Mostrar el registro sencillo del ítem

dc.contributor.advisorRoa, Sebastián
dc.contributor.advisorForero, Carlosspa
dc.contributor.authorParra Raad, Jaime Albertospa
dc.date.accessioned2020-06-26T19:45:21Z
dc.date.available2020-06-26T19:45:21Z
dc.date.issued2014
dc.identifier.urihttp://hdl.handle.net/20.500.12749/1583
dc.description.abstractEl magnetismo es un fenómeno físico que afecta a los materiales, ejerciendo una fuerza capaz de atraer o repeler, dependiendo de las características constitutivas de cada uno de los materiales que están en interacción. Cada material posee características únicas que pueden favorecer el fenómeno magnético; algunas como comportamiento ante cambios de temperatura o permeabilidad relativa hacen que diferentes materiales se comporten de manera similar; lo cual permitió realizar una clasificación magnética de los materiales. El fenómeno magnético puede ser observado en todo tipo de dispositivos, desde industriales como transformadores eléctricos o herramientas de inspección, hasta domésticos como laminas publicitarias para pegar en la nevera o juguetes para bebes. El estudio de dicho fenómeno será realizado con el fin de comprender el comportamiento magnético ante ciertas imperfecciones en la superficie de los materiales ferromagnéticos utilizados para realizar tuberías con el fin de diseñar un circuito magnético óptimo en función de su desempeño.esp
dc.description.tableofcontentsCONTENIDO 1. INTRODUCCION ................................................................................................................. 3 2. OBJETIVO GENERAL ........................................................................................................... 4 2.1 OBJETIVOS ESPECIFICOS .............................................................................................. 4 3. PLANTEAMIENTO DEL PROBLEMA Y JUSTIFICACION ............................................................. 5 4. ANTECEDENTES ................................................................................................................. 7 5. ESTADO DEL ARTE .............................................................................................................. 8 6. MARCO TEORICO ..............................................................................................................10 6.1.1 Conceptos magnéticos........................................................................................10 6.1.2 Dipolos magnéticos ............................................................................................10 6.1.3 Intensidad de flujo magnético y densidad de flujo magnético. ..............................11 6.1.4 Susceptibilidad magnética y permeabilidad magnética .........................................13 6.1.5 Curva de magnetización en materiales ferromagnéticos. ......................................15 6.2 Elementos finitos .......................................................................................................16 6.3 Optimización .............................................................................................................17 7. DISEÑO METODOLOGICO ..................................................................................................20 7.1 Paso primero: ............................................................................................................20 7.2 Paso segundo: ...........................................................................................................20 7.3 Paso tercero: .............................................................................................................21 7.4 Paso cuarto y quinto: .................................................................................................21 8. CRONOGRAMA .................................................................................................................23 9. PRESUPUESTO ..................................................................................................................24 10. Magnetic Flux Leakage ......................................................................................................25 10.1 Funcionamiento ........................................................................................................26 10.2 Análisis del campo magnético estático. .......................................................................28 10.3 Diseño por parámetros concentrados .........................................................................30 10.4 Modelo basado en elementos finitos 2D .....................................................................35 10.5 Ajuste del modelo basado en la teoría de circuitos magnéticos. ...................................39 11. Diseño óptimo. .................................................................................................................42 11.1 Optimización paramétrica en el circuito equivalente....................................................44 11.2 Optimización paramétrica en elementos finitos 2D ......................................................47 11.3 Optimización paramétrica por elementos finitos 3D ....................................................50 2 12. Validación experimental ....................................................................................................53 13. Conclusiones ....................................................................................................................55 14. BIBLIOGRAFIA ...................................................................................................................56
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleOptimización multiobjetivo de un circuito magnético para ensayos no destructivos por la técnica de fuga de flujo magnético, MFLspa
dc.title.translatedMulti-objective optimization of a magnetic circuit for non-destructive testing by the magnetic flux leakage technique, MFLeng
dc.degree.nameIngeniero Mecatrónicospa
dc.coverageBucaramanga (Colombia)spa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programPregrado Ingeniería Mecatrónicaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsMechatronic Engineeringeng
dc.subject.keywordsMagnetismeng
dc.subject.keywordsMFL Techniqueeng
dc.subject.keywordsInvestigationseng
dc.subject.keywordsAnalysiseng
dc.subject.keywordsMagnetic circuit
dc.subject.keywordsMagnetic fluid leakage
dc.subject.keywordsTesting
dc.subject.keywordsMFL technique
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesParra Raad, Jaime Alberto (2014). Optimización multiobjetivo de un circuito magnético para ensayos no destructivos por la técnica de fuma de flujo magnético, MFL. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNABspa
dc.relation.referencesCarmen-Gabriela Stefanita, “Magnetism, basis and applications”, (Springer, Berlin, 2012).
dc.relation.referencesZ. D. Wang, Y.Gu, Y. S Wang, “A review of three magnetic NDT technologies”, (Journal of Magnetism and magnetic materials, Elsevier).
dc.relation.referencesE. Norouzi and H. Ravanboud, “Optimization of the flux distribution in magnetic flux leakage testing”, Materials Evaluation, PP360-364, March 2010.
dc.relation.referencesJ. W. Wilson and G. Y. Tian, “Pulsed electromagnetic methods for defect detection and characterization”, NDT&E International, Vol 40, No 4 PP275-283, June 2007.
dc.relation.referencesHerbert A. Leupold and Ernest Potenzioni II, “A permanent magnet circuit design primer”, US Army Research Laboratory, July 1996.
dc.relation.referencesH. Ammari, A. Buffa and J-C Nedelec, “A justification of eddy currents model for the Maxwell equations”, Society for industrial and applied mathematics, 2000, Vol 60 NS, PP 1805-1823.
dc.relation.referencesPaolo di Barba, Antonio Savini and Shawomir
dc.relation.referencesF. Valentine, “Effect of debris-induced lift-off on magnetic flux leakage inspection results”, Morgantown, West Virginia, 2000.
dc.relation.referencesF. Valentine and J. Luedke, “The effect of debris on magnetic flux leakage inspection results”, Pipeline pigging and integrity assessment conference, Houston, TX, February, 2000.
dc.relation.referencesL. Yang, “Effect of lift- off on pipeline magnetic flux leakage inspection”, 17th word conference in NDT, Shanghai, China, October, 2008.
dc.relation.referencesG. S. Park, P. W. Jang and Y. W. Rho, “Optimum design of a non-destructive testing system to maximize magnetic flux leakage”, Journal of magnetics, 6(1), 31-35 (2001).
dc.relation.referencesXueyu Wang, Xinjun Wu, Jiang Xu and Hong Ba, “Study on the lift-off effect on MFL signal with magnetic circuit model and 3D FEM”, Non-Destructive testing and condition monitoring, 505-510 (2012).
dc.relation.referencesG Katragadda, J Tsi and W Lord, “A comparative study of 3D and axisymmetric of pipelines”, Transactions on Magnetics, Vol 32, No 3, pp 1573-1576, 1996.
dc.relation.referencesF.I. Al-Naemi, J.P. Hall, A.J. Moses, “FEM modelling tecniques of magnetic flux leakage-type NDT for ferromagnetic plate inspections”, Journal of Magnetism and Magnetic Material, 304, e790-793, 2006.
dc.relation.referencesAPI 579-1/ASME FFS-1, “fitness-for-services”, june, 2007.
dc.relation.referencesH J M Jansen, P B J van de Camp and Geekdlnk, “Magnetization as a key parameter of magnetic flux leakage pigs for pipeline inspection” , British journal of non-destructive testing, volume 36, 672-677, 1994.
dc.relation.referencesA simplex methodJ.A. Nelder and R. Mead, “A simplex method for function minimization”, Computer Journal, 1965, vol 7, pp 308-313 for function minimization
dc.relation.referenceswww.comsol.com.
dc.relation.referenceswww.mathworks.com
dc.contributor.researchgateGrupo de Investigación Control y Mecatrónica - GICYMspa
dc.subject.lembIngeniería mecatrónicaspa
dc.subject.lembMagnetismospa
dc.subject.lembTécnica MFLspa
dc.subject.lembInvestigacionesspa
dc.subject.lembAnálisisspa
dc.description.abstractenglishMagnetism is a physical phenomenon that affects materials, exerting a force capable of attracting or repelling, depending on the constitutive characteristics of each of the interacting materials. Each material has unique characteristics that can favor the magnetic phenomenon; Some, such as behavior to changes in temperature or relative permeability, make different materials behave in a similar way; which allowed to carry out a magnetic classification of the materials. The magnetic phenomenon can be observed in all types of devices, from industrial such as electrical transformers or inspection tools, to domestic ones such as advertising sheets to stick on the fridge or baby toys. The study of this phenomenon will be carried out in order to understand the magnetic behavior in the face of certain imperfections on the surface of the ferromagnetic materials used to make pipes in order to design an optimal magnetic circuit based on its performance.eng
dc.subject.proposalCircuito magnético
dc.subject.proposalFuga de fluido magnético
dc.subject.proposalEnsayos
dc.subject.proposalTécnica MFL
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.contributor.researchgroupGrupo de Investigaciones Clínicasspa
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia