England), 17(8), 912–8. https://doi.org/10.1038/sj.eye.6700559spa
dc.relation.references22. Wörner, C. H., Olguín, A., Ruíz-García, J. L., & Garzón-Jiménez, N. (2011). Cell Pattern in Adult Human Corneal Endothelium. PLoS ONE, 6(5), e19483. http://doi.org/10.1371/journal.pone.0019483spa
dc.relation.references23. Yee, R. W., Matsuda, M., Schultz, R. O., & Edelhauser, H. F. (1985). Changes in the normal corneal endothelial cellular pattern as a function of age. Current Eye Research, 4(6), 671–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4028790spa
dc.relation.references24. Cavanagh, H. D., El-Agha, M. S., Petroll, W. M., & Jester, J. V. (2000). Specular microscopy, confocal microscopy, and ultrasound biomicroscopy: diagnostic tools of the past quarter century. Cornea, 19(5), 712–722.spa
dc.relation.references25. Matsuda, M., Suda, T., & Manabe, R. (1984). Serial alterations in endothelial cell shape and pattern after intraocular surgery. American Journal of Ophthalmology, 98(3), 313–319.spa
dc.relation.references26. Yang, R., Sha, X., Zeng, M., Tan, Y., Zheng, Y., & Fan, F. (2011). The influence of phacoemulsification on corneal endothelial cells at varying blood glucose levels. Eye Science, 26(2), 91–5. https://doi.org/10.3969/j.issn.1000-4432.2011.02.018spa
dc.relation.references27. Hugod, M., Storr-Paulsen, A., Norregaard, J. C., Nicolini, J., Larsen, A. B., & Thulesen, J. (2011). Corneal endothelial cell changes associated with cataract surgery in patients with type 2 diabetes mellitus. Cornea, 30(7), 749–753. https://doi.org/10.1097/ICO.0b013e31820142d9spa
dc.relation.references28. Yamazoe, K., Yamaguchi, T., Hotta, K., Satake, Y., Konomi, K., Den, S., & Shimazaki, J. (2011). Outcomes of cataract surgery in eyes with a low corneal endothelial cell density. Journal of Cataract and Refractive Surgery, 37(12), 2130–2136. https://doi.org/10.1016/j.jcrs.2011.05.039spa
dc.relation.references29. Mahdy, M. A. E. S., Eid, M. Z., Mohammed, M. A.-B., Hafez, A., & Bhatia, J. (2012). Relationship between endothelial cell loss and microcoaxial phacoemulsification parameters in noncomplicated cataract surgery. Clinical Ophthalmology (Auckland, N.Z.). https://doi.org/10.2147/OPTH.S29865spa
dc.relation.references30. Mathys, K. C., Cohen, K. L., & Armstrong, B. D. (2007). Determining factors for corneal endothelial cell loss by using bimanual microincision phacoemulsification and power modulation. Cornea, 26(9), 1049–1055. https://doi.org/10.1097/ICO.0b013e31813349b3spa
dc.relation.references31. Vasavada, V., Vasavada, A. R., Vasavada, V. A., Srivastava, S., Gajjar, D. U., & Mehta, S. (2013). Incision integrity and postoperative outcomes after microcoaxial phacoemulsification performed using 2 incision-dependent systems. Journal of Cataract and Refractive Surgery, 39(4), 563–571. https://doi.org/10.1016/j.jcrs.2012.11.018spa
dc.relation.references32. Mencucci, R., Ponchietti, C., Virgili, G., Giansanti, F., & Menchini, U. (2006). Corneal endothelial damage after cataract surgery: Microincision versus standard technique. Journal of Cataract and Refractive Surgery, 32(8), 1351–1354. https://doi.org/10.1016/j.jcrs.2006.02.070spa
dc.relation.references33. Storr-Paulsen, A., Norregaard, J. C., Ahmed, S., Storr-Paulsen, T., & Pedersen, T. H. (2008). Endothelial cell damage after cataract surgery: Divide-and-conquer versus phaco-chop technique. Journal of Cataract and Refractive Surgery, 34(6), 996–1000. https://doi.org/10.1016/j.jcrs.2008.02.013spa
dc.relation.references34. Zetterström, C., & Laurell, C. G. (1995). Comparison of endothelial cell loss and phacoemulsification energy during endocapsular phacoemulsification surgery. Journal of Cataract and Refractive Surgery, 21(1), 55–8. https://doi.org/10.1016/S0886-3350(13)80480-4spa
dc.relation.references35. Hayashi, K., Hayashi, H., Nakao, F., & Hayashi, F. (1996). Risk factors for corneal endothelial injury during phacoemulsification. Journal of Cataract and Refractive Surgery, 22(8), 1079–84. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8915805spa
dc.relation.references36. Park, J., Yum, H. R., Kim, M. S., Harrison, A. R., & Kim, E. C. (2013). Comparison of phaco-chop, divide-and-conquer, and stop-and-chop phaco techniques in microincision coaxial cataract surgery. Journal of Cataract and Refractive Surgery, 39(10), 1463–1469. https://doi.org/10.1016/j.jcrs.2013.04.033spa
dc.relation.references37. Ho, J. W., & Afshari, N. A. (2015). Advances in cataract surgery: preserving the corneal endothelium. Current Opinion in Ophthalmology, 26(1), 22–27. https://doi.org/10.1097/ICU.0000000000000121spa
dc.relation.references38. Rekas, M., Montés-Micó, R., Krix-Jachym, K., Kluś, A., Stankiewicz, A., & Ferrer-Blasco, T. (2009). Comparison of torsional and longitudinal modes using phacoemulsification parameters. Journal of Cataract and Refractive Surgery, 35(10), 1719–1724. https://doi.org/10.1016/j.jcrs.2009.04.047spa
dc.relation.references39. Gonen, T., Sever, O., Horozoglu, F., Yasar, M., & Keskinbora, K. H. (2012, November). Endothelial cell loss: Biaxial small-incision torsional phacoemulsification versus biaxial small-incision longitudinal phacoemulsification. Journal of Cataract and Refractive Surgery, pp. 1918–24. https://doi.org/10.1016/j.jcrs.2012.06.051spa
dc.relation.references40. Arshinoff, S. A., & Wong, E. (2003). Understanding, retaining, and removing dispersive and pseudodispersive ophthalmic viscosurgical devices. Journal of Cataract and Refractive Surgery, 29(12), 2318–2323. https://doi.org/10.1016/j.jcrs.2003.09.045spa
dc.relation.references41. Bissen-Miyajima, H. (2008). Ophthalmic viscosurgical devices. Current Opinion in Ophthalmology, 19(1), 50–54. https://doi.org/10.1097/ICU.0b013e3282f14db0spa
dc.relation.references42. Bissen-Miyajima, H. (2008). Ophthalmic viscosurgical devices. Current Opinion in Ophthalmology, 19(1), 50–54. https://doi.org/10.1097/ICU.0b013e3282f14db0spa
dc.relation.references43. Arshinoff, S. A., & Norman, R. (2013). Tri-soft shell technique. Journal of Cataract and Refractive Surgery, 39(8), 1196–1203. https://doi.org/10.1016/j.jcrs.2013.06.011spa
dc.relation.references44. Rosado-Adames, N., & Afshari, N. A. (2012). The changing fate of the corneal endothelium in cataract surgery. Current Opinion in Ophthalmology, 23(1), 3–6. https://doi.org/10.1097/ICU.0b013e32834e4b5fspa
dc.relation.references45. Van den Bruel, A., Gailly, J., Devriese, S., Welton, N. J., Shortt, A. J., & Vrijens, F. (2011). The protective effect of ophthalmic viscoelastic devices on endothelial cell loss during cataract surgery: a meta-analysis using mixed treatment comparisons. The British Journal of Ophthalmology, 95(1), 5–10. https://doi.org/10.1136/bjo.2009.158360spa
dc.relation.references46. Reuschel, A., Bogatsch, H., Barth, T., & Wiedemann, R. (2010). Comparison of endothelial changes and power settings between torsional and longitudinal phacoemulsification. Journal of Cataract and Refractive Surgery, 36(11), 1855–1861. https://doi.org/10.1016/j.jcrs.2010.06.060spa
dc.relation.references47. Faramarzi, A., Javadi, M. A., Karimian, F., Jafarinasab, M. R., Baradaran-Rafii, A., Jafari, F., & Yaseri, M. (2011). Corneal endothelial cell loss during phacoemulsification: Bevel-up versus bevel-down phaco tip. Journal of Cataract and Refractive Surgery, 37(11), 1971–1976. https://doi.org/10.1016/j.jcrs.2011.05.034spa
dc.relation.references48. Hwang, H. Bin, Lyu, B., Yim, H. Bin, & Lee, N. Y. (2015). Endothelial Cell Loss after Phacoemulsification according to Different Anterior Chamber Depths. Journal of Ophthalmology, 2015, 210716. https://doi.org/10.1155/2015/210716spa
dc.relation.references49. Reuschel, A., Bogatsch, H., Oertel, N., & Wiedemann, R. (2015). Influence of anterior chamber depth, anterior chamber volume, axial length, and lens density on postoperative endothelial cell loss. Graefe’s Archive for Clinical and Experimental Ophthalmology, 253(5), 745–752. https://doi.org/10.1007/s00417-015-2934-1spa
dc.relation.references50. Galvis V, Tello A, Delgado J, Gutierrez, A, Rodriguez L. Reproducibilidad de resultados del análisis endotelial del microscopio especular de contacto TOPCON sp-3000. Revista de la Sociedad Colombiana de Oftalmologia, 44(3),191-290.spa
dc.relation.references51. Fakhry, M. A., & El Shazly, M. I. (2011). Torsional ultrasound mode versus combined torsional and conventional ultrasound mode phacoemulsification for eyes with hard cataract. Clinical Ophthalmology (Auckland, N.Z.), 5, 973–978. https://doi.org/10.2147/OPTH.S22879spa
dc.relation.references52. Hwang, H. Bin, Lyu, B., Yim, H. Bin, & Lee, N. Y. (2015). Endothelial Cell Loss after Phacoemulsification according to Different Anterior Chamber Depths. Journal of Ophthalmology, 2015, 210716. https://doi.org/10.1155/2015/210716spa
dc.relation.references53. Reuschel, A., Bogatsch, H., Oertel, N., & Wiedemann, R. (2015). Influence of anterior chamber depth, anterior chamber volume, axial length, and lens density on postoperative endothelial cell loss. Graefe’s Archive for Clinical and Experimental , 253(5), 745–752. https://doi.org/10.1007/s00417-015-2934-1spa
dc.relation.references54. Lucena, D. R., Ribeiro, M. S. A., Messias, A., Bicas, H. E. A., Scott, I. U., & Jorge, R. (2011). Comparison of corneal changes after phacoemulsification using BSS Plus versus Lactated Ringer’s irrigating solution: a prospective randomised trial. The British Journal of Ophthalmology, 95(4), 485–489. https://doi.org/10.1136/bjo.2009.172502spa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001009125*
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000552453*
dc.contributor.googlescholarhttps://scholar.google.es/citations?hl=es#user=puxZHKYAAAAJ*
dc.contributor.googlescholarhttps://scholar.google.es/citations?hl=es&user=CZOaBDoAAAAJ*
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=6603664598*
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=55963715000*
dc.contributor.researchgatehttps://www.researchgate.net/profile/Virgilio_Galvis*
dc.subject.lembCatarataspa
dc.subject.lembFacoemulsificaciónspa
dc.subject.lembCélulas endotelialesspa
dc.subject.lembCirugíaspa
dc.subject.lembMedicinaspa
dc.subject.lembOftalmologíaspa
dc.subject.lembInvestigacionesspa
dc.description.abstractenglishObjectives: This study aimed to identify the factors associated with endothelial cell loss during extracapsular extraction of cataract by phacoemulsification. Materials and methods: An observational, longitudinal, retrospective study was carried out of the medical records of patients undergoing cataract surgery by coaxial microincisional phacoemulsification by a single surgeon (VGR) during the months of January 2016 to June 2016. Results: An average endothelial loss of 6.4 +/- 10% was found. Factors associated with endothelial cell loss were the most advanced cataract classification (LOCS III), total ultrasound time, and cumulative dissipated energy (CDE). Conclusion: It is preferable to perform phacoemulsification when the cataract has not reached the most advanced degrees (beyond NC2 in the LOCS III classification), especially in patients with altered endotheliums who therefore have a higher risk of corneal decompensation. Additionally, it is preferable to perform surgical techniques for the fragmentation of the nucleus in which less CDE and total ultrasound time are used.eng
dc.subject.proposalRecuento endotelial
dc.subject.proposalPérdida de células endoteliales
dc.subject.proposalFactores asociados
dc.subject.proposalFundación Oftalmológica de Santander
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia