Show simple item record

dc.contributor.advisorRoa Prada, Sebastián
dc.contributor.authorRangel Vera, Jorge Eliecer
dc.date.accessioned2020-06-26T19:45:24Z
dc.date.available2020-06-26T19:45:24Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/20.500.12749/1601
dc.description.abstractLas vértebras y los discos intervertebrales permiten la flexibilidad de la columna y actúan como amortiguadores durante las actividades diarias, dada la elevada incidencia de lesiones en la espalda, nace la idea de crear una herramienta de soporte para la medicina y la fisioterapia, la cual sirva como modelo guía para diagnosticar lesiones lumbares. Por medio de análisis por elementos finitos de acuerdo a cargas específicas y a una postura determinada, se puede analizar el comportamiento que tienen las vértebras lumbares y así prever una lesión.spa
dc.description.tableofcontentsDEDICATORIA ..................................................................................................... 3 AGRADECIMIENTOS .......................................................................................... 4 CONTENIDO ........................................................................................................ 5 TABLA DE ILUSTRACIONES .............................................................................. 8 LISTADO DE TABLAS ....................................................................................... 11 1. OBJETIVOS................................................................................................. 12 1.1. OBJETIVO GENERAL ........................................................................................................12 1.2. OBJETIVOS ESPECÍFICOS .................................................................................................12 2. PLANTEAMIENTO DEL PROBLEMA .......................................................... 13 3. ANTECEDENTES ........................................................................................ 14 4. ESTADO DEL ARTE .................................................................................... 15 4.1. VÉRTEBRAS. ....................................................................................................................15 4.2. DISCOS INTERVERTEBRALES. ..........................................................................................18 4.3. MÚSCULOS LUMBARES ..................................................................................................19 4.4. MODELADO DE HUESO UTILIZANDO ELEMENTOS FINITOS ............................................22 4.5. CARGAS ..........................................................................................................................23 4.6. PROPIEDADES FÍSICAS DE LOS MATERIALES. ..................................................................26 5. MARCO TEÓRICO ...................................................................................... 28 5.1. PESO CORPORAL .............................................................................................................28 5.2. COLUMNA VERTEBRAL. ..................................................................................................28 5.3. PROPIEDADES BIOMECÁNICAS DE LAS ESTRUCTURAS VERTEBRALES ............................29 5.4. DISCO INTERVERTEBRAL .................................................................................................30 5.5. VÉRTEBRA .......................................................................................................................31 5.6. CUERPO VERTEBRAL .......................................................................................................32 5.7. APÓFISIS ARTICULARES...................................................................................................32 5.8. ISTMO Y PEDÍCULOS .......................................................................................................32 5.9. MÚSCULOS LUMBARES ..................................................................................................33 5.9.1. MÚSCULO DORSAL ANCHO ....................................................................................33 5.9.2. MÚSCULO CUADRADO LUMBAR ............................................................................34 5.9.3. MÚSCULO MULTÍFIDO ............................................................................................34 5.10. BIOMECÁNICA DE LA COLUMNA VERTEBRAL .................................................................35 5.10.1. ESFUERZO TENSIONAL ............................................................................................37 5.10.2. MECÁNICA DE LA COLUMNA VERTEBRAL. ..............................................................43 5.10.3. MODELAMIENTO DE TEJIDO BIOLÓGICO........................................................................45 5.10.4. CARACTERIZACIÓN MECANICÁNICA DEL HUESO ....................................................49 5.11. LESIONES LUMBARES .....................................................................................................58 5.11.1. DEGENERACIÓN DEL DISCO INTERVERTEBRAL .......................................................59 5.11.2. ENVEJECIMIENTO DE LOS DISCOS INTERVERTEBRALES ..........................................60 5.11.3. ESCOLIOSIS .............................................................................................................61 5.11.4. ESPONDILOLISTESIS ................................................................................................61 5.11.5. ESPONDILÓLISIS ......................................................................................................62 5.11.6. ESTENOSIS ESPINAL ................................................................................................63 5.11.7. ESPINA BÍFIDA ........................................................................................................63 5.11.8. SÍNDROME DEL PIRAMIDAL ....................................................................................64 5.11.9. DISCO ROTO ...........................................................................................................64 5.12. TEORÍA DE FALLA ............................................................................................................65 5.12.1. ENERGÍA DE DISTORSIÓN MÁXIMA ........................................................................65 6. DISEÑO METODOLÓGICO ......................................................................... 67 6.1. RECOPILACIÓN INFORMACIÓN BIBLIOGRÁFICA. ............................................................67 6.2. DISEÑO CAD DE LAS VÉRTEBRAS LUMBARES. .................................................................67 6.3. ANÁLISIS POR ELEMENTOS FINITOS. ..............................................................................67 6.4. RECOPILACIÓN Y VALIDACIÓN DE LOS RESULTADOS. .....................................................68 6.5. DESARROLLO DE LA INTERFAZ GRÁFICA. ........................................................................68 6.6. DIFUSIÓN DE RESULTADOS.............................................................................................68 7. RESULTADOS ............................................................................................ 69 7.1. DISEÑO CAD ...................................................................................................................69 7.2. ANÁLISIS POR ELEMENTOS FINITOS ...............................................................................70 7.3. INTERFAZ GRÁFICA .........................................................................................................71 7.4. RESUMEN RESULTADOS PRINCIPALES ............................................................................72 8. VALIDACIÓN ............................................................................................... 73 8.1. VALIDACIÓN BAJO FLEXIÓN ............................................................................................74 8.2. VALIDACIÓN BAJO EXTENSIÓN .......................................................................................78 9. CONCLUSIONES ........................................................................................ 79 10. BIBLIOGRAFÍA ............................................................................................ 82 11. ANEXOS ...................................................................................................... 87
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleDiseño de una interfaz gráfica para el análisis por elementos finitos de la respuesta de dos vértebras lumbares sometidas a carga combinadaspa
dc.title.translatedDesign of a graphical interface for finite element analysis of the response of two lumbar vertebrae under combined loadeng
dc.degree.nameIngeniero Mecatrónico
dc.coverageBucaramanga (Colombia)
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNAB
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingeniería
dc.publisher.programIngeniería Mecatrónica
dc.description.degreelevelPregrado
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsMechatronic Engineering
dc.subject.keywordsFinite element methods
dc.subject.keywordsInvestigations
dc.subject.keywordsAnalysis
dc.subject.keywordsModeling and simulationeng
dc.subject.keywordsMechatronic design
dc.subject.keywordsVertebraeeng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponamereponame:Repositorio Institucional UNAB
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.relation.referencesRangel Vera, Jorge Eliecer (2016). Diseño de una interfaz gráfica para el análisis por elementos finitos de la respuesta de dos vértebras lumbares sometidas a carga combinada. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB
dc.relation.references[1]K. T. Huynh, H. Gibson y Z. Gao, Development of a Detailed Human Spine Model with Hepatic Interface, National University of Singapore, 2012.
dc.relation.references[2]T. Sara y M. Nunes, Development of a Biomechanical Spine Model for Dynamic Analysis, 2011.
dc.relation.references[3]H. A. Soo, «Researchgate,» [En línea]. Available: https://www.researchgate.net/publication/35217015_A_virtual_model_of_the_human_cervical_spine_for_physics-based_simulation_and_applications_Electronic_Thesis
dc.relation.references[4]V. Esat, Biomechanical Modelling of the Whole Human Spine for Dynamic Analysis, Loughborough, 2006
dc.relation.references[5]I. K, O. I, B. M, S. W, K. H y N. K, NONLINEAR FINITE ELEMENT MODEL PREDICTS VERTEBRAL BONE STRENGTH AND FRACTURE SITE, Tokyo: 50th Annual Meeting of the Orthopaedic Research Society
dc.relation.references[6]C. RP y K. TM, «Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography.,» OCT 2003. [En línea]. Available: https://www.ncbi.nlm.nih.gov/pubmed/14555280
dc.relation.references[7]J. c. Su, Z. d. Li, L. h. CAO, B. q. Yu, C. c. ZHANG y M. Li, Three-dimensional finite element analysis of lumbar vertebra loaded by static stress and its biomechanical significance, China: Chinese Journal of Traumatology, 2009.
dc.relation.references[8]D. V y A. M, Finite element analysis of human lumbar spine, India: 2011 3rd International Conference on Electronics Computer Technology, 2011
dc.relation.references[9]J. Ezquerro, M. Simón, A. Mellado y P. Villanueva, «Modelo de elementos finitos de la columna lumbar,» 1999. [En línea]. Available: https://upcommons.upc.edu/bitstream/handle/2099/5449/article6.pdf?sequence=1.
dc.relation.references[10]Modelo de elementos, Escuela Técnica Superior de Ingenieros de Sevilla, 2009.
dc.relation.references[11]M. Karger y L. Low, «Análisis de Sensibilidad de las Propiedades del Material Aplicadas a un Modelo de Disco Intervertebral,» [En línea]. Available: http://andromeda.unimet.edu.ve/mirai/archivos/E/E-13-11-12.pdf..
dc.relation.references[12]M. Carvajal, J. Nieto y J. Sánchez, Estudio numério-experimental del sistema de fijación interno "Duffo" para fracturas vertebrales, Revista Cirugía y Cirujanos Vol. 80 No 2, 2012
dc.relation.references[13]S. E. Stump, «Nutrition and Diagnosis-related Care,» 2008. [En línea]. Available: https://books.google.com.co/books?hl=es&lr=&id=zLniRalmWuoC&oi=fnd&pg=PR7 &dq=S.+E.+Stump,+Nutrition+and+Diagnosis+Related+Care+Sixth+Edition,+2008.&ots=GzLKNGXhp6&sig=IjnlQ_iSAatCm7qoej1sDK3Gz4s#v=onepage&q=S.%20E.%20Stump%2C%20Nutrition%20and%20Diagnosis
dc.relation.references[14]A. V. Voegeli, «Lecciones básicas de biomecánica del aparato locomotor,» 2001. [En línea]. Available: https://books.google.com.co/books/about/Lecciones_b%C3%A1sicas_de_biomec%C3%A1nica_del_a.html?id=SQIjKjpZwY8C&redir_esc=y.
dc.relation.references[15]«Disco intervertebral,» [En línea]. Available: https://www.nlm.nih.gov/medlineplus/spanish/ency/esp_imagepages/19469.htm.
dc.relation.references[16]«Músculos columna vertebral,» [En línea]. Available: http://www.musculos.org/musculo-columna- vertebral.ht
dc.relation.references[17]«Ancho Dorsal,» [En línea]. Available: http://fissioterapia.blogspot.com.co/2012/07/el- dorsal-ancho.html..
dc.relation.references[18]«Musculo lumbares,» [En línea]. Available: http://www.amicivirtual.com.ar/Anatomia/08MuscAbdLumbares.pdf..
dc.relation.references[19]«Musculo Multifido,» [En línea]. Available: blog.akrostudio.com/musculatura- estabilizadora-multifidos/..
dc.relation.references[20]C. Norris, «Back Stability: Integrating Science and Therapy, Human kinetics.,» 2008. [En línea]. Available: http://www.humankinetics.com/products/all-products/back-stability-2nd-edition
dc.relation.references[21]A. Gottlob, «Entrenamiento muscular diferenciado,» 2003. [En línea]. Available: https://es.slideshare.net/bayronquezada/entrenamiento-musculardiferenciado-14678503.
dc.relation.references[22]J. L. Álvarez, «ERGONOMÍA Y PSICOSOCIOLOGÍA APLICADA. MANUAL PARA LA FORMACIÓN DEL ESPECIALISTA (12a EDICI,» 2009. [En línea]. Available: https://books.google.es/books?id=BnCtJjxWTLoC.
dc.relation.references[23]E. D. D. H. P. P. K. Zysset, Finite element analysis for prediction of bone strength, 2013
dc.relation.references[24]C.-. V. J. S. F. R. A. Serway, Fundamentos de física, 2009.
dc.relation.references[25]E. T. K. Lee, Effects of laminectomy and facetectomy on the stability of the lumbar motion segment, 2004.
dc.relation.references[26]H. Li, An Approach to Lumbar Vertebra Biomechanical Analysis Using the Finite Element Modeling Based on CT Images, Theory and Applications of CT imaging and Analysis, 2011.
dc.relation.references[27]K. K. C. M. A. Meyers, Mechanical behavior of materials, 1999
dc.relation.references[28]A. M. Freudenthal, The mathematical theories of inelastic continuum, 1958
dc.relation.references[29]A. D. Drozdov, Finite Elasticity and Viscoelasticity, 1996.
dc.relation.references[30]N. Ö. D. L. D. Goldsheyder y M. Nordin, Mechanical Properties of Biological Tissues, New York: Fundamentals of Biomechanics, 2012.
dc.relation.references[31]T. B. L. S. V. Fombuena, Utilidad de los modelos de viscoelasticidad en el aprendizaje de la ingeniería de materiales poliméricos, 2017.
dc.relation.references[32]M. W. F. Nabhani, Computer modelling and stress analysis of the lumbar spine, 2002.
dc.relation.references[33]A. S. F. Ezquerro, Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax-pelvis orientation, 2004
dc.relation.references[34]D. Guede, Biomecánica y hueso (I): Conceptos básicos y ensayos mecánicos clásicos, Osteoporos y MEtab, 2013
dc.relation.references[35]H. M. F. M.D, Bone mass and the mechanostat: A proposal, 1987
dc.relation.references[36]R. B. Martin, Determinants of the mechanical properties of bones, Biomech , 1991.
dc.relation.references[37]J. L. .. Ferreti, Biomechanical Properties of bones, Bone densitometry and Osteoporosis, 1998
dc.relation.references[38]W. B. R. .. D. Y. An, Basic Concepts of Mechanical Property Measurement and Bone Biomechanics, Mechanical Testing of Bone and the Bone-Implant Interface, 1999
dc.relation.references[39]J. D. Currey, Bone Strenght, What are er trying to measure?, 2001
dc.relation.references[40]j. Wolf, Concept of the Law of Bone Remodelling, In the law of bone remodeling, 1986
dc.relation.references[41]J. C. J. K. Weaver, Cancellous bone: its strength and changes with aging and an evaluation of some methods for measuring its mineral content, 1966
dc.relation.references[42]J. M. M. H. B. S. ,. C. D. M. L. H. Keyak, Automated three-dimensional finite element modelling of bone: a new method, 1190.
dc.relation.references[43]M. J. L. S. A. Marom, Computer aided stress analysis of long bones utilizing computed tomography, 1990.
dc.relation.references[44]J. W. A. R. G. Kullmer, Construction of finite element models on the basis of computed tomography data, 1998
dc.relation.references[45] I. Y. L. H. B. S. J. H. Keyak, Correlations between orthogonal mechanical properties and density of trabecular bone: Use of different densitometric measures, 1994.
dc.relation.references[46] «Espalda,» [En línea]. Available: http://tulesion.com/zonas_del_cuerpo-espalda-.
dc.relation.references[47] J. Clin, «Biomechanical modeling of brace treatment of scoliosis: effects of gravitational loads,» [En línea]. Available: https://www.springerprofessional.de/en/biomechanical-modeling-of-brace-treatment-of-scoliosis-effects-o/11786266.
dc.relation.references[48] «Teoria de falla,» [En línea]. Available: http://www.igm.mex.tl/images/5147/VON%20MISES.pdf.
dc.relation.references[49] «Falla estatica,» [En línea]. Available: https://www.u-cursos.cl/ingenieria/2011/2/ME5600/1/material_docente/previsualizar?id_material=390616
dc.relation.references[50] «Finite Element Analysis of Biomechanical Behavior of Whole Thoraco-lumbar Spine with Ligamentous Effect,» [En línea]. Available: http://www.airitilibrary.com/Publication/alDetailedMesh?docid=16801504-201309-201311010004-201311010004-26-41.
dc.relation.references[51] M. K. L, «Deformation of the Thoracolumbar Intervertebral Joints in Response to External Loads: A BIOMECHANICAL STUDY USING AUTOPSY MATERIAL,» Journal of Bone & Joint Surgery , [En línea]. Available: http://journals.lww.com/jbjsjournal/Abstract/1972/54030/Deformation_of_the_Thoracolumbar_Intervertebral.5.aspx.
dc.relation.references[52] S. B. D. P. P. .. K. Z. P. Varga, Validation of an anatomy specific finite element 85 model of Colles, 2009
dc.relation.references[53] K. E. M. K. K. P. K. Z. C. E. Hoffler, Heterogeneity of bone lamellar-level elastic moduli, 2000.
dc.relation.references[54] S. A. R. K. A. J. J. H. Keyak, Prediction of femoral fracture load using automated finite element modeling, 1998
dc.relation.references[55] N. A. L. A. M. C. D. W. Overaker, Finite Element Analysis of Vertebral Body Mechanics With a Nonlinear Microstructural Model for the Trabecular Core, 1999.
dc.relation.references[56] « Guia usuario Comsol,» [En línea]. Available: http://people.ee.ethz.ch/~fieldcom/pps-comsol/documents/User%20Guide/COMSOLMultiphysicsUsersGuide.pdf.
dc.relation.references[57] R. S. Mercedes, Modelado del comportamiento mecánico del hueso(análisis de los efectos del grado de hidratación), 2006
dc.relation.references[58] C. M, F. Sean, N. A y D. Moody, On the Dynamics of the Human Spine: Towards Mechanical Characterizations of Back Pain and its Treatments, California, San Francisco, 2011.
dc.relation.references[59] P. P, Fundamentos de física.
dc.relation.references[60] «Huesos y articulaciones,» [En línea]. Available: ble: http://www.musculos.org/musculo-columna- vertebral.html
dc.relation.references[61] «Problemas de los disco,» [En línea]. Available: https://vqsfisioterapia.files.wordpress.com/2015/09/problemas_disco.gif.
dc.relation.references[62] «Disco joven y viejo,» [En línea]. Available: http://www.eurospine.org/preservacin-del-movimiento.htm
dc.relation.references[63] W. Frei, «Using Virtual Operations to Simplify Your Geometry,» [En línea]. Available: https://www.comsol.com/blogs/using-virtual-operations-simplify-geometry/.
dc.relation.references[64] B. v. R. E. M. L. W. Pistoia, Image-based micro-finite-element modeling for improved distal radius strength diagnosis: moving from bench to bedside, 2004
dc.relation.references[65] T. L. Mueller, Computational finite element bone mechanics accurately predicts mechanical competence in the human radius of an elderly population, 2011
dc.relation.references[66] E. D. D. H. P. P. Varga, Validation of an HR-pQCT-based homogenized finite element approach using mechanical testing of ultra-distal radius sections, 2011
dc.relation.references[67] I. O. M. B. K. lmai, Nonlinear Finite Element Model Predicts Vertebral Bone Strength and Fracture Site, 2006
dc.relation.references[68] D. D. R. F. Katsamanis, Determination of mechanical properties of human femoral cortical bone by the Hopkinson bar stress technique, 1990.
dc.relation.references[69] ANSYS, Simulation Software Products, 2016
dc.relation.references[70] S. M. Blanchard, Proceedings of the First Joint BMES/EMBS Conference, 1999
dc.relation.references[71] P. M. G. T. D. C. Wrong, Nonlinear finite-element analysis and biomechanical evaluation of the lumbar spine, 2003
dc.relation.references[72] E. Tanak, Three-dimensional finite element analysis of human temporomandibular joint with and without disc displacement during jaw opening, 2004
dc.relation.references[73] L. Dai, Some basic biomechanical questions of human being lmbar, 1990
dc.relation.references[74]H. J. W. J. Noailly, How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process, 2007.
dc.relation.references[75] R. K. W. A. C. Jones, Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis, 2008
dc.relation.references[76] E. Dall'Ara, A nonlinear finite element model validation study based on a novel experimental technique for inducing anterior wedge-shape fractures in human vertebral bodies in vitro, 2010.
dc.relation.references[77] P. K. Z. D. Garcia, A three-dimensional elastic plastic damage constitutive law for bone tissue, 2009
dc.relation.references[78] P. K. Z. L. Rincon, Multi-axial mechanical properties of human trabecular bone, 2009
dc.relation.references[79] K. Piaras, «Soid Mechanics part 1,» 2013. [En línea]. Available: http://homepages.engineering.auckland.ac.nz/~pkel015/SolidMechanicsBooks/Part_I/index.html
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000295523
dc.contributor.googlescholarhttps://scholar.google.es/citations?hl=es&user=xXcp5HcAAAAJ
dc.contributor.orcidhttps://orcid.org/0000-0002-1079-9798
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=24333336800
dc.contributor.researchgatehttps://www.researchgate.net/profile/Sebastian_Roa-Prada
dc.subject.lembIngeniería mecatrónicaspa
dc.subject.lemb Métodos de elementos finitosspa
dc.subject.lembInvestigacionesspa
dc.subject.lembAnálisisspa
dc.description.abstractenglishThe vertebrae and intervertebral discs allow the flexibility of the spine and act as shock absorbers during daily activities, given the high incidence of back injuries, the idea of ​​creating a support tool for medicine and physiotherapy was born, which would serve as a guide model for diagnosing lumbar injuries. Through finite element analysis according to specific loads and a determined posture, the behavior of the lumbar vertebrae can be analyzed and thus an injury can be predicted.eng
dc.subject.proposalModelado y simulaciónspa
dc.subject.proposalDiseño mecatrónicospa
dc.subject.proposalVértebrasspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia