Show simple item record

dc.contributor.advisorTello Hernández, Alejandro
dc.contributor.authorSánchez Reyes, Walter Antonio
dc.date.accessioned2020-06-26T20:01:41Z
dc.date.available2020-06-26T20:01:41Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/20.500.12749/1781
dc.description.abstractLa introducción de agentes antimicrobianos en la Medicina fue uno de los avances más importantes en la medicina moderna pero rápidamente se encontró que los microorganismos podían desarrollar resistencia a ellos1,2. Para combatir el desarrollo y diseminación de organismos resistentes, se ha propuesto el uso racional de los antibióticos y se han desarrollado nuevos agentes antimicrobianos. Las infecciones de la córnea y las endoftalmitis pueden llevar a serias secuelas visuales. El uso de antibióticos que sean efectivos en controlar la replicación bacteriana es crucial para obtener buenos resultados en estos casos, y por ello es definitivo conocer el estado de resistencia y de Concentraciones mínimas inhibitorias (CIM) de las bacterias ante esas sustancias3. La Concentración Inhibitoria Mínima (CIM) se define como la concentración más baja de un fármaco que inhiba el crecimiento visible de un organismo después de la incubación durante la noche (este periodo se extiende mas para organismos tales como anaerobios, que requieren una incubación mas prolongada para el crecimiento). Clásicamente la CIM de un antibiótico se determina utilizando un dispendioso procedimiento incluyendo una serie de diluciones del antibiótico (en agar o en caldo de cultivo) en las cuales se inoculan los microorganismos y se evalúa el crecimiento4,5. Hay actualmente también sistemas automatizados que lo determinan. Adicionalmente existe otros métodos comerciales disponibles, incluyendo las tiras de Etest que, sin requerir alta tecnología, facilitan esa labor. El sistema Etest consiste en una tirilla de un material plástico que contiene un gradiente predefinido de concentraciones de antibióticos que cuando se aplica a placas de agar donde inocularon los microorganismos, y luego de la incubación, permite visualizar elipses de inhibición microbiana. La CIM se determina donde la elipse de inhibición se cruza con la tirilla, en donde se encuentran impresas en una escala las diversas concentraciones5. Utilizando este sistema nosotros determinamos las CIM de diversos antibióticos sobre bacterias aisladas en casos de queratitis y endoftalmitis infecciosas. Estudiamos quinolonas de cuarta generación normalmente utilizadas en la actualidad de manera tópica en infecciones corneales (gatifloxacina y moxifloxacina) y adicionalmente antibióticos que no se usan de manera rutinaria en infecciones corneales (imipenem, linezolida y tigeciclina).spa
dc.description.tableofcontents1. INTRODUCCIÓN……………………………………………………………………. 4 2. PLANTEAMIENTO DEL PROBLEMA…………………………………………… 6 3. OBJETIVO GENERAL……………………………………………………………… 6 4. METODOLOGÍA…………………………………………………………………….. 7 4.1 TIPO DE ESTUDIO…………………………………………………………. 7 4.2 POBLACION Y MUESTRA ……………………………………………….. 7 5. CRITERIOS DE SELECCIÓN ……………………………………………………… 7 5.1 INCLUSIÓN …………………………………………………………………. 7 5.2 EXCLUSIÓN…………………………………………………………………. 7 6. PROCEDIMIENTOS…………………………………………………………………. 7 7. ASPECTOS ETICOS…………………………………………………………………. 9 8. RESULTADOS………………………………………………………………………... 9 9. DISCUSIÓN…………………………………………………………………………… 14 10. CONCLUSIONES…………………………………………………………………… 19 11. LIMITACIONES ……………………………………………………………………. 19 11.1 FORTALEZAS …………………………………………………………….. 19 11.2 DEBILIDADES ……………………………………………………………. 19 12. BIBLIOGRAFÍA …………………………………………………………………….20
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleComparación de las concentraciones mínimas inhibitorias de nuevos antibióticos sobre bacterias aisladas en casos de queratitis y endoftalmitis infecciosasspa
dc.title.translatedComparison of the minimum inhibitory concentrations of new antibiotics on isolated bacteria in cases of infectious keratitis and endophthalmitiseng
dc.degree.nameEspecialista en Oftalmología
dc.coverageBucaramanga (Santander, Colombia)
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNAB
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ciencias de la Salud
dc.publisher.programEspecialización en Oftalmología
dc.description.degreelevelEspecialización
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.localTesisspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.subject.keywordsAntibiotics
dc.subject.keywordsBacteria
dc.subject.keywordsKeratitis
dc.subject.keywordsInflammation
dc.subject.keywordsEndophthalmitis
dc.subject.keywordsMedicine
dc.subject.keywordsOphthalmology
dc.subject.keywordsInvestigations
dc.subject.keywordsCornea
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponamereponame:Repositorio Institucional UNAB
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.relation.referencesSánchez Reyes, Walter Antonio (2016). Comparación de las concentraciones mínimas inhibitorias de nuevos antibióticos sobre bacterias aisladas en casos de queratitis y endoftalmitis infecciosas. Bucaramanga (Santander, Colombia) : Universidad Autónoma de Bucaramanga UNAB
dc.relation.references1-Yagupsky P (2006) Selection of antibiotic-resistant pathogens in the community. The Pediatric infectious disease journal 25:974-966.
dc.relation.references2- Stratton CW (2003) Dead bugs don't mutate: susceptibility issues in the emergence of bacterial resistance. Emerging infectious diseases 9:10-6.
dc.relation.references3- Kowalski RP, Yates KA, Romanowski EG, Karenchak LM, Mah FS, Gordon YJ (2005) An ophthalmologist's guide to understanding antibiotic susceptibility and minimum inhibitory concentration data. Ophthalmology 112:1987-1991.
dc.relation.references4-Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001 Jul;48 Suppl 1:5-16. Erratum in: J Antimicrob Chemother 2002 Jun;49(6):1049.
dc.relation.references5-Delost MD. Antimicrobial susceptibility testing in Introduction to Diagnostic Microbiology for the Laboratory Sciences. Editor Delost MD. Jone & Barlett Learning, Burlington, USA. 2015. P 99-115.
dc.relation.references6-National Committee for Clinical Laboratory Standards Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement. (NCCLS) 2014; M100-S24 Vol. 32 No. 1. Disponible en http://ncipd.org/control/images/NCIPD_docs/CLSI_M100-S24.pdf. Consultado el 2 de diciembre de 2015.
dc.relation.references7-European Committee on Antimicrobial Susceptibility Testing (EUCAST). 2016. Breakpoint tables for interpretation of MICs and zone diameters. Version 6.0, valid from 2016-01-01. Disponible en: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf. Consultado el 28 de febrero de 2016.
dc.relation.references8-FDA-approved susceptibility test result interpretive criteria for tigecycline. Tomado de Wyeth Pharmaceuticals Inc. 2005. Tygacil package insert. Wyeth Pharmaceuticals Inc., Philadelphia, PA. Disponible en http://www.drugs.com/pro/tygacil.html. Consultado el 29 de Noviembre de 2015.
dc.relation.references9-Sueke H, Kaye S, Neal T, Murphy C, Hall A, Whittaker D, Tuft S, Parry C. Minimum inhibitory concentrations of standard and novel antimicrobials for isolates from bacterial keratitis. Invest Ophthalmol Vis Sci. 2010 May;51(5):2519-24.
dc.relation.references10-Rodloff AC, Goldstein EJ, Torres A. Two decades of imipenem therapy. J Antimicrob Chemother. 2006 Nov;58(5):916-29.
dc.relation.references11-Moellering RC. Linezolid: the first oxazolidinone antimicrobial. Ann Intern Med. 2003;138:135–142.
dc.relation.references12-Gómez-Gener A, Salvador P, Boj M. Linezolida: una nueva alternativa en infecciones por gram positivos. Farmacia Hospitalaria. 2002;26:44-48. 13-Curcio DJ, Istúriz RE. Tigeciclina, la primera glicilciclina. Rev Panm Infectol 2006;8(3):35-42.
dc.relation.references14-Fernandes M, Vira D, Medikonda R, Kumar N. Extensively and pan-drug resistant Pseudomonas aeruginosa keratitis: clinical features, risk factors, and outcome. Graefes Arch Clin Exp Ophthalmol. 2016 Feb;254(2):315-22.
dc.relation.references15-Jain R, Murthy SI, Motukupally SR. Clinical outcomes of corneal graft infections caused by multi-drug resistant Pseudomonas aeruginosa. Cornea. 2014 Jan;33(1):22-6.
dc.relation.references16-Turkyilmaz K, Kurt A, Dilek AR, Sekeryapan B, Erturk A. A case of suture-related bacterial keratitis and its treatment with topical imipenem. J Ocul Biol Dis Infor. 2011 Dec;4(4):141-4.
dc.relation.references17-Galvis V, Tello A, Delgado J, Valencia F, Gómez AJ, Diaz LA. Late bacterial keratitis after intracorneal ring segments (Ferrara ring) insertion for keratoconus. Cornea. 2007 Dec;26(10):1282-4.
dc.relation.references18-Tu EY, Jain S. Topical linezolid 0.2% for the treatment of vancomycin-resistant or vancomycin-intolerant gram-positive bacterial keratitis.Am J Ophthalmol. 2013 Jun;155(6):1095-1098.
dc.relation.references19-Dolz-Marco R, Udaondo P, Gallego-Pinazo R, Millán JM, Díaz-Llopis M. Topical linezolid for refractory bilateral Mycobacterium chelonae post-laser-assisted in situ keratomileusis keratitis. Arch Ophthalmol. 2012 Nov;130(11):1475-6.
dc.relation.references20-Akova Budak B, Baykara M, Kıvanç SA, Yilmaz H, Cicek S. Comparing the ocular surface effects of topical vancomycin and linezolid for treating bacterial keratitis. Cutan Ocul Toxicol. 2015 Jun 23:1-5. [Epub ahead of print]
dc.relation.references21-Tas T, Kucukbayrak A, Hakyemez IN, Mengeloglu FZ, Simavli H, Ozyalvacli G, Erdurmus M. Linezolid versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus keratitis in rabbits. Cornea. 2013 Jul;32(7):1052-7.
dc.relation.references22-Goktas S, Kurtoglu MG, Sakarya Y, Ugurluoglu C, Ozcimen M, Sakarya R, Alpfidan I, Ivacık IS, Erdogan E, Bukus A. New therapy option for treatment of methicillin-resistant Staphylococcus aureus keratitis: tigecycline. J Ocul Pharmacol Ther. 2015 Mar;31(2):122-7.
dc.relation.references23-Romanowski EG, Kowalski TA, O'Connor KE, Yates KA, Mah FS, Shanks RM, Kowalski RP. The In Vitro Evaluation of Tigecycline and the In Vivo Evaluation of RPX-978 (0.5% Tigecycline) as an Ocular Antibiotic. J Ocul Pharmacol Ther. 2016 Mar;32(2):119-26.
dc.relation.references24-Stringham JD, Miller D, Flynn HW Jr. Coagulase-negative staphylococcus (CoNS) causing endophthalmitis: a decreasing trend of susceptibility among vancomycin and fluoroquinolones. Invest Ophthalmol Vis Sci 2015;56(7):278.
dc.relation.references25-Galvis V, Tello A, Guerra A, Acuña MF, Villarreal D. [Antibiotic susceptibility patterns of bacteria isolated from keratitis and intraocular infections at Fundación Oftalmológica de Santander (FOSCAL), Floridablanca, Colombia]. [Article in Spanish].Biomedica. 2014 Apr;34 Suppl 1:23-33.
dc.relation.references26-Kaye SB, Tuft S, Neal T, et al. Bacterial susceptibility to topical antimicrobials and clinical outcome in bacterial keratitis. Invest Ophthalmol Vis Sci. 2010;51:362–398.
dc.relation.references27-Sueke H, Kaye SB, Neal T, Hall A, Tuft S, Parry CM.An in vitro investigation of synergy or antagonism between antimicrobial combinations against isolates from bacterial keratitis. Invest Ophthalmol Vis Sci. 2010 Aug;51(8):4151-5.
dc.relation.references28-Suzuki T, Ohashi Y. Combination effect of antibiotics against bacteria isolated from keratitis using fractional inhibitory concentration index. Cornea. 2013 Jul;32(7):e156-60.
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001009125
dc.contributor.googlescholarhttps://scholar.google.es/citations?hl=es#user=puxZHKYAAAAJ
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=6603664598
dc.subject.lembAntibióticosspa
dc.subject.lembBacteriasspa
dc.subject.lembQueratitisspa
dc.subject.lembInflamaciónspa
dc.subject.lembEndoftalmitisspa
dc.subject.lembMedicinaspa
dc.subject.lembOftalmologíaspa
dc.subject.lembInvestigacionesspa
dc.subject.lembCórneaspa
dc.description.abstractenglishThe introduction of antimicrobial agents in medicine was one of the most important advances in modern medicine, but it was quickly found that microorganisms could develop resistance to them1,2. To combat the development and spread of resistant organisms, the rational use of antibiotics has been proposed and new antimicrobial agents have been developed. Corneal infections and endophthalmitis can lead to serious visual sequelae. The use of antibiotics that are effective in controlling bacterial replication is crucial to obtain good results in these cases, and therefore it is essential to know the resistance status and Minimum Inhibitory Concentrations (MIC) of the bacteria to these substances3. The Minimum Inhibitory Concentration (MIC) is defined as the lowest concentration of a drug that inhibits the visible growth of an organism after overnight incubation (this period is longer for organisms such as anaerobes, which require a longer incubation for growth). Classically, the MIC of an antibiotic is determined using a time consuming procedure including a series of dilutions of the antibiotic (in agar or in culture broth) in which the microorganisms are inoculated and the growth is evaluated4,5. There are currently also automated systems that determine it. Additionally, there are other commercial methods available, including Etest strips that, without requiring high technology, facilitate this task. The Etest system consists of a strip of a plastic material that contains a predefined gradient of antibiotic concentrations that, when applied to agar plates where the microorganisms were inoculated, and after incubation, allows the visualization of microbial inhibition ellipses. The MIC is determined where the inhibition ellipse intersects the strip, where the various concentrations are printed on a scale5. Using this system, we determined the MICs of various antibiotics on isolated bacteria in cases of infectious keratitis and endophthalmitis. We study fourth-generation quinolones currently used topically in corneal infections (gatifloxacin and moxifloxacin) and additionally antibiotics that are not used routinely in corneal infections (imipenem, linezolid and tigecycline).eng
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia