Mostrar el registro sencillo del ítem

dc.contributor.advisorSolarte David, Víctor Alfonso
dc.contributor.advisorBecerra Bayona, Silvia Milena
dc.contributor.authorAgredo Hurtado, María Alejandra
dc.contributor.authorBohórquez Vega, Nicolás Andrés
dc.contributor.authorSerrano Cala, Andrea
dc.coverage.spatialBucaramanga (Santander, Colombia)spa
dc.date.accessioned2022-09-16T15:31:42Z
dc.date.available2022-09-16T15:31:42Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/20.500.12749/17710
dc.description.abstractLas úlceras por pie diabético son una de las complicaciones más comunes entre los pacientes que padecen Diabetes Mellitus, y la causa principal de amputaciones de miembro inferior en el mundo. Por esta razón, se han implementado nuevas técnicas para atenderlas, entre estas la impresión 3D que ha permitido la elaboración de diversos métodos de tratamiento. Este proyecto consiste en el diseño de un protocolo para la elaboración de moldes personalizados que permitan la obtención de apósitos tridimensionales que se ajusten a las necesidades de cada paciente, haciendo uso de las tecnologías de escaneo e impresión 3D. Se tomó como referencia una úlcera en zona plantar; se realizó una serie de escaneos, de los cuales se seleccionaron 4 para imprimir. De igual forma, se hicieron pruebas de impresión variando parámetros como la velocidad y densidad de relleno que juegan un papel importante en la adquisición de resultados. El material utilizado fue PLA, ya que gracias a su rigidez brindó la estabilidad necesaria para la creación de cada una de las carcasas. Se encontró que las dimensiones obtenidas de las carcasas realizadas aplicando este procedimiento presentan un porcentaje de error que no supera el 2,14% para el área superficial y 1,04% en profundidad, con respecto al modelo de úlcera. Estos resultados permitieron establecer que el protocolo diseñado, puede ser utilizado para la fabricación de apósitos personalizados. Sin embargo, aún existe variabilidad en los resultados, por lo que es importante continuar con la investigación en esta área.spa
dc.description.tableofcontentsCapítulo 1. Descripción del problema ........................................................................................ 10 Planteamiento del problema ........................................................................................... 10 Justificación ................................................................................................................... 11 Pregunta de investigación .............................................................................................. 12 Objetivo general ............................................................................................................ 12 Objetivos específicos ..................................................................................................... 12 Capítulo 2. Marco teórico .......................................................................................................... 13 Diabetes Mellitus ........................................................................................................... 13 Úlceras de pie diabético ................................................................................................. 13 Sistema de clasificación de úlceras de pie diabético ....................................................... 14 Técnicas utilizadas en la actualidad para el tratamiento de úlceras de pie diabético ........ 15 Proceso de cicatrización de heridas ................................................................................ 16 Proceso normal de cicatrización ..................................................................................... 18 Proceso de cicatrización en pie diabético ....................................................................... 19 Escaneo 3D .................................................................................................................... 20 Técnicas para determinar las dimensiones de heridas ..................................................... 21 Enfoques unidimensionales ............................................................................................ 21 Enfoques bidimensionales .............................................................................................. 21 Enfoques tridimensionales ............................................................................................. 22 Impresión 3D ................................................................................................................. 23 Capítulo 3. Estado del arte ........................................................................................................ 26 Capítulo 4. Metodología ............................................................................................................ 32 Creación del modelo de úlcera artificial ......................................................................... 32 Adquisición de la imagen ............................................................................................... 32 Refinamiento del solido ................................................................................................. 33 Impresión 3D de carcasas............................................................................................... 34 Validación de resultados ................................................................................................ 35 Escaneos de los hidrogeles y refinamiento de sus moldes tridimensionales. ................... 35 Análisis de las dimensiones de las carcasas .................................................................... 36 Capítulo 5. Resultados y análisis de resultados .......................................................................... 39 Resultados ..................................................................................................................... 39 Creación del modelo de úlcera artificial ......................................................................... 39 Adquisición de la imagen ............................................................................................... 40 Refinamiento del sólido. ................................................................................................ 41 Impresión 3D de carcasas............................................................................................... 42 Validación de resultados ................................................................................................ 46 Análisis de resultados .................................................................................................... 60 Capítulo 6. Conclusiones ........................................................................................................... 63 Capítulo 7. Anexos .................................................................................................................... 65 Anexo 1. Protocolo de diseño de moldes para la fabricación de apósitos tridimensionales personalizados para úlceras de pie diabético................................................................... 65 Capítulo 8. Bibliografía ............................................................................................................. 76spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleDiseño de protocolo de escaneo y modelado 3D para la elaboración de apósitos personalizados para pacientes con úlceras de pie diabéticospa
dc.title.translatedDesign of a 3D modeling and scanning protocol for the production of personalized dressings for patients with diabetic foot ulcersspa
dc.degree.nameIngeniero Biomédicospa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programPregrado Ingeniería Biomédicaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsBiomedical engineeringspa
dc.subject.keywordsEngineeringspa
dc.subject.keywordsMedical electronicsspa
dc.subject.keywordsBiological physicsspa
dc.subject.keywordsBioengineeringspa
dc.subject.keywordsMedical instruments and apparatusspa
dc.subject.keywordsMedicinespa
dc.subject.keywordsBiomedicalspa
dc.subject.keywordsClinical engineeringspa
dc.subject.keywordsThree-dimensional dressingspa
dc.subject.keywords3D Scanningspa
dc.subject.keywords3D printingspa
dc.subject.keywordsDiabetic foot ulcersspa
dc.subject.keywordsSugar in the bodyspa
dc.subject.keywordsDiabetes mellitusspa
dc.subject.keywordsModeling in medicinespa
dc.subject.keywordsThree-dimensional imagespa
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.relation.referencesAhn, C., & Salcido, R. S. (2008). Advances in wound photography and assessment methods. Advances in Skin & Wound Care, 21(2). https://doi.org/10.1097/01.ASW.0000305411.58350.7dspa
dc.relation.referencesAmerican Diabetes Association. (2011). Diagnosis and Classification of Diabetes Mellitus. https://doi.org/10.2337/dc11-S062spa
dc.relation.referencesAnsari, A. A., & Kamil, M. (2021). Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Materials Today: Proceedings, 45, 5462–5468. https://doi.org/10.1016/j.matpr.2021.02.137spa
dc.relation.referencesAragón-Sánchez, J., Quintana-Marrero, Y., Aragón-Hernández, C., & Hernández-Herero, M. J. (2017). ImageJ: A Free, Easy, and Reliable Method to Measure Leg Ulcers Using Digital Pictures. International Journal of Lower Extremity Wounds, 16(4), 269–273. https://doi.org/10.1177/1534734617744951spa
dc.relation.referencesBlume, P. A., Walters, J., Payne, W., Ayala, J., & Lantis, J. (2008). Comparison of negative pressure wound therapy usingVacuum-assisted closure with advanced moist wound therapy in the treatment of diabetic foot ulcers. Diabetes Care, 31(4), 631–636. https://doi.org/10.2337/dc07-2196spa
dc.relation.referencesBus, S.A., Lavery, A. L., Monteiro-Soares, M., Rasmussen, A., Raspovic, A., Sacco, I. C. N., & Van Netten, J. J. (2019). IWGDF Guideline on the classification of diabetic foot ulcers. International Working Group on the Diabetic Foot, 1–15. https://iwgdfguidelines.org/wp content/uploads/2019/05/02-IWGDF-prevention-guideline 2019.pdf%0Ahttps://iwgdfguidelines.org/prevention-guideline/spa
dc.relation.referencesBus, Sicco A., Akkerman, E. M., & Maas, M. (2021). Changes in sub-calcaneal fat pad composition and their association with dynamic plantar foot pressure in people with diabetic neuropathy. Clinical Biomechanics, 88(April), 105441. https://doi.org/10.1016/j.clinbiomech.2021.105441spa
dc.relation.referencesConstantinou, G., Wilson, G., Sadeghi-Esfahlani, S., & Cirstea, M. (2017). An effective approach to the use of 3D scanning technology which shortens the development time of 3D models. Proceedings - 2017 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2017 and 2017 Intl Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2017, 1083–1088. https://doi.org/10.1109/OPTIM.2017.7975116spa
dc.relation.referencesFoltynski, P., Ladyzynski, P., Ciechanowska, A., Migalska-Musial, K., Judzewicz, G., & Sabalinska, S. (2015). Wound area measurement with digital planimetry: Improved accuracy and precision with calibration based on 2 rulers. PLoS ONE, 10(8), 1–13. https://doi.org/10.1371/journal.pone.0134622spa
dc.relation.referencesGholami, P., Ahmadi-Pajouh, M. A., Abolftahi, N., Hamarneh, G., & Kayvanrad, M. (2018). Segmentation and Measurement of Chronic Wounds for Bioprinting. IEEE Journal of Biomedical and Health Informatics, 22(4), 1269–1277. https://doi.org/10.1109/JBHI.2017.2743526spa
dc.relation.referencesGhotaslou, R., Memar, M. Y., & Alizadeh, N. (2018). Classification, microbiology and treatment of diabetic foot infections. Journal of Wound Care, 27(7), 434–441. https://doi.org/10.12968/jowc.2018.27.7.434spa
dc.relation.referencesGlover, K., Mathew, E., Pitzanti, G., Magee, E., & Lamprou, D. A. (2022). 3D bioprinted scaffolds for diabetic wound-healing applications. In Drug Delivery and Translational Research. https://doi.org/10.1007/s13346-022-01115-8spa
dc.relation.referencesGlover, K., Stratakos, A. C., Varadi, A., & Lamprou, D. A. (2021). 3D scaffolds in the treatment of diabetic foot ulcers: New trends vs conventional approaches. International Journal of Pharmaceutics, 599(February), 120423. https://doi.org/10.1016/j.ijpharm.2021.120423spa
dc.relation.referencesGrennan, D. (2019). Diabetic Foot Ulcers. JAMA, 321(1), 114–114. https://doi.org/10.1001/JAMA.2018.18323spa
dc.relation.referencesJia, L., Parker, C. N., Parker, T. J., Kinnear, E. M., Derhy, P. H., Alvarado, A. M., Huygens, F., & Lazzarini, P. A. (2017). Incidence and risk factors for developing infection in patients presenting with uninfected diabetic foot ulcers. PLoS ONE, 12(5), 1–15. https://doi.org/10.1371/journal.pone.0177916spa
dc.relation.referencesJørgensen, L. B., Halekoh, U., Jemec, G. B. E., Sørensen, J. A., & Yderstræde, K. B. (2020). Monitoring Wound Healing of Diabetic Foot Ulcers Using Two-Dimensional and Three Dimensional Wound Measurement Techniques: A Prospective Cohort Study. Advances in Wound Care, 9(10), 553–563. https://doi.org/10.1089/wound.2019.1000spa
dc.relation.referencesKristiawan, R. B., Imaduddin, F., Ariawan, D., Ubaidillah, & Arifin, Z. (2021). A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Engineering, 11(1), 639–649. https://doi.org/10.1515/eng-2021-0063spa
dc.relation.referencesLangemo, D. K., Melland, H., Olson, B., Hanson, D., Hunter, S., Henly, S. J., & Thompson, P. (2001). Comparison of 2 Wound Volume Measurement Methods. Advances in Skin & Wound Care, 14(4). https://journals.lww.com/aswcjournal/Fulltext/2001/07000/Comparison_of_2_Wound_Volu me_Measurement_Methods.11.aspxspa
dc.relation.referencesLi, J., Ji, Q., Peng, J., Jun, L., Fusong, J., & Xiaowei, Y. (2019). Assessing diabetic foot injury based on 3D image technology. 2019 6th International Conference on Systems and Informatics, ICSAI 2019, Icsai, 1218–1221. https://doi.org/10.1109/ICSAI48974.2019.9010171spa
dc.relation.referencesLi, L., Yu, F., Shi, J., Shen, S., Teng, H., Yang, J., Wang, X., & Jiang, Q. (2017). In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Scientific Reports, 7(1), 1– 12. https://doi.org/10.1038/s41598-017-10060-3spa
dc.relation.referencesNunez, K. (2019). What Is Wound Debridement and When Is It Necessary? Healthline. https://www.healthline.com/health/debridementspa
dc.relation.referencesOrganización Mundial de la Salud (OMS). (2018). Informe mundial sobre la diabetes. Revista Virtual de La Sociedad Paraguaya de Medicina Interna, 3(2), 71–76.spa
dc.relation.referencesPartes del pie humano. (2022). Retrieved 28 June 2022, from https://www.partesdel.com/pie_humano.htmlspa
dc.relation.referencesPena, G., Kuang, B., Szpak, Z., Cowled, P., Dawson, J., & Fitridge, R. (2020). Evaluation of a Novel Three-Dimensional Wound Measurement Device for Assessment of Diabetic Foot Ulcers. Advances in Wound Care, 9(11), 623–631. https://doi.org/10.1089/wound.2019.0965spa
dc.relation.referencesPeter-Riesch, B. (2016). The diabetic foot: The never-ending challenge. Endocrine Development, 31, 108–134. https://doi.org/10.1159/000439409spa
dc.relation.referencesPrince, J. D. (2014). 3D Printing: An Industrial Revolution. Journal of Electronic Resources in Medical Libraries, 11(1), 39–45. https://doi.org/10.1080/15424065.2014.877247spa
dc.relation.referencesRismalia, M., Hidajat, S. C., Permana, I. G. R., Hadisujoto, B., Muslimin, M., & Triawan, F. (2019). Infill pattern and density effects on the tensile properties of 3D printed PLA material. Journal of Physics: Conference Series, 1402(4). https://doi.org/10.1088/1742 6596/1402/4/044041spa
dc.relation.referencesRokit. (n.d.). ROKIT INVIVO User Manualspa
dc.relation.referencesRosero, N., & Quitian, J. (2021). Diseño de una tinta de biomaterial de alginato y plasma pobre en plaquetas con potencial uso en la fabricación de apósitos personalizados para úlceras crónicas de pie diabético. Universidad Autónoma de Bucaramanga.spa
dc.relation.referencesShining 3D. (2020). EinScanH User Manual. November, 1–57. https://www.einscan.com/handheld-3d-scanner/einscan-h/spa
dc.relation.referencesSolarte David, V. A., Güiza-Argüello, V. R., Arango-Rodríguez, M. L., Sossa, C. L., & Becerra Bayona, S. M. (2022). Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Frontiers in Bioengineering and Biotechnology, 10(February), 1–26. https://doi.org/10.3389/fbioe.2022.821852spa
dc.relation.referencesTan, C. T., Liang, K., Ngo, Z. H., & Dube, C. T. (2020). Biomedicines-08-00441-V2 (2).Pdf. 1– 19.spa
dc.relation.referencesTreuillet, S., Albouy, B., & Lucas, Y. (2009). Three-dimensional assessment of skin wounds using a standard digital camera. IEEE Transactions on Medical Imaging, 28(5), 752–762. https://doi.org/10.1109/TMI.2008.2012025spa
dc.relation.referencesTümer, E. H., & Erbil, H. Y. (2021). Extrusion-based 3d printing applications of pla composites: A review. Coatings, 11(4), 1–42. https://doi.org/10.3390/coatings11040390spa
dc.relation.referencesVelazco, G., Gonzalez, A., & Ortiz, R. (2012). Apósitos de quitosano para el tratamiento de pie diabético ( Chitosan films for the diabetic foot treatment ) Resumen Introducción Resultados y Discusión Caso clínico. 1(1), 38–41spa
dc.relation.referencesYick, K. L., Lo, W. T., Ng, S. P., Yip, J., Kwan, H. H., Kwong, Y. Y., & Cheng, F. C. (2019). Analysis of insole geometry and deformity by using a three-dimensional image processing technique: A preliminary study. Journal of the American Podiatric Medical Association, 109(2), 98–107. https://doi.org/10.7547/16-116spa
dc.contributor.cvlacSolarte David, Víctor Alfonso [0001329391]spa
dc.contributor.cvlacBecerra Bayona, Silvia Milena [0001568861]spa
dc.contributor.googlescholarBecerra Bayona, Silvia Milena [5wr21EQAAAAJ]spa
dc.contributor.orcidSolarte David, Víctor Alfonso [0000-0002-9856-1484]spa
dc.contributor.orcidBecerra Bayona, Silvia Milena [0000-0002-4499-5885]spa
dc.contributor.scopusBecerra Bayona, Silvia Milena [36522328100]spa
dc.contributor.researchgateBecerra Bayona, Silvia Milena [Silvia_Becerra-Bayona]spa
dc.contributor.researchgateBecerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]
dc.subject.lembIngeniería biomédicaspa
dc.subject.lembIngenieríaspa
dc.subject.lembBiofísicaspa
dc.subject.lembBioingenieríaspa
dc.subject.lembMedicinaspa
dc.subject.lembBiomédicaspa
dc.subject.lembAzúcar en el organismospa
dc.subject.lembDiabetes mellitusspa
dc.subject.lembModelado en medicinaspa
dc.subject.lembImagen tridimensionalspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishDiabetic foot ulcers are one of the most common complications among patients who suffer Diabetes Mellitus, and the main cause of lower limb amputations around the world. For this reason, new techniques have been implemented to treat them, including 3D printing, which has allowed the development of several treatment methods. This project consists in the design of a protocol to produce personalized molds that allow the obtaining of three-dimensional dressings that adjust to the needs of each patient, making use of 3D scanning and printing technologies. An ulcer in the plantar area was taken as a reference; a series of scans were taken, of which 4 were selected for printing. Similarly, printing tests were carried out by varying parameters such as speed and fill density, which play an important role in the acquisition of results. The material used was PLA, due to its rigidity it provided the necessary stability for the creation of each of the shells. It was found that the dimensions obtained from the shells, made by applying this procedure, presents an error percentage that does not exceed 2.14% for the surface area and 1.04% in depth, regarding the ulcer model. These results allowed establishing that the designed protocol could be used for the manufacture of customized dressings. However, there is still variability in the results, so it is important to continue with research in this area.spa
dc.subject.proposalIngeniería clínicaspa
dc.subject.proposalElectrónica médicaspa
dc.subject.proposalInstrumentos y aparatos médicosspa
dc.subject.proposalApósito tridimensionalspa
dc.subject.proposalEscaneo 3Dspa
dc.subject.proposalImpresión 3Dspa
dc.subject.proposalÚlceras de pie diabéticospa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.contributor.apolounabBecerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa
dc.contributor.linkedinBecerra Bayona, Silvia Milena [silvia-becerra-3174455a]


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia