Mostrar el registro sencillo del ítem

dc.contributor.advisorVillar Centeno, Juan Carlos
dc.contributor.advisorEgea Mendoza, Carlos
dc.contributor.authorVargas Ramírez, Leslie Katherine
dc.coverage.spatialColombiaspa
dc.date.accessioned2022-07-11T15:43:53Z
dc.date.available2022-07-11T15:43:53Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/20.500.12749/16878
dc.description.abstractLa apnea obstructiva del sueño (AOS) es una patología de alta prevalencia alrededor del mundo(1). El tratamiento está guiado por un abordaje multidisciplinar que permita corregir los eventos respiratorios, siendo necesario en una buena proporción de los casos el uso de dispositivos de presión positiva para tal fin (2). La terapia con presión positiva (PAP) ha demostrado beneficios en relación con mejoría de los síntomas de la enfermedad como la somnolencia diurna(3) y en mejoría de desenlaces clínicos como control de hipertensión arterial en poblaciones específicas (4), mejoría en la condición hemodinámica en pacientes con falla cardiaca(5), así como mayor éxito en el control de la fibrilación auricular (6). A pesar de los beneficios descritos es difícil lograr la adherencia adecuada al uso de la terapia PAP (7). Con el objetivo de mejorar esta adherencia las guías internacionales para el manejo de pacientes con apnea obstructiva del sueño recomiendan el uso de estrategias de educación, intervenciones comportamentales y apoyo basado en resolución de problemas que deben ser brindadas al paciente al inicio del tratamiento y durante el seguimiento (8,9). En los últimos años se han introducido nuevas tecnologías en el proceso de adaptación de los pacientes con AOS(10), siendo mayor el uso después del inicio de la pandemia de COVID19. Se desconoce la utilidad de estas herramientas para lograr una buena adherencia de los pacientes con AOS a los dispositivos de presión positiva.spa
dc.description.tableofcontents1. Título 4 2. Resumen 4 3. Abstract 6 4. Planteamiento del problema 8 5. Marco teórico 9 6. Estado del arte 15 7. Objetivo General 17 8. Objetivos Específicos 18 9. Metodología 19 9.1 Formulación de las preguntas clínicas 19 9.2 Desarrollo de preguntas PICO 19 9.3 Fuentes de información 21 9.4 Criterios de selección 21 9.5 Estrategias de búsqueda de la literatura 22 9.6 Proceso de selección de los estudios y recolección de datos 22 9.7 Evaluación del riesgo de sesgos 23 9.8 Análisis y síntesis 23 10.Resultados 24 10.1 Selección del cuerpo de la evidencia 24 10.2 Extracción de datos 26 10.3 Evaluación de riesgo de sesgos 34 10.4 Efectos de las intervenciones 35 11. Evaluación del cuerpo de la evidencia y generación de 43 recomendaciones 12. Bibliografía 50 13. Anexos 57spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleEstrategias utilizadas a través de nuevas tecnologías para mejorar la adherencia a los dispositivos de presión positiva en pacientes adultos con apnea obstructiva del sueño. Revisión sistemática de la literatura y recomendaciones basadas en síntesis de la evidenciaspa
dc.typeThesiseng
dc.title.translatedStrategies used through new technologies to improve adherence to positive pressure devices in adult patients with obstructive sleep apnea. Systematic review of the literature and recommendations based on evidence synthesisspa
dc.degree.nameMagíster en Métodos para la Producción y Aplicación de Conocimiento Científico en Saludspa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ciencias de la Saludspa
dc.publisher.programMaestría en Métodos para la Producción y Aplicación de Conocimiento Científico en Saludspa
dc.description.degreelevelMaestríaspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.localTesisspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.subject.keywordsMedical sciencesspa
dc.subject.keywordsHealth sciencesspa
dc.subject.keywordsObstructive apneaspa
dc.subject.keywordsDisease managementspa
dc.subject.keywordsPressure devicesspa
dc.subject.keywordsBreathing disordersspa
dc.subject.keywordsRespiratory diseasesspa
dc.subject.keywordsTechnological innovationsspa
dc.subject.keywordsProduct developmentspa
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.relation.references1. Benjafield A v., Ayas NT, Eastwood PR, Heinzer R, Ip MSM, Morrell MJ, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. The Lancet Respiratory Medicine. 2019 Aug 1;7(8):687–98.spa
dc.relation.references2. Mediano O, González Mangado N, Montserrat JM, Alonso-Álvarez ML, et al. Arch Bronconeumol. 2022 Jan;58(1):52-68spa
dc.relation.references3. Weaver TE, Maislin G, Dinges DF, Bloxham T, George CF, Greenberg H, Kader G, Mahowald M, Younger J, Pack AI. Relationship between hours of CPAP use and achieving normal levels of sleepiness and daily functioning. Sleep. 2007 Jun;30(6):711-9spa
dc.relation.references4. Sapiña-Beltrán E, Torres G, Benítez I, Santamaría-Martos F, Durán-Cantolla J, Egea C, et al. Differential blood pressure response to continuous positive airway pressure treatment according to the circadian pattern in hypertensive patients with obstructive sleep apnoea. European Respiratory Journal 2020;54(1).spa
dc.relation.references5. Bradley TD, Logan AG, Kimoff RJ, Sériès F, Morrison D, Ferguson K, Belenkie I, Pfeifer M, Fleetham J, Hanly P, Smilovitch M, Tomlinson G, Floras JS; CANPAP Investigators. Continuous positive airway pressure for central sleep apnea and heart failure. N Engl J Med. 2005 Nov 10;353(19):2025-33spa
dc.relation.references6. Qureshi WT, Nasir U bin, Alqalyoobi S, O’Neal WT, Mawri S, Sabbagh S, et al. Meta-Analysis of Continuous Positive Airway Pressure as a Therapy of Atrial Fibrillation in Obstructive Sleep Apnea. American Journal of Cardiology [Internet]. 2015;116(11):1767–73spa
dc.relation.references7. Bazurto-Zapata MA, Herrera K, Vargas-Ramirez L, Duenas-Meza E, Gonzalez-Garcia M. Factores subjetivos asociados a la no adherencia a la CPAP en pacientes con síndrome de apnea hipopnea de sueño. Acta Médica Colombiana. 2013;38(2):71–5spa
dc.relation.references8. NICE. Obstructive sleep apnoea/ hypopnoea syndrome and obesity hypoventilation syndrome in over 16s NICE guideline. 2021. Available from: www.nice.org.uk/guidance/ng202spa
dc.relation.references9. Patil SP, Ayappa IA, Caples SM, John Kimoff R, Patel SR, Harrod CG. Treatment of adult obstructive sleep apnea with positive airway pressure: An American academy of sleep medicine systematic review, meta-analysis, and GRADE assessment. Journal of Clinical Sleep Medicine. 2019;15(2):301–34spa
dc.relation.references10. Bollig SM. Encouraging CPAP adherence: It is everyone’s job. Respiratory Care. 2010;55(9):1230–9.spa
dc.relation.references11. Carberry JC, Amatoury J, Eckert DJ. Personalized Management Approach for OSA. Vol. 153, Chest. Elsevier Inc; 2018. p. 744–55spa
dc.relation.references12. Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N, et al. Prevalence of sleep-disordered breathing in the general population: THE HypnoLaus study. The Lancet Respiratory Medicine. 2015;3(4):310–8spa
dc.relation.references13. Ruiz A, Sepúlveda MAR, Martínez PH, Muñoz MC, Mendoza LO, Centanaro OPP, et al. Prevalence of sleep complaints in Colombia at different altitudes. Sleep Science. 2016;9(2):100–5spa
dc.relation.references14. Teran Santos, Jimenez-Gomez. Association Between Sleep Apnea and the Risk of Traffic Accidents. N Engl J Med. 1999; 340:847–51.spa
dc.relation.references15. Tregear S, Reston J, Schoelles K, Phillips B. Continuous positive airway pressure reduces risk of motor vehicle crash among drivers with obstructive sleep apnea: Systematic review and meta-analysis. Sleep. 2010;33(10):1373– 80spa
dc.relation.references16. Weiss JW, Remsburg S, Garpestad E, Ringler J, Sparrow D, Parker JA. Hemodynamic consequences of obstructive sleep apnea. Sleep. 1996;19(5):388–97spa
dc.relation.references17. Van Ryswyk E, Mukherjee S, Chai-Coetzer CL, Vakulin A, Mcevoy RD. Sleep disorders, including sleep apnea and hypertension. American Journal of Hypertension. 2018;31(8):857–64.spa
dc.relation.references18. Bouloukaki I, Grote L, McNicholas WT, Hedner J, Verbraecken J, Parati G, et al. Mild obstructive sleep apnea increases hypertension risk, challenging traditional severity classification. Journal of Clinical Sleep Medicine. 2020 Jun 15;16(6):889–98spa
dc.relation.references19. Nieto FJ, Young TB, Lind BK, Shahar E, Samet JM, Redline S, et al. Association of Sleep-Disordered Breathing, Sleep Apnea, and Hypertension in a Large Community-Based Study [Internet]. Available from: http://jama.jamanetwork.com/spa
dc.relation.references20. Aul P, Eppard EP, Erry T, Oung Y, Alta AP, Ames J, et al. Prospective study of te association between sleep disordered breathing and hypertension. N Engl J Med 2000; 342:1378-84.spa
dc.relation.references21. Xia W, Huang Y, Peng B, Zhang X, Wu Q, Sang Y, et al. Relationship between obstructive sleep apnoea syndrome and essential hypertension: a dose– response meta-analysis. Sleep Medicine. 2018 Jul 1; 47:11–8spa
dc.relation.references22. Crinion SJ, Ryan S, Kleinerova J, Kent BD, Gallagher J, Ledwidge M, et al. Nondipping nocturnal blood pressure predicts sleep apnea in patients with hypertension. Journal of Clinical Sleep Medicine. 2019;15(7):957–63spa
dc.relation.references23. Mokhlesi B, Hagen EW, Finn LA, Hla KM, Carter JR, Peppard PE. Obstructive sleep apnoea during REM sleep and incident non-dipping of nocturnal blood pressure: A longitudinal analysis of the Wisconsin Sleep Cohort. Thorax. 2015 Nov 1;70(11):1062–9spa
dc.relation.references24. Montesi SB, Edwards BA, Malhotra A, Bakker JP. Effect of continuous positive airway pressure treatment on blood pressure: A systematic review and metaanalysis of randomized controlled trials. Vol. 8, Journal of Clinical Sleep Medicine. 2012. p. 587–96.spa
dc.relation.references25. Shah NA, Yaggi HK, Concato J, Mohsenin V. Obstructive sleep apnea as a risk factor for coronary events or cardiovascular death. Sleep and breathing. 2010 Jun;14(2):131–6.spa
dc.relation.references26. Lee CH, Khoo SM, Chan MY, Wong HB, Low AF, Phua QH, et al. Severe obstructive sleep apnea and outcomes following myocardial infarction. Journal of Clinical Sleep Medicine. 2011;7(6):616–21spa
dc.relation.references27. Sert Kuniyoshi FH, Garcia-Touchard A, Gami AS, Romero-Corral A, van der Walt C, Pusalavidyasagar S, et al. Day-Night Variation of Acute Myocardial Infarction in Obstructive Sleep Apnea. J Am Coll Cardiol. 2008 Jul 29;52(5):343–6.spa
dc.relation.references28. Gottlieb DJ, Yenokyan G, Newman AB, O’Connor GT, Punjabi NM, Quan SF, et al. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: The sleep heart health study. Circulation. 2010;122(4):352–60.spa
dc.relation.references29. Hla KM, Young T, Hagen EW, Stein JH, Finn LA, Nieto FJ, et al. coronary heart disease incidence in sleep disordered breathing: The Wisconsin Sleep Cohort Study. Sleep. 2015;38(5):677–84spa
dc.relation.references30. Bucca CB, Brussino L, Battisti A, Mutani R, Rolla G, Mangiardi L, et al. Diuretics in obstructive sleep apnea with diastolic heart failure. Chest. 2007;132(2):440–6spa
dc.relation.references31. Bradley TD, Hall MJ, Ando SI, Floras JS. Hemodynamic effects of simulated obstructive apneas in humans with and without heart failure. Chest. 2001;119(6):1827–35spa
dc.relation.references32. Bradley D, Tkacova R, Hall MJ, Ando S ichi, Floras JS. Augmented sympathetic neural response to simulated obstructive apnoea in human heart failure. Vol. 104, Clinical Science. 2003spa
dc.relation.references33. Gottlieb DJ, Yenokyan G, Newman AB, O’Connor GT, Punjabi NM, Quan SF, et al. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: The sleep heart health study. Circulation. 2010 Jul 27;122(4):352–60spa
dc.relation.references34. Richard S. T. Leung, MD, PhD, Tung M. Diep, BSc, Michael E. Bowman, BSc, Geraldo Lorenzi-Filho, MD, PhD, T. Douglas Bradley, MD, Provocation of Ventricular Ectopy by Cheyne-Stokes Respiration in Patients with Heart Failure, Sleep, Volume 27, Issue 7, October 2004, Pages 1337–13spa
dc.relation.references35. Wang H, Parker JD, Newton GE, Floras JS, Mak S, Chiu KL, et al. Influence of Obstructive Sleep Apnea on Mortality in Patients with Heart Failure. J Am Coll Cardiol. 2007 Apr 17;49(15):1625–31spa
dc.relation.references36. McEvoy RD, Antic NA, Heeley E, Luo Y, Ou Q, Zhang X, et al. CPAP for Prevention of Cardiovascular Events in Obstructive Sleep Apnea. New England Journal of Medicine. 2016 Sep 8;375(10):919–31spa
dc.relation.references37. Bitter T, Fox H, Gaddam SP, Horstkotte D, Oldenburg O. Sleep-Disordered Breathing and Cardiac Arrhythmias. Canadian Journal of Cardiology [Internet]. 2015;31(7):928–34spa
dc.relation.references38. Gami AS, Pressman G, Caples SM, Kanagala R, Gard JJ, Davison DE, et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation. 2004;110(4):364–7spa
dc.relation.references39. Shukla A, Aizer A, Holmes D, Fowler S, Park DS, Bernstein S, et al. Effect of obstructive sleep apnea treatment on atrial fibrillation recurrence: A metaanalysis. JACC: Clinical Electrophysiology. 2015;1(1–2):41–51spa
dc.relation.references40. Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinstian A. Sleep disturbances compared to traditional risk factors for diabetes development: Systematic review and meta-analysis. Sleep Medicine Reviews. 2016; 30:11– 24spa
dc.relation.references41. Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes. 2010;59(9):2126–33.spa
dc.relation.references42. Broussard, Josiane L. et al. “Impaired Insulin Signaling in Human Adipocytes After Experimental Sleep Restriction.” Annals of Internal Medicine 157 (2012): 549 - 557spa
dc.relation.references43. Ip MS, Lam B, Ng MM, Lam WK, Tsang KW, Lam KS. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med. 2002 Mar 1;165(5):670-6spa
dc.relation.references44. Herzog N, Jauch-Chara K, Hyzy F, Richter A, Friedrich A, Benedict C, et al. Selective slow wave sleep but not rapid eye movement sleep suppression impairs morning glucose tolerance in healthy men. Psychoneuroendocrinology. 2013 Oct;38(10):2075–82spa
dc.relation.references45. Nedeltcheva A v., Kessler L, Imperial J, Penev PD. Exposure to recurrent sleep restriction in the setting of high caloric intake and physical inactivity results in increased insulin resistance and reduced glucose tolerance. Journal of Clinical Endocrinology and Metabolism. 2009;94(9):3242–50spa
dc.relation.references46. Reutrakul S, Mokhlesi B. Obstructive Sleep Apnea and Diabetes: A State-ofthe-Art Review. Vol. 152, Chest. Elsevier Inc; 2017. p. 1070–86spa
dc.relation.references47. Martínez-Ceron E, Fernández-Navarro I, Garcia-Rio F. Effects of continuous positive airway pressure treatment on glucose metabolism in patients with obstructive sleep apnea. Sleep Medicine Reviews. 2016; 25:121–30spa
dc.relation.references48. Shaw JE, Punjabi NM, Naughton MT, Willes L, Bergenstal RM, Cistulli PA, et al. The effect of treatment of obstructive sleep apnea on glycemic control in type 2 diabetes. American Journal of Respiratory and Critical Care Medicine. 2016 Aug 15;194(4):486–92spa
dc.relation.references49. West SD, Nicoll DJ, Wallace TM, Matthews DR, Stradling JR. Effect of CPAP on insulin resistance and HbA1c in men with obstructive sleep apnoea and type 2 diabetes. Thorax. 2007 Nov;62(11):969–74spa
dc.relation.references50. Kribbs NB, Pack AI, Kline LR, Smith PL, Schwartz AR, Schubert NM, et al. Objective measurement of patterns of nasal CPAP use by patients with obstructive sleep apnea. American Review of Respiratory Disease. 1993;147(4):887–95spa
dc.relation.references51. Pepin JL, Leger P, Veale D, Langevin B, Robert D, Levy P. Side effects of nasal continuous positive airway pressure in sleep apnea syndrome: Study of 193 patients in two French sleep centers. Chest. 1995;107(2):375–81.spa
dc.relation.references52. Bazurto, M. A., Vargas Ramírez, L. K., Herrera Nieto, K. L., Dueñas, E., & González-García, M. (2013). Factores subjetivos asociados a la no adherencia a la CPAP en pacientes con síndrome de apnea hipopnea de sueño. Acta Médica Colombiana, 38(2), 71-75. https://doi.org/10.36104/amc.2013.38spa
dc.relation.references53. Askland K, Wright L, Wozniak DR, Emmanuel T, Caston J, Smith I. Educational, supportive, and behavioural interventions to improve usage of continuous positive airway pressure machines in adults with obstructive sleep apnoea. Vol. 2020, Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd; 2020spa
dc.relation.references54. Bandura A. Self-Efficacy Mechanism in Human Agency. 1982.spa
dc.relation.references55. Duong M, Jayaram L, Camfferman D, Catcheside P, Mykytyn I, McEvoy RD. Use of heated humidification during nasal CPAP titration in obstructive sleep apnoea syndrome. European Respiratory Journal. 2005 Oct;26(4):679–85spa
dc.relation.references56. Aloia MS, Stanchina M, Arnedt JT, Malhotra A, Millman RP. Treatment adherence and outcomes in flexible vs standard continuous positive airway pressure therapy. Chest. 2005;127(6):2085–93spa
dc.relation.references57. Munafo D, Hevener W, Crocker M, Willes L, Sridasome S, Muhsin M. A telehealth program for CPAP adherence reduces labor and yields similar adherence and efficacy when compared to standard of care. Sleep and breathing. 2016 May 1;20(2):777–85spa
dc.relation.references58. Weaver TE. Novel aspects of CPAP treatment and interventions to improve cpap adherence. Vol. 8, Journal of Clinical Medicine. MDPI; 2019spa
dc.relation.references59. Lugo VM, Garmendia O, Suarez-Girón M, Torres M, Vázquez-Polo FJ, Negrín MA, et al. Comprehensive management of obstructive sleep apnea by telemedicine: Clinical improvement and cost-effectiveness of a Virtual Sleep Unit. A randomized controlled trial. PLoS ONE. 2019 Oct 1;14(10).spa
dc.relation.references60. Attias D, Pepin JL, Pathak A. Impact of COVID-19 lockdown on adherence to continuous positive airway pressure by obstructive sleep apnoea patients. Vol. 56, European Respiratory Journal. European Respiratory Society; 2020spa
dc.relation.references61. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011 Oct 29;343(7829)spa
dc.relation.references62. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web, and mobile app for systematic reviews. Systematic Reviews. 2016 Dec 5;5(1)spa
dc.relation.references63. Fox N, Hirsch-Allen AJ, Goodfellow E, Wenner J, Fleetham J, Ryan CF, et al. The impact of a telemedicine monitoring system on positive airway pressure adherence in patients with obstructive sleep apnea: A randomized controlled trial. Sleep. 2012 Apr 1;35(4):477–81spa
dc.relation.references64. Hwang D, Chang JW, Benjafield A v., Crocker ME, Kelly C, Becker KA, et al. Effect of telemedicine education and telemonitoring on continuous positive airway pressure adherence the Tele-OSA Randomized Trial. American Journal of Respiratory and Critical Care Medicine. 2018 Jan 1;197(1):117–26spa
dc.relation.references65. Kotzian ST, Saletu MT, Schwarzinger A, Haider S, Spatt J, Kranz G, et al. Proactive telemedicine monitoring of sleep apnea treatment improves 55 adherence in people with stroke– a randomized controlled trial (HOPES study). Sleep Medicine. 2019 Dec 1; 64:48–55spa
dc.relation.references66. Kuna ST, Shuttleworth D, Chi L, Schutte-Rodin S, Friedman E, Guo H, et al. Web-based access to positive airway pressure usage with or without an initial financial incentive improves treatment use in patients with obstructive sleep apnea. Sleep. 2015 Aug 1;38(8):1229–36spa
dc.relation.references67. Mendelson M, Vivodtzev I, Tamisier R, Laplaud D, Dias-Domingos S, Baguet JP, et al. CPAP treatment supported by telemedicine does not improve blood pressure in high cardiovascular risk OSA patients: A randomized, controlled trial. Sleep. 2014 Nov 1;37(11):1863-1870Bspa
dc.relation.references68. Basoglu OK, Midilli M, Midilli R, Bilgen C. Adherence to continuous positive airway pressure therapy in obstructive sleep apnea syndrome: Effect of visual education. Sleep and breathing. 2012 Dec;16(4):1193–200spa
dc.relation.references69. Guralnick AS, Balachandran JS, Szutenbach S, Adley K, Emami L, Mohammadi M, et al. educational video to improve CPAP use in patients with obstructive sleep apnoea at risk for poor adherence: A randomised controlled trial. Thorax. 2017 Dec 1;72(12):1132–9spa
dc.relation.references70. Coma-Del-Corral MJ, Alonso-Álvarez ML, Allende M, Cordero J, Ordax E, Masa F, et al. Reliability of telemedicine in the diagnosis and treatment of sleep apnea syndrome. Telemedicine and e-Health. 2013 Jan 1;19(1):7–12.spa
dc.relation.references71. Murase K, Tanizawa K, Minami T, Matsumoto T, Tachikawa R, Takahashi N, et al. A randomized controlled trial of telemedicine for long-term sleep apnea continuous positive airway pressure management. Ann Am Thorac Soc. 2020;17(3):329–37spa
dc.relation.references72. Kooij L, Vos PJE, Dijkstra A, Roovers EA, van Harten WH. Video consultation as an adequate alternative to face-to-face consultation in continuous positive airway pressure use for newly diagnosed patients with obstructive sleep apnea: Randomized controlled trial. JMIR Formative Research. 2021 May 1;5(5).spa
dc.relation.references73. Mateus-Galeano EM, Céspedes-Cuevas VM. Validade e confiabilidade do instrumento “Medição da autoeficácia percebida em apneia do sono” — SEMSA. Versão em espanhol. Aquichan. 2016 Mar 1;16(1):67–82.spa
dc.relation.references74. Stepnowsky C, Edwards C, Zamora T, Barker R, Agha Z. Patient perspective on use of an interactive website for sleep apnea. International Journal of Telemedicine and Applications. 20spa
dc.relation.references75. Isetta V, Negrín MA, Monasterio C, Masa JF, Feu N, Álvarez A, et al. A Bayesian cost-effectiveness analysis of a telemedicine-based strategy for the management of sleep apnoea: A multicentre randomised controlled trial. Thorax. 2015 Nov 1;70(11):1054–61.spa
dc.relation.references76. Anttalainen U, Melkko S, Hakko S, Laitinen T, Saaresranta T. Telemonitoring of CPAP therapy may save nursing time. Sleep and breathing. 2016 Dec 1;20(4):1209–15spa
dc.relation.references77. Fernandes M, Antunes C, Martinho C, Carvalho J, Abreu T, Oliveira A, et al. Evaluation of telemonitoring of continuous positive airway pressure therapy in 56 obstructive sleep apnoea syndrome: TELEPAP pilot study. Journal of Telemedicine and Telecare. 2021 Jul 1;27(6):353–8spa
dc.relation.references78. Munafo D, Hevener W, Crocker M, Willes L, Sridasome S, Muhsin M. A telehealth program for CPAP adherence reduces labor and yields similar adherence and efficacy when compared to standard of care. Sleep and breathing. 2016 May 1;20(2):777–85spa
dc.relation.references79. Nilius G, Schroeder M, Domanski U, Tietze A, Schäfer T, Franke KJ. Telemedicine Improves Continuous Positive Airway Pressure Adherence in Stroke Patients with Obstructive Sleep Apnea in a Randomized Trial. Respiration. 2019 Nov 1;98(5):410–20.spa
dc.relation.references80. Fietze I, Herberger S, Wewer G, Woehrle H, Lederer K, Lips A, Willes L, Penzel T. Initiation of therapy for obstructive sleep apnea syndrome: a randomized comparison of outcomes of telemetry-supported home-based vs. sleep labbased therapy initiation. Sleep Breath. 2022 Mar;26(1):269-277spa
dc.relation.references81. Tamisier R, Treptow E, Joyeux-Faure M, Levy P, Sapene M, Benmerad M, et al. Impact of a Multimodal Telemonitoring Intervention on CPAP Adherence in Symptomatic OSA and Low Cardiovascular Risk: A Randomized Controlled Trial. Chest. 2020 Nov 1;158(5):2136–45.spa
dc.relation.references82. Pépin JL, Jullian-Desayes I, Sapène M, Treptow E, Joyeux-Faure M, Benmerad M, et al. Multimodal Remote Monitoring of High Cardiovascular Risk Patients with OSA Initiating CPAP: A Randomized Trial. Chest. 2019 Apr 1;155(4):730–9.spa
dc.relation.references83. Lugo VM, Garmendia O, Suarez-Girón M, Torres M, Vázquez-Polo FJ, Negrín MA, et al. Comprehensive management of obstructive sleep apnea by telemedicine: Clinical improvement and cost-effectiveness of a Virtual Sleep Unit. A randomized controlled trial. PLoS ONE. 2019 Oct 1;14(10).spa
dc.relation.references84. Chumpangern W, Muntham D, Chirakalwasan N. Efficacy of a telemonitoring system in continuous positive airway pressure therapy in Asian obstructive sleep apnea. Journal of Clinical Sleep Medicine. 2021;17(1):23–9.spa
dc.relation.references85. Contal O, Poncin W, Vaudan S, de Lys A, Takahashi H, Bochet S, et al. OneYear Adherence to Continuous Positive Airway Pressure with Telemonitoring in Sleep Apnea Hypopnea Syndrome: A Randomized Controlled Trial. Frontiers in Medicine. 2021 Apr 20;8spa
dc.relation.references86. Frasnelli M, Baty F, Niedermann J, Brutsche MH. Effect of telemetric monitoring in the first 30 days of continuous positive airway pressure adaptation for obstructive sleep apnoea syndrome – a-controlled pilot study. Journal of Telemedicine and Telecare. 2016 Jun 1;22(4):209–spa
dc.relation.references87. Turino C, de Batlle J, Woehrle H, Mayoral A, Castro-Grattoni AL, Gómez S, et al. Management of continuous positive airway pressure treatment compliance using telemonitoring in obstructive sleep apnoea. European Respiratory Journal. 2017 Feb 1;49(2).spa
dc.relation.references88. Schoch OD, Baty F, Boesch M, Benz G, Niedermann J, Brutsche MH. Telemedicine for continuous positive airway pressure in sleep apnea a randomized, controlled study. Ann Am Thorac Soc. 2019;16(12):1550–7.spa
dc.contributor.cvlacVillar Centeno, Juan Carlos [0000068519]spa
dc.contributor.googlescholarVillar Centeno, Juan Carlos [nTlsWe0AAAAJ]spa
dc.contributor.orcidVillar Centeno, Juan Carlos [0000-0002-7047-7299]spa
dc.contributor.orcidEgea Mendoza, Carlos [0000-0002-7618-7444]spa
dc.contributor.scopusVillar Centeno, Juan Carlos [57193835436]spa
dc.contributor.researchgateVillar Centeno, Juan Carlos [Juan_Villar11]spa
dc.subject.lembCiencias médicasspa
dc.subject.lembTrastornos de la respiraciónspa
dc.subject.lembEnfermedades respiratoriasspa
dc.subject.lembInnovaciones tecnológicasspa
dc.subject.lembDesarrollo de productosspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishObstructive sleep apnea (OSA) is a highly prevalent pathology around the world (1). The treatment is guided by a multidisciplinary approach that allows correcting respiratory events, being necessary in many cases the use of devices of positive pressure for this purpose (2). Positive pressure therapy (PAP) has shown benefits in relation to improvement of disease symptoms such as daytime sleepiness (3) and improvement of clinical outcomes such as control of arterial hypertension in specific populations (4), improvement in the condition hemodynamics in patients with heart failure (5), as well as greater success in the control of atrial fibrillation (6). Despite the benefits described, it is difficult to achieve adequate adherence to the use of PAP therapy (7). With the aim of improving this adherence, the international guidelines for the management of patients with obstructive sleep apnea recommend the use of educational strategies, behavioral interventions and support based on problem solving that should be provided to the patient at the beginning of treatment and during follow-up (8,9). In recent years, new technologies have been introduced in the adaptation process of patients with OSA (10), with greater use after the onset of the COVID19 pandemic. The usefulness of these tools in achieving good adherence of OSA patients to positive pressure devices is unknown.spa
dc.subject.proposalCiencias de la saludspa
dc.subject.proposalApnea obstructivaspa
dc.subject.proposalManejo de enfermedadspa
dc.subject.proposalDispositivos de presiónspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia