dc.contributor.advisor | Cabrales Arévalo, Jaime Ramón | |
dc.contributor.advisor | Herrera Galindo, Víctor Mauricio | |
dc.contributor.author | Mantilla Gutiérrez, Hugo Andrés | |
dc.coverage.spatial | Floridablanca (Santander, Colombia) | spa |
dc.date.accessioned | 2022-07-11T18:58:37Z | |
dc.date.available | 2022-07-11T18:58:37Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12749/16896 | |
dc.description.abstract | Introducción: El implante valvular aórtico transcatéter (TAVR) ha revolucionado el manejo de los pacientes de alto riesgo con patología valvular aórtica. Sin embargo, la presentación de alteraciones de la conducción y su asociación al implante de marcapasos permanente (MPP) sigue siendo las complicaciones más frecuentes, con una tendencia al aumento con las válvulas de última generación.
Objetivos: Estimar la incidencia del implante de MPP, así como determinar factores de riesgo en pacientes llevados a TAVR.
Métodos: Estudio de cohorte retrospectiva en pacientes adultos programados para TAVR, que desarrollaron trastornos de conducción interventricular avanzados posteriores al procedimiento y que requirieron marcapaso permanente durante la hospitalización.
Se compararon los grupos según el implante de MPP y se evaluaron los factores asociados preoperatorios reconocidos, así como factores anatómicos relacionados al procedimiento medidos con ecocardiografía. Se estimaron los “odds ratios” (OR) para los factores de interés mediante regresión logística múltiple.
Resultados: Un total de 234 pacientes fueron analizados. Encontramos 14% de Incidencia de MPP, los factores de riesgo independientes asociados fueron la edad (OR = 1.10; IC 1.01-1.22), el genero (OR = 0.11; IC 0.01-0.61), la superficie de área corporal mayor de 1.51 m2 (OR = 9.78; IC 2.13-73.6), alteraciones en la conducción previa como bloqueo de rama derecha (OR = 22.5; IC 2.62-242) o bloqueo AV primer grado (OR = 18.8; IC 3.04-150) y la profundidad de implantación medida en ecocardiografía (OR = 1.76; IC 1.26-2.64). El modelo demostró una muy buena capacidad predictiva con AUC en la curva ROC = 0.934 [P < 0,001, IC 95% (0.8780.988)].
Conclusiones: Desarrollamos un modelo predictivo aplicado a nuestra población con 6 factores de riesgo independientes para MPP posterior a TAVR con alto poder predictivo, añadiendo a los factores clásicos mediciones anatómicas ecocardiografías. | spa |
dc.description.tableofcontents | INCIDENCIA Y FACTORES DE RIESGO ASOCIADOS A LOS BLOQUEOS AURÍCULO-VENTRICULARES AVANZADOS Y NECESIDAD DE MARCAPASO PERMANENTE EN PACIENTES LLEVADOS A REMPLAZO AÓRTICO TRANSCATÉTER. EXPERIENCIA DE UN CENTRO DE REFERENCIA LATINOAMERICANO. ................. 4 RESUMEN ESTRUCTURADO: ........................................................................................................... 4 1. INTRODUCCIÓN ......................................................................................................................... 7 1.1. PLANTEAMIENTO DEL PROBLEMA ..................................................................................................... 7 1.2. JUSTIFICACIÓN .................................................................................................................................. 8 2. MARCO TEÓRICO .................................................................................................................... 10 3. ESTADO DEL ARTE................................................................................................................. 21 4. PREGUNTA DE INVESTIGACIÓN ........................................................................................... 29 5. OBJETIVOS .............................................................................................................................. 30 6. METODOLOGÍA ....................................................................................................................... 30 6.1. TIPO Y DISEÑO DE ESTUDIO ............................................................................................................ 30 6.2. POBLACIÓN Y MUESTRA.................................................................................................................. 30 6.3. CRITERIOS DE ELEGIBILIDAD .......................................................................................................... 31 6.3.1. Criterios de inclusión .......................................................................................................... 31 6.3.2. Criterios de exclusión......................................................................................................... 31 6.4. TAMAÑO DE LA MUESTRA................................................................................................................ 31 6.5. MUESTREO...................................................................................................................................... 31 6.6. DEFINICIÓN Y OPERACIONALIZACIÓN DE VARIABLES ..................................................................... 31 6.7. TÉCNICAS, PROCEDIMIENTOS E INSTRUMENTOS DE LA RECOLECCIÓN DE DATOS ....................... 35 6.8. PLAN DE PROCESAMIENTO DE MUESTRAS BIOLÓGICAS................................................................. 36 6.9. PLAN ANÁLISIS DE DATOS ............................................................................................................... 36 7. RESULTADOS .......................................................................................................................... 38 8. DISCUSIÓN ............................................................................................................................... 42 9. LIMITACIONES DEL ESTUDIO. .............................................................................................. 46 10. FORTALEZAS DEL ESTUDIO ............................................................................................. 48 11. CONCLUSIONES: ................................................................................................................ 49 12. ASPECTOS ÉTICOS ............................................................................................................ 50 13. ADMINISTRACIÓN DEL PROYECTO ................................................................................. 51 13.1. PRESUPUESTO ................................................................................................................................ 51 13.2. CRONOGRAMA ................................................................................................................................ 52 14. ÍNDICE DE TABLAS ............................................................................................................ 53 15. ANEXOS ............................................................................................................................... 56 BIBLIOGRAFÍA ................................................................................................................................. 58 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/co/ | * |
dc.title | Incidencia y factores de riesgo asociados a los bloqueos aurículo-ventriculares avanzados y necesidad de marcapaso permanente en pacientes llevados a reemplazo aórtico transcatéter. Experiencia de un centro de referencia latinoamericano | spa |
dc.type | Thesis | eng |
dc.title.translated | Incidence and risk factors associated with advanced atrioventricular blocks and the need for a permanent pacemaker in patients undergoing transcatheter aortic replacement. Experience of a Latin American reference center | spa |
dc.degree.name | Magíster en Métodos para la Producción y Aplicación de Conocimiento Científico en Salud | spa |
dc.publisher.grantor | Universidad Autónoma de Bucaramanga UNAB | spa |
dc.rights.local | Abierto (Texto Completo) | spa |
dc.publisher.faculty | Facultad Ciencias de la Salud | spa |
dc.publisher.program | Maestría en Métodos para la Producción y Aplicación de Conocimiento Científico en Salud | spa |
dc.description.degreelevel | Maestría | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.local | Tesis | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.subject.keywords | Medical sciences | spa |
dc.subject.keywords | Health sciences | spa |
dc.subject.keywords | Heart block | spa |
dc.subject.keywords | Artificial pacemaker | spa |
dc.subject.keywords | Risk factor's | spa |
dc.subject.keywords | Arteries | spa |
dc.subject.keywords | Blood circulation | spa |
dc.subject.keywords | Catheters | spa |
dc.subject.keywords | Heart (Valves) | spa |
dc.identifier.instname | instname:Universidad Autónoma de Bucaramanga - UNAB | spa |
dc.identifier.reponame | reponame:Repositorio Institucional UNAB | spa |
dc.type.hasversion | info:eu-repo/semantics/acceptedVersion | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.relation.references | 1. Smith CR, Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med [Internet]. 2011 Jun 9;364(23):2187–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21639811 | spa |
dc.relation.references | 2. Spears J, Al-Saiegh Y, Goldberg D, Manthey S, Goldberg S. TAVR: A Review of Current Practices and Considerations in Low-Risk Patients. Vol. 2020, Journal of Interventional Cardiology. 2020. | spa |
dc.relation.references | 3. Otto CM, Kumbhani DJ, Alexander KP, Calhoon JH, Desai MY, Kaul S, et al. 2017 ACC Expert Consensus Decision Pathway for Transcatheter Aortic Valve Replacement in the Management of Adults With Aortic Stenosis: A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2017;69(10):1313–46 | spa |
dc.relation.references | 4. Braghiroli J, Kapoor K, Thielhelm TP, Ferreira T, Cohen MG. Transcatheter aortic valve replacement in low risk patients: A review of PARTNER 3 and Evolut low risk trials. Cardiovasc Diagn Ther. 2020;10(1):59–71. Parámetros | spa |
dc.relation.references | 5. Thourani VH, Kodali S, Makkar RR, Herrmann HC, Williams M, Babaliaros V, et al. Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: A propensity score analysis. Lancet. 2016;387(10034):2218–25. | spa |
dc.relation.references | 6. Auffret V, Puri R, Urena M, Chamandi C, Rodriguez-Gabella T, Philippon F, et al. Conduction disturbances after transcatheter aortic valve replacement: Current status and future perspectives. Vol. 136, Circulation. 2017. p. 1049– 69 | spa |
dc.relation.references | 7. Regueiro A, Altisent OAJ, Del Trigo M, Campelo-Parada F, Puri R, Urena M, et al. Impact of new-onset left bundle branch block and periprocedural permanent pacemaker implantation on clinical outcomes in patients undergoing transcatheter aortic valve replacement. Circ Cardiovasc Interv. 2016;9(5):1–10 | spa |
dc.relation.references | 8. Fischer Q, Himbert D, Webb JG, Eltchaninoff H, Muñoz-García AJ, Tamburino C, et al. Impact of preexisting left bundle branch block in transcatheter aortic valve replacement recipients. Circ Cardiovasc Interv. 2018;11(11):1–9. | spa |
dc.relation.references | 9. Aslan S, Demir AR, Çelik Ö, Kalkan AK, Uzun F, Güner A, et al. Usefulness of membranous septum length in the prediction of major conduction disturbances in patients undergoing transcatheter aortic valve replacement with different devices. Kardiol Pol. 2021;78(10):1020–8 | spa |
dc.relation.references | 10. Santos MC dos, Lamas C da C, Azevedo FS De, Colafranceschi AS, Weksler C, Rodrigues LCD, et al. Incidence of Conduction Disorders and Requirements for Permanent Pacemaker After Transcatheter Aortic Valve Implantation. Int J Cardiovasc Sci. 2019;32(5):492–504 | spa |
dc.relation.references | 11. Makkar RR, Thourani VH, Mack MJ, Kodali SK, Kapadia S, Webb JG, et al. Five-Year Outcomes of Transcatheter or Surgical Aortic-Valve Replacement. N Engl J Med. 2020;382(9):799–809. | spa |
dc.relation.references | 12. Popma JJ, Deeb GM, Yakubov SJ, Mumtaz M, Gada H, O’Hair D, et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N Engl J Med. 2019;380(18):1706–15 | spa |
dc.relation.references | 13. Anantha-Narayanan M, Kandasamy VV, Reddy YN, Megaly M, Baskaran J, Pershad A, et al. Low-Risk Transcatheter Versus Surgical Aortic Valve Replacement – An Updated Meta-Analysis of Randomized Controlled Trials. Cardiovasc Revascularization Med [Internet]. 2020;21(4):441–52. Available from: https://doi.org/10.1016/j.carrev.2019.08.003 | spa |
dc.relation.references | 14. Elmaraezy A, Ismail A, Abushouk AI, Eltoomy M, Saad S, Negida A, et al. Efficacy and safety of transcatheter aortic valve replacement in aortic stenosis patients at low to moderate surgical risk: A comprehensive metaanalysis. BMC Cardiovasc Disord. 2017;17(1):1–11 | spa |
dc.relation.references | 15. Alasti M, Rashid H, Rangasamy K, Kotschet E, Adam D, Alison J, et al. Long-term pacemaker dependency and impact of pacing on mortality following transcatheter aortic valve replacement with the LOTUS valve. Catheter Cardiovasc Interv. 2018;92(4):777–82 | spa |
dc.relation.references | 16. Patel PA, Ackermann AM, Augoustides JGT, Ender J, Gutsche JT, Giri J, et al. Anesthetic Evolution in Transcatheter Aortic Valve Replacement: Expert Perspectives From High-Volume Academic Centers in Europe and the United States. J Cardiothorac Vasc Anesth [Internet]. 2017;31(3):777–90. Available from: http://dx.doi.org/10.1053/j.jvca.2017.02.051 | spa |
dc.relation.references | 17. Takata K, Adachi YU, Suzuki K, Obata Y, Sato S, Nishiwaki K. Dexmedetomidine-induced atrioventricular block followed by cardiac arrest during atrial pacing: A case report and review of the literature. J Anesth. 2014;28(1):116–20. | spa |
dc.relation.references | 18. Ohmori T, Shiota N, Haramo A, Masuda T, Maruyama F, Wakabayashi K, et al. Post-operative cardiac arrest induced by co-administration of amiodarone and dexmedetomidine: A case report. J Intensive Care [Internet]. 2015;3(1):3–7. Available from: http://dx.doi.org/10.1186/s40560-015-0109-0 | spa |
dc.relation.references | 19. Park HS, Kim KM, Joung KW, Choi IC, Sim JY. Monitored anesthesia care with dexmedetomidine in transfemoral percutaneous trans-catheter aortic valve implantation -Two cases report-. Korean J Anesthesiol. 2014;66(4):317–21. | spa |
dc.relation.references | 20. Varadarajan P, Kapoor N, Bansal RC, Pai RG. Survival in elderly patients with severe aortic stenosis is dramatically improved by aortic valve replacement: results from a cohort of 277 patients aged ≥80 years. Eur J Cardio-thoracic Surg. 2006;30(5):722–7 | spa |
dc.relation.references | 21. Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP, Gentile F, et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol [Internet]. 2021;77(4):e25–197. Available from: https://doi.org/10.1016/j.jacc.2020.11.018 | spa |
dc.relation.references | 22. Arora S, Misenheimer JA, Ramaraj R. Transcatheter Aortic Valve Replacement: Comprehensive Review and Present Status. Texas Hear Inst J [Internet]. 2017 Feb;44(1):29–38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28265210 | spa |
dc.relation.references | 23. Seigerman ME, Nathan A, Anwaruddin S. The Lotus Valve System: an Indepth Review of the Technology. Curr Cardiol Rep. 2019;21(12). | spa |
dc.relation.references | 24. Abdel-Wahab M, Neumann FJ, Mehilli J, Frerker C, Richardt D, Landt M, et al. 1-year outcomes after transcatheter aortic valve replacement with balloon-expandable versus self-expandable valves: Results from the CHOICE randomized clinical trial. J Am Coll Cardiol. 2015;66(7):791–800 | spa |
dc.relation.references | 25. Mayr NP, Michel J, Bleiziffer S, Tassani P, Martin K. Sedation or general anesthesia for transcatheter aortic valve implantation (TAVI). J Thorac Dis. 2015;7(9):1518–26 | spa |
dc.relation.references | 26. Neumann FJ, Redwood S, Abdel-Wahab M, Lefèvre T, Frank D, Eltchaninoff H, et al. General anesthesia or conscious sedation for transfemoral aortic valve replacement with the sapien 3 transcatheter heart valve. Int Heart J. 2020;61(4):713–9 | spa |
dc.relation.references | 27. Hyman MC, Vemulapalli S, Szeto WY, Stebbins A, Patel PA, Matsouaka RA, et al. Conscious Sedation Versus General Anesthesia for Transcatheter Aortic Valve Replacement: Insights from the National Cardiovascular Data Registry Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry. Circulation [Internet]. 2017 No28;136(22):2132–40. Available from: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.116.026656 | spa |
dc.relation.references | 28. Ehret C, Rossaint R, Foldenauer AC, Stoppe C, Stevanovic A, Dohms K, et al. Is local anaesthesia a favourable approach for transcatheter aortic valve implantation? A systematic review and meta-analysis comparing local and general anaesthesia. BMJ Open. 2017;7(9):1–12 | spa |
dc.relation.references | 29. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med [Internet]. 2010 Oct 21;363(17):1597– 607. Available from: http://www.ncbi.nlm.nih.gov/pubmed/209 | spa |
dc.relation.references | 30. Bleiziffer S, Ruge H, Hörer J, Hutter A, Geisbüsch S, Brockmann G, et al. Predictors for new-onset complete heart block after transcatheter aortic valve implantation. JACC Cardiovasc Interv. 2010;3(5):524– | spa |
dc.relation.references | 31. Saint Croix GR, Lacy SC, Hrachian H, Beohar N. Clinical Impact of Preexisting Right Bundle Branch Block after Transcatheter Aortic Valve Replacement: A Systematic Review and Meta-Analysis. J Interv Cardiol. 2020;2020. | spa |
dc.relation.references | 32. Siontis GCM, Jüni P, Pilgrim T, Stortecky S, Büllesfeld L, Meier B, et al. Predictors of permanent pacemaker implantation in patients with severe aortic stenosis undergoing TAVR: A meta-analysis. J Am Coll Cardiol [Internet]. 2014;64(2):129–40. Available from: http://dx.doi.org/10.1016/j.jacc.2014.04.033 | spa |
dc.relation.references | 33. Lilly SM, Deshmukh AJ, Epstein AE, Ricciardi MJ, Shreenivas S, Velagapudi P, et al. 2020 ACC Expert Consensus Decision Pathway on Management of Conduction Disturbances in Patients Undergoing Transcatheter Aortic Valve Replacement: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2020;76(20):2391– | spa |
dc.relation.references | 34. Urena M, Webb JG, Tamburino C, Muñoz-García AJ, Cheema A, Dager AE, et al. Permanent pacemaker implantation after transcatheter aortic valve implantation impact on late clinical outcomes and left ventricular function. Circulation. 2014;129(11):1233–43 | spa |
dc.relation.references | 35. Tsoi M, Tandon K, Zimetbaum PJ, Frishman WH. Conduction Disturbances and Permanent Pacemaker Implantation after Transcatheter Aortic Valve Replacement: Predictors and Prevention. Cardiol Rev [Internet]. 2021 Jun 14;Publish Ah. Available from: https://journals.lww.com/10.1097/CRD.000000000 | spa |
dc.relation.references | 36. Kawashima T, Sato F. Visualizing anatomical evidences on atrioventricular conduction system for TAVI. Int J Cardiol [Internet]. 2014;174(1):1–6. Available from: http://dx.doi.org/10.1016/j.ijcard.2014.04.00 | spa |
dc.relation.references | 37. Kapadia SR, Wazni O, Krishnaswamy A. Pacemaker Implantation After TAVR ∗. Vol. 10, JACC: Cardiovascular Imaging. 2017. p. 1148 | spa |
dc.relation.references | 38. Makki N, Dollery J, Jones D, Crestanello J, Lilly S. Conduction disturbances after TAVR: Electrophysiological studies and pacemaker dependency. Cardiovasc Revascularization Med [Internet]. 2017;18(5):S10–3. Available from: http://dx.doi.org/10.1016/j.carrev.2017.03.009 | spa |
dc.relation.references | 39. Toggweiler S, Stortecky S, Holy E, Zuk K, Cuculi F, Nietlispach F, et al. The Electrocardiogram After Transcatheter Aortic Valve Replacement Determines the Risk for Post-Procedural High-Degree AV Block and the Need for Telemetry Monitoring. JACC Cardiovasc Interv. 2016;9(12):1269–76 | spa |
dc.relation.references | 40. Ullah W, Zahid S, Zaidi SR, Sarvepalli D, Haq S, Roomi S, et al. Predictors of Permanent Pacemaker Implantation in Patients Undergoing Transcatheter Aortic Valve Replacement - A Systematic Review and Meta-Analysis. J Am Heart Assoc [Internet]. 2021;10(14):e020906. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34259045 | spa |
dc.relation.references | 41. Dizon JM, Nazif TM, Hess PL, Biviano A, Garan H, Douglas PS, et al. Chronic pacing and adverse outcomes after transcatheter aortic valve implantation. Heart. 2015;101(20):1665–71 | spa |
dc.relation.references | 42. Al-Ogaili A, Fugar S, Okoh A, Kolkailah AA, Al Hashemi N, Ayoub A, et al. Trends in complete heart block after transcatheter aortic valve replacement: A population based analysis. Catheter Cardiovasc Interv. 2019;94(6):773– 80. | spa |
dc.relation.references | 43. Marzahn C, Koban C, Seifert M, Isotani A, Neuß M, Hölschermann F, et al Conduction recovery and avoidance of permanent pacing after transcatheter aortic valve implantation. J Cardiol [Internet]. 2018;71(1):101–8. Available from: http://dx.doi.org/10.1016/j.jjcc.2017.06.007 | spa |
dc.relation.references | 44. Nazif TM, Chen S, George I, Dizon JM, Hahn RT, Crowley A, et al. Newonset left bundle branch block after transcatheter aortic valve replacement is associated with adverse long-term clinical outcomes in intermediate-risk patients: An analysis from the PARTNER II trial. Eur Heart J. 2019;40(27):2218–27. | spa |
dc.relation.references | 45. Kiani S, Kamioka N, Black GB, Lu MLR, Lisko JC, Rao B, et al. Development of a Risk Score to Predict New Pacemaker Implantation After Transcatheter Aortic Valve Replacement. JACC Cardiovasc Interv [Internet]. 2019;12(21):2133–42. Available from: https://doi.org/10.1016/j.jcin.2019.07.015 | spa |
dc.relation.references | 46. Spring AM, Catalano MA, Prasad V, Rutkin B, Koss E, Hartman A, et al. Evaluating the Validity of Risk Scoring in Predicting Pacemaker Rates following Transcatheter Aortic Valve Replacement. J Interv Cardiol. 2020;2020 | spa |
dc.relation.references | 47. Heidarian Miri H, Hassanzadeh J, Rajaeefard A, Mirmohammadkhani M, Ahmadi Angali K. Multiple Imputation to Correct for Nonresponse Bias: Application in Non-communicable Disease Risk Factors Survey. Glob J Health Sci. 2016;8(1):133–42. | spa |
dc.relation.references | 48. Unzué L, García E, Díaz-Antón B, Rodríguez-Rodrigo FJ, Rodríguez del Río M, Teijeiro R, et al. Left Bundle Branch Block after Transcatheter Aortic Valve Implantation with Edwards Sapien 3 Valve: Influence of the Valve Depth Implantation. Cardiovasc Revascularization Med [Internet]. 2019;20(11):949–55. Available from: https://doi.org/10.1016/j.carrev.2019.01.006 | spa |
dc.relation.references | 49. Fadahunsi OO, Olowoyeye A, Ukaigwe A, Li Z, Vora AN, Vemulapalli S, et al. Incidence, Predictors, and Outcomes of Permanent Pacemaker Implantation Following Transcatheter Aortic Valve Replacement: Analysis From the U.S. Society of Thoracic Surgeons/American College of Cardiology TVT Registry. JACC Cardiovasc Interv [Internet]. 2016;9(21):2189–99. Available from: http://dx.doi.org/10.1016/j.jcin.2016.07.026 | spa |
dc.relation.references | 50. Nai Fovino L, Cipriani A, Fabris T, Massussi M, Scotti A, Lorenzoni G, et al. Anatomical Predictors of Pacemaker Dependency after Transcatheter Aortic Valve Replacement. Circ Arrhythmia Electrophysiol. 2021;(January):86–98 | spa |
dc.relation.references | 51. Droppa M, Rudolph TK, Baan J, Nielsen NE, Baumgartner H, Vendrik J, et al. Risk factors for permanent pacemaker implantation in patients receiving a balloon-expandable transcatheter aortic valve prosthesis. Heart Vessels [Internet]. 2020;35(12):1735–45. Available from: https://doi.org/10.1007/s00380-020-01653-6 | spa |
dc.relation.references | 52. Claessen BE, Tang GHL, Kini AS, Sharma SK. Considerations for Optimal Device Selection in Transcatheter Aortic Valve Replacement: A Review. Vol. 6, JAMA Cardiology. 2021. p. 102–12 | spa |
dc.relation.references | 53. Kodali S, Thourani VH, White J, Malaisrie SC, Lim S, Greason KL, et al. Early clinical and echocardiographic outcomes after SAPIEN 3 transcatheter aortic valve replacement in inoperable, high-risk and intermediate-risk patients with aortic stenosis. Eur Heart J. 2016;37(28):2252–62 | spa |
dc.relation.references | 54. Sammour Y, Krishnaswamy A, Kumar A, Puri R, Tarakji KG, Bazarbashi N, et al. Incidence, Predictors, and Implications of Permanent Pacemaker Requirement After Transcatheter Aortic Valve Replacement. Vol. 14, JACC: Cardiovascular Interventions. 2021. p. 115–34 | spa |
dc.relation.references | 55. Ravaux JM, Di Mauro M, Vernooy K, Van’T Hof AW, Veenstra L, Kats S, et al. Do women require less permanent pacemaker after transcatheter aortic valve implantation? A meta-analysis and meta-regression. J Am Heart Assoc. 2021;10(7) | spa |
dc.relation.references | 56. Tsushima T, Nadeem F, Al-Kindi S, Clevenger JR, Bansal EJ, Wheat HL, et al. Risk Prediction Model for Cardiac Implantable Electronic Device Implantation After Transcatheter Aortic Valve Replacement. JACC Clin Electrophysiol. 2020;6(3):295–303 | spa |
dc.relation.references | 57. Routh JM, Joseph L, Marthaler BR, Bhave PD. Imaging-based predictors of permanent pacemaker implantation after transcatheter aortic valve replacement. PACE - Pacing Clin Electrophysiol. 2018;41(1):81–6. | spa |
dc.relation.references | 58. Sammour Y, Banerjee K, Kumar A, Lak H, Chawla S, Incognito C, et al. Systematic Approach to High Implantation of SAPIEN-3 Valve Achieves a Lower Rate of Conduction Abnormalities including Pacemaker Implantation. Circ Cardiovasc Interv. 2021;(January):57–69 | spa |
dc.relation.references | 59. Petronio AS, Sinning JM, Van Mieghem N, Zucchelli G, Nickenig G, Bekeredjian R, et al. Optimal implantation depth and adherence to guidelines on permanent pacing to improve the results of transcatheter aortic valve replacement with the medtronic corevalve system: The CoreValve prospective, international, post-market ADVANCE-II study. JACC Cardiovasc Interv. 2015;8(6):837–46. | spa |
dc.relation.references | 60. Zaid S, Sengupta A, Okoli K, Tsoi M, Khan A, Ahmad H, et al. Novel Anatomic Predictors of New Persistent Left Bundle Branch Block After Evolut Transcatheter Aortic Valve Implantation. Am J Cardiol [Internet]. 2020;125(8):1222–9. Available from: https://doi.org/10.1016/j.amjcard.2020.01.008 | spa |
dc.relation.references | 61. Almeida JG, Ferreira SM, Fonseca P, Dias T, Guerreiro C, Barbosa AR, et al. Association between implantation depth assessed by computed tomography and new-onset conduction disturbances after transcatheter aortic valve implantation. J Cardiovasc Comput Tomogr [Internet]. 2017;11(5):332–7. Available from: http://dx.doi.org/10.1016/j.jcct.2017.08.003 | spa |
dc.relation.references | 62. Mauri V, Reimann A, Stern D, Scherner M, Kuhn E, Rudolph V, et al. Predictors of Permanent Pacemaker Implantation After Transcatheter Aortic Valve Replacement With the SAPIEN 3. JACC Cardiovasc Interv [Internet]. 2016;9(21):2200–9. Available from: http://dx.doi.org/10.1016/j.jcin.2016.08.034 | spa |
dc.relation.references | 63. Lee JJ, Goldschlager N, Mahadevan VS. Atrioventricular and intraventricular block after transcatheter aortic valve implantation. J Interv Card Electrophysiol. 2018;52(3):315–22 | spa |
dc.relation.references | 64. Maan A, Refaat MM, Heist EK, Passeri J, Inglessis I, Ptaszek L, et al. Incidence and Predictors of Pacemaker Implantation in Patients Undergoing Transcatheter Aortic Valve Replacement. PACE - Pacing Clin Electrophysiol. 2015;38(7):878–86. | spa |
dc.relation.references | 65. Shivamurthy P, Vejpongsa P, Gurung S, Jacob R, Zhao Y, Anderson HV, et al. Validation of scoring system predicting permanent pacemaker implantation after transcatheter aortic valve replacement. PACE - Pacing Clin Electrophysiol. 2020;43(5):479–85. | spa |
dc.relation.references | 66. Oestreich BA, Mbai M, Gurevich S, Nijjar PS, Adabag S, Bertog S, et al. Computed tomography (CT) assessment of the membranous septal anatomy prior to transcatheter aortic valve replacement (TAVR) with the balloonexpandable SAPIEN 3 valve. Cardiovasc Revascularization Med [Internet]. 2018;19(5):626–31. Available from: https://doi.org/10.1016/j.carrev.2017.12.012 | spa |
dc.contributor.cvlac | Cabrales Arévalo, Jaime Ramón [0001543056] | spa |
dc.contributor.cvlac | Herrera Galindo, Víctor Mauricio [0000068020] | spa |
dc.contributor.googlescholar | Herrera Galindo, Víctor Mauricio [ay0xprEAAAAJ] | spa |
dc.contributor.orcid | Cabrales Arévalo, Jaime Ramón [0000-0001-8107-1780] | spa |
dc.contributor.orcid | Herrera Galindo, Víctor Mauricio [0000-0002-6295-1640] | spa |
dc.contributor.scopus | Herrera Galindo, Víctor Mauricio [55402953400] | spa |
dc.contributor.researchgate | Cabrales Arévalo, Jaime Ramón [Jaime-Cabrales-2] | spa |
dc.subject.lemb | Ciencias médicas | spa |
dc.subject.lemb | Arterias | spa |
dc.subject.lemb | Circulación sanguínea | spa |
dc.subject.lemb | Catéteres | spa |
dc.subject.lemb | Válvulas (Cardíacas) | spa |
dc.identifier.repourl | repourl:https://repository.unab.edu.co | spa |
dc.description.abstractenglish | Introduction: Transcatheter aortic valve implantation (TAVR) has revolutionized the management of high-risk patients with aortic valve disease. However, the presentation of conduction disturbances and their association with permanent pacemaker implantation (PPM) continues to be the most frequent complications, with a tendency to increase with the latest generation valves.
Objectives: To estimate the incidence of PPM implantation, as well as to determine risk factors in patients undergoing TAVR.
Methods: Retrospective cohort study in adult patients scheduled for TAVR, who developed post-procedure advanced interventricular conduction disorders and required permanent pacemaker during hospitalization.
Groups were compared according to PPM implantation and recognized preoperative associated factors were evaluated, as well as anatomical factors related to the procedure measured with echocardiography. The “odds ratios” (OR) for the factors of interest were estimated using multiple logistic regression.
Results: A total of 234 patients were analyzed. We found 14% incidence of PPM, the associated independent risk factors were age (OR = 1.10; CI 1.01-1.22), gender (OR = 0.11; CI 0.01-0.61), body surface area greater than 1.51 m2 (OR = 9.78; CI 2.13-73.6), alterations in previous conduction such as right bundle branch block (OR = 22.5; CI 2.62-242) or first degree AV block (OR = 18.8; CI 3.04-150) and the depth of implantation measured in echocardiography (OR = 1.76; CI 1.26-2.64). The model demonstrated a very good predictive capacity with AUC in the ROC curve = 0.934 [P < 0.001, CI 95% (0.8780.988)].
Conclusions: We developed a predictive model applied to our population with 6 independent risk factors for PPM after TAVR with high predictive power, adding anatomical echocardiographic measurements to the classic factors. | spa |
dc.subject.proposal | Ciencias de la salud | spa |
dc.subject.proposal | Bloqueo cardiaco | spa |
dc.subject.proposal | Marcapaso artificial | spa |
dc.subject.proposal | Factores de riesgo | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.rights.creativecommons | Atribución-NoComercial-SinDerivadas 2.5 Colombia | * |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.coverage.campus | UNAB Campus Bucaramanga | spa |
dc.description.learningmodality | Modalidad Presencial | spa |