Mostrar el registro sencillo del ítem

dc.contributor.advisorRoa Prada, Sebastián
dc.contributor.advisorDiaz Claros, Alfredo
dc.contributor.authorCarriazo Regino, Yulieth Paola
dc.coverage.spatialColombiaspa
dc.date.accessioned2022-02-08T20:23:18Z
dc.date.available2022-02-08T20:23:18Z
dc.date.issued2021-09-01
dc.identifier.urihttp://hdl.handle.net/20.500.12749/15481
dc.description.abstractEl agua potable es un derecho humano, se constituye como la base de la salud y la vida de los seres vivos. No obstante, debido a la variedad de factores tales como minería, explotación de petróleo, contaminación fecal, entre otros, a la falta de monitoreo y al desconocimiento de la calidad de la misma, puede conducir a enfermedades infecciosas que afectan a las personas, entre ellos los más vulnerables (niños y ancianos), como también, la falta de sistemas que permitan detectar en tiempo real los parámetros de calidad del agua fuera de los rangos establecidos, impide una toma de decisiones asertiva que permita garantizar una distribución de un agua apta para consumo humano a las diferentes zonas de cobertura entre ellas las rurales y de difícil acceso. Como resultado, fue desarrollado un sistema de monitoreo basado en IoT para la adquisición de datos a través de medidores especializados que permitan la captura de variables en tiempo real y mediante modelos de analíticas descriptiva contribuir en la detección de anomalías en los parámetros fisicoquímicos del agua para consumo humano. La metodología para realizar la investigación corresponde a un esquema de investigación conocido como Modelo Integral para el Profesional en Ingeniería, que aplica actividades de documentación, diseño y desarrollo, validación y evaluación experimental. Los resultados entre el método convencional para medición de la calidad del agua para consumo humano en zonas de difícil acceso y el dispositivo basado en IoT para este trabajo, muestran fiabilidad de las medidas realizadas ya que presentan un error relativo promedio inferior al 5%. Se puede concluir con esta investigación, que el prototipo podría usarse para informar a los usuarios sobre anomalías de los datos de los parámetros de calidad del agua potable en tiempo real, posibilitando a futuro la creación de una base de datos que se pueda comparar con futuras mediciones en cada sitio en el campo y desarrollar algoritmos predictivos que con la información obtenida puedan estimar la prevención de la salud de las personas.spa
dc.description.tableofcontentsINTRODUCCIÓN ................................................................................................... 22 1. BASES PRELIMINARES DE LA INVESTIGACIÓN ...................................... 24 1.1. PLANTEAMIENTO DEL PROBLEMA ............................................................ 24 1.1.1. Pregunta de Investigación ........................................................................... 27 1.2. JUSTIFICACIÓN ......................................................................................... 27 1.3. OBJETIVOS ................................................................................................ 28 1.3.1. Objetivo General ...................................................................................... 28 1.3.2. Objetivos Específicos .............................................................................. 29 1.4. CONTEXTO DE LA INVESTIGACIÓN ........................................................ 29 1.4.1. Antecedentes ............................................................................................... 30 2. REVISIÓN DE LA LITERATURA ................................................................... 39 2.1 AGUA POTABLE ............................................................................................. 39 2.2. CALIDAD DEL AGUA ..................................................................................... 40 2.2.1. Problemas en la calidad del agua ................................................................ 44 2.2.2. Parámetros de Calidad del Agua Potable .................................................... 45 2.2.3. Control y Vigilancia ...................................................................................... 50 2.3. INTERNET DE LAS COSAS (IOT) .................................................................. 53 2.4. MEDIDORES .................................................................................................. 54 2.4.1. Sensor de Temperatura DS18B20 ............................................................... 56 2.4.2. Sensor de pH SKU SEN0161 ...................................................................... 57 2.4.3. Sensor de Turbidez SKU SEN0189 ............................................................. 59 2.4.4. Sensor de conductividad eléctrica analógica ............................................... 60 2.4.5. Sensor analógico TDS ................................................................................. 62 2.5. COMPUTACIÓN EN LA NUBE (CLOUD COMPUTING) ................................ 64 2.6. ANÁLISIS DE DATOS PARA GESTIÓN DE LA INFRAESTRUCTURA DE IOT ............................................................................................................... 64 2.6.1. Análisis Descriptivo ...................................................................................... 67 2.6.2. Preprocesamiento y calidad de datos .......................................................... 68 2.7. POWER BI ...................................................................................................... 70 2.8. PUBNUB ......................................................................................................... 72 3. METODOLOGÍA ................................................................................................ 73 3.1. INTRODUCCIÓN ............................................................................................ 73 3.2. ALCANCE DE LA INVESTIGACIÓN .......................................................... 75 3.3. HIPÓTESIS ................................................................................................. 76 3.4. DISEÑO ...................................................................................................... 76 3.5. POBLACIÓN Y MUESTRA ......................................................................... 77 3.6. VARIABLES ............................................................................................... 80 3.7. ANÁLISIS DE DATOS ................................................................................ 80 3.8. MATERIALES Y EQUIPO DE INVESTIGACIÓN ........................................ 81 4. RESULTADOS DE LA INVESTIGACIÓN ......................................................... 84 4.1 DESARROLLO DEL PROTOTIPO PARA MONITOREO DE CALIDAD DEL AGUA ................................................................................................................. 84 4.2 EVALUACIÓN EXPERIMENTAL DEL PROTOTIPO BASADO EN IOT ........... 98 5. CONCLUSIONES ............................................................................................ 108 6. RECOMENDACIONES Y TRABAJOS FUTUROS ......................................... 109 REFERENCIAS BIBLIOGRÁFICAS ................................................................... 110 ANEXOS .............................................................................................................. 127spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleSistema de monitoreo de la calidad del agua basado en IOT, utilizando técnicas de analítica de datos para la detección de anomalías, en los acueductos ejecutados por el plan departamental de aguas (PDA) de Córdobaspa
dc.title.translatedIOT-based water quality monitoring system, using data analytical techniques to detect anomalies, in the aqueducts executed by the departmental water plan (PDA) of Córdobaspa
dc.degree.nameMagíster en Gestión, Aplicación y Desarrollo de Softwarespa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programMaestría en Gestión, Aplicación y Desarrollo de Softwarespa
dc.description.degreelevelMaestríaspa
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.localTesisspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.subject.keywordsSystems engineerspa
dc.subject.keywordsSoftware developmentspa
dc.subject.keywordsIOTspa
dc.subject.keywordsMonitoringspa
dc.subject.keywordsWater qualityspa
dc.subject.keywordsReal timespa
dc.subject.keywordsDrinking waterspa
dc.subject.keywordsPublic healthspa
dc.subject.keywordsWater resourcesspa
dc.subject.keywordsEnvironmental monitoringspa
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.relation.referencesAhrend, U., Aleksy, M., Berning, M., Gebhardt, J., Mendoza, F., & Schulz, D. (2021). Sensors as the Basis for Digitalization: New Approaches in Instrumentation, IoT-concepts, and 5G. Internet of Things, 100406. https://doi.org/https://doi.org/10.1016/j.iot.2021.100406spa
dc.relation.referencesAkhter, F., Siddiquei, H. R., Alahi, M. E. E., & Mukhopadhyay, S. C. (2021). Design and Development of an IoT-enabled Portable Phosphate Detection System in Water for Smart Agriculture. Sensors and Actuators A: Physical, 112861. https://doi.org/https://doi.org/10.1016/j.sna.2021.112861spa
dc.relation.referencesAl-Turjman, F. (2020). The Cloud in Iot-Enabled Spaces. In CRC Press.spa
dc.relation.referencesAlahi, M. E. E., Mukhopadhyay, S. C., & Burkitt, L. (2018). Imprinted polymer coated impedimetric nitrate sensor for real- time water quality monitoring. Sensors and Actuators B: Chemical, 259, 753–761. https://doi.org/10.1016/j.snb.2017.12.104spa
dc.relation.referencesAlbano, M., Ferreira, L. L., Pinho, L. M., & Alkhawaja, A. R. (2015). Computer Standards & Interfaces Message-oriented middleware for smart grids. Computer Standards & Interfaces, 38, 133–143. https://doi.org/10.1016/j.csi.2014.08.002spa
dc.relation.referencesAlcaldía de Bogota. (2021). Documentos para Agua: Agua Para el Consumo Humano.spa
dc.relation.referencesAlgore, M. (2021). Machine Learning With Python: The Definitive Tool to Improve Your Python Programming and Deep Learning to Take You to The Next Level of Coding and Algorithms Optimization.spa
dc.relation.referencesAlley, E. R. (2006). Water Quality Control Handbook. In Environment (Second). McGraw Hill. https://doi.org/10.1036/0071467602spa
dc.relation.referencesAmato, A., Cozzolino, G., Maisto, A., & Pelosi, S. (2021). Monitoring Airplanes Faults Through Business Intelligence Tools (pp. 224–234). https://doi.org/10.1007/978-3-030-61105-7_22spa
dc.relation.referencesArévalo-Gómez, M. Á., Carrillo-Zambrano, E., Herrera-Quintero, L. F., & Chavarriaga, J. (2018). Water wells monitoring solution in rural zones using IoT approaches and cloud-based real-time databases. Proceedings of the Euro American Conference on Telematics and Information Systems - EATIS ’18, 1–5. https://doi.org/10.1145/3293614.3293659spa
dc.relation.referencesArévalo Junco, A. D. (2019). Prototipo de un sistema de monitoreo de calidad del agua subterránea en instalaciones de captación de una localidad rural del municipio de Tibaná-Boyacá. Universidad Piloto de Colombia.spa
dc.relation.referencesAspin, A. (2020). Pro Power BI Desktop. Apress. https://doi.org/10.1007/978-14842-5763-0spa
dc.relation.referencesAznil Ab Aziz, M., Abas, M. F., Anwar Abu Bashri, M. K., Saad, N. M., & Ariff, M. H. (2019). Evaluating IoT based passive water catchment monitoring system data acquisition and analysis. Bulletin of Electrical Engineering and Informatics, 8(4). https://doi.org/10.11591/eei.v8i4.1583spa
dc.relation.referencesBadii, M., Guillen, A., Rodríguez, C., Lugo, O., Aguilar, J., & Acuña, M. (2015). Pérdida de Biodiversidad: Causas y Efectos Biodiversity Loss: Causes and Factors. Daena: International Journal of Good Conscience, 10(2), 156–174spa
dc.relation.referencesBagali, M. U., & Thangadurai, N. (2021). NavIC/GNSS receiver based integrated transport monitoring system using embedded system. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.11.080spa
dc.relation.referencesBahadori, A., & Smith,Bahadori, A., & Smith, S. T. (2016). A. In Dictionary of Environmental Engineering and Wastewater Treatment (pp. 1–37). Springer International Publishing. https://doi.org/10.1007/978-3-319-26261-1_1spa
dc.relation.referencesBaird, R. B., Rice, E. W., & Posavec, S. (2017). Standard Methods For The Examination Of Water And Wastewater 23th. In Amer Public Health Assnspa
dc.relation.referencesBalachandar, S., & Chinnaiyan, R. (2020). Reliable pharma cold chain monitoring and analytics through Internet of Things Edge. In Emergence of Pharmaceutical Industry Growth with Industrial IoT Approach (pp. 133–161). Elsevier. https://doi.org/10.1016/B978-0-12-819593-2.00005-4spa
dc.relation.referencesBastião Silva, L. A., Costa, C., & Oliveira, J. L. (2013). A common API for delivering services over multi-vendor cloud resources. Journal of Systems and Software, 86(9), 2309–2317. https://doi.org/10.1016/j.jss.2013.04.037spa
dc.relation.referencesBastidas, S. E. C., & Plata, R. A. D. (2020). Sistema IoT con UAV y GPR para Identificar Zonas Con Aguas Subterráneas en el Departamento de la GuajiraColombia. Encuentro Internacional de Educación En Ingenieríaspa
dc.relation.referencesBeigi, N. K., Partov, B., & Farokhi, S. (2018). Real-time cloud robotics in practical smart city applications. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC, 2017-Octob, 1–5. https://doi.org/10.1109/PIMRC.2017.8292655spa
dc.relation.referencesBoehm, B. (2004). Balancing Agility and Discipline: A Guide for the Perplexed. https://doi.org/10.1007/978-3-540-24675-6_1spa
dc.relation.referencesBoeker, M., Vach, W., & Motschall, E. (2013). Google Scholar as replacement for systematic literature searches: Good relative recall and precision are not enough. BMC Medical Research Methodology, 13(1). https://doi.org/10.1186/1471-2288-13-131spa
dc.relation.referencesBoyd, C. E. (2020). Water Quality. Springer International Publishing. https://doi.org/10.1007/978-3-030-23335-8spa
dc.relation.referencesBurbano Ordoñez, C. Y., & others. (2017). Implementación de una red de sensores inalámbricos LPWAN mediante módulos LoRa para el monitoreo de la calidad del agua en 2 ríos. Universidad Distrital Francisco José de Caldas.spa
dc.relation.referencesBurgos Galeano, C. A., Lafont Álvarez, K., & Estrada Palencia, P. A. (2018). Análisis comparativo de indicadores de la calidad del agua del rio Sinú municipio de Montería, Córdoba. Modum, 55–64.spa
dc.relation.referencesCaballero-Flores, R. (2019). Análisis de errores en las medidas. https://digibuo.uniovi.es/dspace/bitstream/handle/10651/52857/ANÁLISIS DE ERRORES EN LA MEDIDA_RCF.pdf?sequence=1spa
dc.relation.referencesCaho-Rodríguez, C. A., & López-Barrera, E. A. (2017). Determinación del Índice de Calidad de Agua para el sector occidental del humedal Torca-Guaymaral empleando las metodologías UWQI y CWQI. Producción + Limpia, 12(2), 35– 49. https://doi.org/10.22507/pml.v12nspa
dc.relation.referencesCamacho Botero, L. A. (2020). La paradoja de la disponibilidad de agua de mala calidad en el sector rural colombiano. Revista de Ingeniería, 49(49), 38–51. https://doi.org/10.16924/revinge.49.6spa
dc.relation.referencesCao, H., Guo, Z., Wang, S., Cheng, H., & Zhan, C. (2020). Intelligent wide-area water quality monitoring and analysis system exploiting unmanned surface vehicles and ensemble learning. Water (Switzerland), 12(3). https://doi.org/10.3390/w12030681spa
dc.relation.referencesCarminati, M., Turolla, A., Mezzera, L., Di Mauro, M., Tizzoni, M., Pani, G., Zanetto, F., Foschi, J., & Antonelli, M. (2020). A Self-Powered Wireless Water Quality Sensing Network Enabling Smart Monitoring of Biological and Chemical Stability in Supply Systems. Sensors, 20(4), 1125. https://doi.org/10.3390/s20041125spa
dc.relation.referencesCarrasco Mantilla, W. (2016). Estado del arte del agua y saneamiento rural en Colombia. Revista de Ingeniería, 0(44), 46. https://doi.org/10.16924/riua.v0i44.923spa
dc.relation.referencesCEPAL. (2013). Agua para el Siglo XXI para América del Sur. Journal of Chemical Information and Modeling, 53(9), 1689–1699.spa
dc.relation.referencesChang, J. F. (2006). Business Process Management Systems. Strategy and Implementation. Taylor & Francis Groupspa
dc.relation.referencesChen, G., & Kotz, D. (2000). A Survey of Context-Aware Mobile Computing Research. Time, 3755(TR2000-381), 1–16. https://doi.org/10.1.1.140.3131spa
dc.relation.referencesChin Roemer, R., & Borchardt, R. (2015). Meaningful Metrics: A 21st Century Librarian’s Guide to Bibliometrics, Altmetrics, and Research Impact. Association of College and Research Librariesspa
dc.relation.referencesCliment, E., Pelegri-Sebastia, J., Sogorb, T., Talens, J., & Chilo, J. (2017). Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection. Sensors, 17(8), 1917. https://doi.org/10.3390/s17081917spa
dc.relation.referencesCoetzee, L., & Eksteen, J. (2011). The Internet of Things - promise for the future? An introduction. In In IST-Africa Conference Proceedings. IEEE.spa
dc.relation.referencesConagua. (2010). Capítulo 3. Usos del Agua. Estadísticas Del Agua En México, Edición 2010, 61–76spa
dc.relation.referencesCopeland, D. B. (2017). Rails, Angular, Postgres, and Bootstrap: Powerful, Effective, Efficient, Full-Stack Web Developmentspa
dc.relation.referencesCordeiro, L., Mar, C., Valentin, E., Cruz, F., Patrick, D., Barreto, R., & Lucena, V. (2008). An agile development methodology applied to embedded control software under stringent hardware constraints. ACM SIGSOFT Software Engineering Notes, 33(1), 1. https://doi.org/10.1145/1344452.1344459spa
dc.relation.referencesCotruvo, J. A. (2018). Drinking water quality and contaminants guidebook. Taylor & Francisspa
dc.relation.referencesCressie, N., & Wikle, C. K. (2011). Statistics for Spatio-Temporal Data. John Wiley and Sonsspa
dc.relation.referencesCVS. (2020). Cobertura geográfica Departamento de Córdoba.spa
dc.relation.referencesDANE. (2018). Censo Nacional de Población y censo nacional de vivienda Vivienda. DANE, Publicacion Para Todos, 66. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/censo-nacional-de-poblacion-y-vivenda-2018/cuantos-somosspa
dc.relation.referencesDarwish, M., & Ouda, A. (2015). Evaluation of an OAuth 2 . 0 Protocol Implementation for Web Server Applications. 2015 International Conference and Workshop on Computing and Communication (IEMCON), 2–5.spa
dc.relation.referencesDe Bellis, N. (2009). Bibliometrics and Citation Analysis; from the Science Citation Index to Cybermetrics. The Scarecrow Press, Inc.spa
dc.relation.referencesDe León-Peña, R., & Vargas-Lombardo, M. (2017). OpenID connect and digital identity security. Revista de Iniciación Científica, 3(2), 94–99spa
dc.relation.referencesDíaz Porras, K. P. (2019). El oro azul y su gestión de pérdidas en Colombia. Módulo Arquitectura CUC, 23(1), 9–22. https://doi.org/10.17981/mod.arq.cuc.23.1.2019.01spa
dc.relation.referencesDow, C. (2020). Hands-On Edge Analytics with Azure IoT: Design and Develop IoT Applications with Edge Analytical Solutions Including Azure IoT Edge. Packt Publishing Ltd.spa
dc.relation.referencesDürr, C., & Vie, J.-J. (2021). Competitive Programming in Python: 128 Algorithms to Develop your Coding Skills. In Cambridge University Press. https://doi.org/10.1017/9781108591928spa
dc.relation.referencesEdmondson, V., Cerny, M., Lim, M., Gledson, B., Lockley, S., & Woodward, J. (2018). A smart sewer asset information model to enable an ‘Internet of Things’ for operational wastewater management. Automation in Construction, 91, 193–205. https://doi.org/10.1016/j.autcon.2018.03.003spa
dc.relation.referencesEhrenmueller-Jensen, M. (2020). Self-Service AI with Power BI Desktop. In SelfService AI with Power BI Desktop. Apress. https://doi.org/10.1007/978-1-48426231-3spa
dc.relation.referencesEmerson, S., Choi, Y. K., Hwang, D. Y., Kim, K. S., & Kim, K. H. (2015). An OAuth based authentication mechanism for IoT networks. International Conference on ICT Convergence 2015: Innovations Toward the IoT, 5G, and Smart Media Era, ICTC 2015, 1072–1074. https://doi.org/10.1109/ICTC.2015.7354740spa
dc.relation.referencesEscobar Roberto, L. A., & Gutierrez Ramirez, N. (2020). Implementación de un sistema electrónico de monitoreo de la calidad del agua para un estanque piscícola. Universidad Distrital Francisco José de Caldasspa
dc.relation.referencesEspake, P. (2015). Learning Heroku Postgres. Packt Publishingspa
dc.relation.referencesFayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge discovery in databases. AI Magazine, 17(3), 37–54.spa
dc.relation.referencesForo Económico Mundial. (2019). Informe de riesgos mundiales 2019 14.a edición.spa
dc.relation.referencesGarcía, S., Luengo, J., & Herrera, F. (2015). Data Preprocessing in Data Mining. In Intelligent Systems Reference Library (Vol. 72). Springer International Publishing. https://doi.org/10.1007/978-3-319-10247-4spa
dc.relation.referencesGeetha, S., & Gouthami, S. (2016). Internet of things enabled real time water quality monitoring system. Smart Water, 2(1), 1. https://doi.org/10.1186/s40713-017-0005-yspa
dc.relation.referencesGingras, Y. (2016). Bibliometrics and Research Evaluation: Uses and Abuses (History and Foundations of Information Science). The MIT Press.spa
dc.relation.referencesGlobal Water. (2019). Water Quality. In Instrumentation Resource Book (pp. 54– 101). http://www.globalw.com/downloads/Catalog/WaterQuality.pdfspa
dc.relation.referencesGorchev, H. G., & Ozolins, G. (1984). WHO guidelines for drinking- water quality. WHO Chronicle, 38(3), 104–108.spa
dc.relation.referencesGoyal, H. R., Ghanshala, K. K., & Sharma, S. (2021a). Flash flood risk management modeling in indian cities using IoT based reinforcement learning. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2021.01.072spa
dc.relation.referencesGoyal, H. R., Ghanshala, K. K., & Sharma, S. (2021b). Recommendation based rescue operation model for flood victim using smart IoT devices. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.12.959spa
dc.relation.referencesGreenfeld, D. R., & Greenfeld, A. R. (2020). Django Crash Course.spa
dc.relation.referencesGreengard, S. (2015). The Internet of Thingsspa
dc.relation.referencesGubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. https://doi.org/10.1016/j.future.2013.01.010spa
dc.relation.referencesGupta, A. (2013). Java EE 7 Essentials: Enterprise Developer Handbook (M. Loukides & M. Blanchette (eds.); First Edit). O’Reilly Media, Inc. https://doi.org/10.1007/978-1-4302-4426-4spa
dc.relation.referencesGuzmán, B. L., Nava, G., & Díaz, P. (2015). La calidad del agua para consumo humano y su asociación con la morbimortalidad en Colombia, 2008-2012. Biomedica, 35(3), 177–190. https://doi.org/10.7705/biomedica.v35i0.2511spa
dc.relation.referencesHakim, W. L., Hasanah, L., Mulyanti, B., & Aminudin, A. (2019). Characterization of turbidity water sensor SEN0189 on the changes of total suspended solids in the water. Journal of Physics: Conference Series, 1280, 022064. https://doi.org/10.1088/1742-6596/1280/2/022064spa
dc.relation.referencesHavinek, P. (2009). Risk Management of Water Supply and Sanitation Systems (P. Hlavinek, C. Popovska, J. Marsalek, I. Mahrikova, & T. Kukharchyk (eds.)). Springer Netherlands. https://doi.org/10.1007/978-90-481-2365-0spa
dc.relation.referencesHill, C. A., Biemer, P. P., Buskirk, T. D., Japec, L., Kirchner, A., Kolenikov, S., & Lyberg, L. E. (2021). Big Data Meets Survey Science: A Collection of Innovative Methods. In Wiley Series in Survey Methodology. Wileyspa
dc.relation.referencesHlavinek, P. (2020). Management of Water Quality and Quantity (M. Zelenakova, P. Hlavínek, & A. M. Negm (eds.)). Springer International Publishing. https://doi.org/10.1007/978-3-030-18359-2spa
dc.relation.referencesHoyos Botero, C. (2000). Un modelo para investigación documental (Señal Editora (ed.)).spa
dc.relation.referencesHu, Z., & Liu, L. (2018). Prediction of water pollution by nutrients based on eutrophication evaluation. Chemical Engineering Transactions, 71, 667–672. https://doi.org/10.3303/CET1871112spa
dc.relation.referencesIGAC. (2017). Mapas Departamentales Físico Políticos. Instituto Geográfico Agustín Codazzi.spa
dc.relation.referencesIslam, M., Ashraf, F., Alam, T., Misran, N., & Mat, K. (2018). A Compact Ultrawideband Antenna Based on Hexagonal Split-Ring Resonator for pH Sensor Application. Sensors, 18(9), 2959. https://doi.org/10.3390/s18092959spa
dc.relation.referencesJames, S. (2016). An Introduction to Data Analysis using Aggregation Functions in R. In An Introduction to Data Analysis using Aggregation Functions in R. Springer International Publishing. https://doi.org/10.1007/978-3-319-46762-7spa
dc.relation.referencesJia, T., Zhao, X., Wang, Z., Gong, D., & Ding, G. (2016). Model Transformation and Data Migration from Relational Database to MongoDB. 2016 IEEE International Congress on Big Data (BigData Congress), 60–67. https://doi.org/10.1109/BigDataCongress.2016.16spa
dc.relation.referencesJohn, V., & Liu, X. (2017). A Survey of Distributed Message Broker Queuesspa
dc.relation.referencesKachroud, M., Trolard, F., Kefi, M., Jebari, S., & Bourrié, G. (2019). Water quality indices: Challenges and application limits in the literature. Water (Switzerland), 11(2), 1–26. https://doi.org/10.3390/w11020361spa
dc.relation.referencesKaur, H., Singh, S. P., Bhatnagar, S., & Solanki, A. (2021). Chapter 10 - Intelligent Smart Home Energy Efficiency Model Using Artificial Intelligence and Internet of Things (G. Kaur, P. Tomar, & M. B. T.-A. I. to S. P. I. of T. I. Tanque (eds.); pp. 183–210). Academic Press. https://doi.org/https://doi.org/10.1016/B978-012-818576-6.00010-1spa
dc.relation.referencesKim, H. (2021). Software Engineering in IoT, Big Data, Cloud and Mobile Computing (H. Kim & R. Lee (eds.); Vol. 930). Springer International Publishing. https://doi.org/10.1007/978-3-030-64773-spa
dc.relation.referencesKothari, N., Shreemali, J., Chakrabarti, P., & Poddar, S. (2021). Design and implementation of IoT sensor based drinking water quality measurement system. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.12.1142spa
dc.relation.referencesLai, C. S., Lai, L. L., & Lai, Q. H. (2021). Smart Grids and Big Data Analytics for Smart Cities. In Smart Grids and Big Data Analytics for Smart Cities. Springer International Publishing. https://doi.org/10.1007/978-3-030-52155-4spa
dc.relation.referencesLarson, B. (2019). Data Analysis with Microsoft Power BI. McGraw-Hill Education.spa
dc.relation.referencesLea, P. (2018). Internet of Things for Architects: Architecting IoT solutions by implementing sensors, communication infrastructure, edge computing, analytics, and security. Packt Publishingspa
dc.relation.referencesLea, P. (2020). IoT and Edge Computing for Architects.spa
dc.relation.referencesLee, R. (2020). Big Data, Cloud Computing, and Data Science Engineering (R. Lee (ed.); Vol. 844). Springer International Publishing. https://doi.org/10.1007/9783-030-24405-7spa
dc.relation.referencesLeke, C. A., & Marwala, T. (2019). Deep Learning and Missing Data in Engineering Systems (Vol. 48). Springer International Publishing. https://doi.org/10.1007/978-3-030-01180-2spa
dc.relation.referencesLima-Rodrigues, L. M. S., & Rodrigues, D. A. (2020). Agenda 2030. Quaestio - Revista de Estudos Em Educação, 22(3), 721–739. https://doi.org/10.22483/2177-5796.2020v22n3p721-739spa
dc.relation.referencesLittle, R. J. A., & Rubin, D. B. (2019). Statistical Analysis with Missing Data. In Wiley Series in Probability and Statistics. John Wiley & Sonsspa
dc.relation.referencesLivelihoods & Natural Resource Man, International Water & Sanitation C, Centre for Economic and Social Stu, & Watershed Support Services & Activ. (2014). Sustainable Water and Sanitation Services. In Sustainable Water and Sanitation Services: The Life-Cycle Cost Approach to Planning and Management. Routledge. https://doi.org/10.4324/9780203521670spa
dc.relation.referencesLoucks, D. P., & van Beek, E. (2017). Water resource systems planning and management: An introduction to methods, models, and applications. In Water Resource Systems Planning and Management: An Introduction to Methods, Models, and Applications. https://doi.org/10.1007/978-3-319-44234-1spa
dc.relation.referencesMa, H., & Wang, J. (2021). The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy. In J. MacIntyre, J. Zhao, & X. Ma (Eds.), Advances in Intelligent Systems and Computing (Vol. 1282). Springer International Publishing. https://doi.org/10.1007/978-3-03062743-0spa
dc.relation.referencesMegargel, A., Shankararaman, V., & Walker, D. K. (2020). Software Engineering in the Era of Cloud Computing (M. Ramachandran & Z. Mahmood (eds.)). Springer International Publishing. https://doi.org/10.1007/978-3-030-33624-0spa
dc.relation.referencesMelé, A. (2020). Django 3 By Example: Build powerful and reliable Python web applications from scratch (3th ed.). PACKT Publishingspa
dc.relation.referencesMelendez Gelvez, I., Quijano Parra, A., & Pardo Perez, E. (2015). Actividad genotóxica de aguas antes y despues de clorar en la planta de potabilización Empopamplona. Bistua Revista De La Facultad De Ciencias Basicas, 13(2), 12. https://doi.org/10.24054/01204211.v2.n2.2015.1795spa
dc.relation.referencesMeneses, H. W. P., García, J. P. M., & Sánchez, M. E. L. (2018). AQUASMART, La Solución Mecatrónica al Manejo de Recursos Hídricos. Encuentro Internacional de Educación En Ingeniería.spa
dc.relation.referencesMicheli, G. De. (2020). Embedded, Cyber-Physical, and IoT Systems. In S. S. Bhattacharyya, M. Potkonjak, & S. Velipasalar (Eds.), Embedded, CyberPhysical, and IoT Systems. Springer International Publishing. https://doi.org/10.1007/978-3-030-16949-7spa
dc.relation.referencesDecreto número 1575 de 2007, 14 (2007).spa
dc.relation.referencesMinisterio de la protección social, & Ministerio de Ambiente, V. y D. T. (2007). Resolución 2115/2007. Gaceta Oficial, 23.spa
dc.relation.referencesMinteer, A. (2017). Analytics for the Internet of Things (IoT): Intelligent analytics for your intelligent devices. Packt Publishingspa
dc.relation.referencesMirzavand, R., Honari, M., Laribi, B., Khorshidi, B., Sadrzadeh, M., & Mousavi, P. (2018). An Unpowered Sensor Node for Real-Time Water Quality Assessment (Humic Acid Detection). Electronics, 7(10), 231. https://doi.org/10.3390/electronics710023spa
dc.relation.referencesMishra, V., Kumar, T., Bhalla, K., & Patil, M. M. (2018). SuJAL: Design and Development of IoT-Based Real-Time Lake Monitoring System. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C), 1–4. https://doi.org/10.1109/CIMCA.2018.8739spa
dc.relation.referencesMitsa, T. (2010). Temporal Data Mining. Chapman and Hall/CRC. https://doi.org/10.1201/9781420089776spa
dc.relation.referencesMolenberghs, G., Fitzmaurice, G., Kenward, M., Tsiatis, B., & Verbeke, G. (2015). Handbook of Missing Data Methodology. In G. Molenberghs, G. Fitzmaurice, M. G. Kenward, & A. Tsiatis (Eds.), Handbook of Missing Data Methodology. Chapman and Hall/CRC. https://doi.org/10.1201/b17622spa
dc.relation.referencesMorales García, J., Peñuela Meneses, W., & Leyes Sánchez, M. (2018). Aquasmart, la solución mecatrónica al manejo de recursos hídricos. Encuentro Internacional de Educación En Ingeniería ACOFI, 1–7.spa
dc.relation.referencesMoreno Arboleda, F. J., Quintero Rendón, J. E., & Rueda Vásquez, R. (2016). Una comparación de rendimiento entre Oracle y MongoDB. Ciencia e Ingeniería Neogranadina, 26(1), 109. https://doi.org/10.18359/rcin.1669spa
dc.relation.referencesMunirathinam, S. (2021). Drift Detection Analytics for IoT Sensors. Procedia Computer Science, 180, 903–912. https://doi.org/https://doi.org/10.1016/j.procs.2021.01.341spa
dc.relation.referencesMusa, P., Sugeru, H., & Mufza, H. F. (2019). An intelligent applied Fuzzy Logic to prediction the Parts per Million (PPM) as hydroponic nutrition on the based Internet of Things (IoT). 2019 Fourth International Conference on Informatics and Computing (ICIC), 1–7. https://doi.org/10.1109/ICIC47613.2019.8985712spa
dc.relation.referencesNaqvi, S., Yfantidou, S., & Zimányi, E. (2017). Advanced Databases. Time Series Databases and InfluxDB. In Universite libre de Bruxelles.spa
dc.relation.referencesNorris, D. J. (2020). Machine Learning with the Raspberry Pi: Experiments with Data and Computer Vision. Apress. https://doi.org/10.1007/978-1-4842-5174-4spa
dc.relation.referencesNúñez-Blanco, Y., Ramírez-Cerpa, E., & Sánchez-Comas, A. (2020). Revisión de sistemas de telemetría en ríos: propuesta para el río Magdalena, Barranquilla, Colombia. Tecnología y Ciencias Del Agua, 11(5), 298–343. https://doi.org/10.24850/j-tyca-2020-05-08spa
dc.relation.referencesOjha, A. (2020). Sensors in Water Pollutants Monitoring: Role of Material (D. Pooja, P. Kumar, P. Singh, & S. Patil (eds.)). Springer Singapore. https://doi.org/10.1007/978-981-15-0671-0spa
dc.relation.referencesOMS. (2006). Guidelines for drinking- water qualitspa
dc.relation.referencesOMS, O. M. D. L. S., & UNICEF, F. de las N. U. para la I. (2017). Progresos en materia de agua potable, saneamiento e higiene. In Organización Mundial de la Salud.spa
dc.relation.referencesOrganización Mundial de La Salud. (2011). Guías para la calidad del agua de consumo humano. Organización Mundial de La Salud, 4, 608.spa
dc.relation.referencesPage, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLOS Medicine, 18(3), e1003583. https://doi.org/10.1371/journal.pmed.1003583spa
dc.relation.referencesPage, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., MayoWilson, E., McDonald, S., … McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ, 372, n160. https://doi.org/10.1136/bmj.n160spa
dc.relation.referencesParameswari, M., & Moses, M. B. (2018). Online measurement of water quality and reporting system using prominent rule controller based on aqua care-IOT. Design Automation for Embedded Systems, 22(1–2), 25–44. https://doi.org/10.1007/s10617-017-9187-7spa
dc.relation.referencesParticle. (2020). Quick Start: ARGON. Particle.Io.spa
dc.relation.referencesPilicita Garrido, A., Borja López, Y., & Gutiérrez Constante, G. (2020). Rendimiento de MariaDB y PostgreSQL. Revista Científica y Tecnológica UPSE, 7(2), 09– 16. https://doi.org/10.26423/rctu.v7i2.538spa
dc.relation.referencesPoongodi, T., Rathee, A., Indrakumari, R., & Suresh, P. (2020). Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm. In S.-L. Peng, S. Pal, & L. Huang (Eds.), Intelligent Systems Reference Library. Springer International Publishing. https://doi.org/10.1007/978-3-030-33596-0spa
dc.relation.referencesPoza Luján, J. L. (2012). Proposed smart control distributed architecture based on service quality policies. Doctoral thesis. Universidad Politécnica de Valenciaspa
dc.relation.referencesPrashanth, D. S., Patel, G., & Bharathi, B. (2017). Research and development of a mobile based women safety application with real-time database and datastream network. 2017 International Conference on Circuit ,Power and Computing Technologies (ICCPCT), 1–5. https://doi.org/10.1109/ICCPCT.2017.8074261spa
dc.relation.referencesPrograma de las Naciones Unidas para el Desarrollo. (2015). Objetivos de Desarrollo del Milenio. In Humanismo y Trabajo Social: Vols 5 (93-101).spa
dc.relation.referencesPuig, V., Ocampo-Martínez, C., Pérez, R., Cembrano, G., Quevedo, J., & Escobet, T. (Eds.). (2017). Real-time Monitoring and Operational Control of DrinkingWater Systems. Springer International Publishing. https://doi.org/10.1007/9783-319-50751-4spa
dc.relation.referencesQuintana Fajardo, B. F., & Sarabia Caffroni, J. J. (2018). Arquitectura para el sistema de monitoreo de la calidad del agua de los caños y lagos internos del Distrito de Cartagena de Indias soportada en tecnologías de internet de las cosas. Universidad de Cartagenaspa
dc.relation.referencesRad, R. (2018). Power BI Service Content. In Pro Power BI Architecture (pp. 29– 57). Apress. https://doi.org/10.1007/978-1-4842-4015-1_3spa
dc.relation.referencesRaghuvanshi, A., & Singh, U. K. (2020). Internet of Things for smart cities- security issues and challenges. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.10.849spa
dc.relation.referencesRajanna, R. R., Natarajan, S., & Vittal, P. R. (2018). An IoT Wi-Fi Connected Sensor For Real Time Heart Rate Variability Monitoring. 2018 3rd International Conference on Circuits, Control, Communication and Computing (I4C), 1–4. https://doi.org/10.1109/CIMCA.2018.8739323spa
dc.relation.referencesRatnaparkhi, S., Khan, S., Arya, C., Khapre, S., Singh, P., Diwakar, M., & Shankar, A. (2020). Smart agriculture sensors in IOT: A review. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.138spa
dc.relation.referencesRay, P. P., Dash, D., & De, D. (2019). Internet of things-based real-time model study on e-healthcare: Device, message service and dew computing. Computer Networks, 149, 226–239. https://doi.org/10.1016/j.comnet.2018.12.006spa
dc.relation.referencesAsamblea General de las Naciones Unidas, Naciones Unidas 3 (2010).spa
dc.relation.referencesRethlefsen, M. L., Kirtley, S., Waffenschmidt, S., Ayala, A. P., Moher, D., Page, M. J., & Koffel, J. B. (2021). PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews. Systematic Reviews, 10(1), 39. https://doi.org/10.1186/s13643-020-01542-zspa
dc.relation.referencesRey Graña, C., & Ramil Diaz, M. (2011). Series temporales. Introduccion a La Estadistica Descriptiva. Segunda Edicion, 85–105. https://doi.org/10.4272/978-84-9745-167-3.ch4spa
dc.relation.referencesRojo-Nieto, E., & Montoto, T. (2017). Basuras marinas, plásticos y microplásticos orígenes, impactos y consecuencias de una amenaza global. Ecologistas en Acciónspa
dc.relation.referencesRondero, C., & Font, V. (2015). Articulación de la complejidad matemática de la media aritmética. Ensenanza de Las Ciencias, 33(2), 29–49. https://doi.org/10.5565/rev/ensciencias.1386spa
dc.relation.referencesRuiz, C. A., Salazar, D. M., & Rodríguez González, N. (2020). La prestación de los servicios de agua potable y saneamiento básico en Colombia análisis y prospectiva. In Investigaciones y productos CIDspa
dc.relation.referencesRuiz, C. A., Salazar, D. M., & Rodríguez, N. (2020). The provision of drinking water and basic sanitation services in Colombia: analysis and prospective. Documentos FCE-CID Escuela de Economía, 34, 1–86. www.fce.unal.edu.co/centro-editorial/documentos.htmlspa
dc.relation.referencesRuiz Peláez, J. G., & Rodríguez Malagón, M. N. (2015). Población y muestra. Epidemiología Clínica: Investigación Clínica Aplicada, 62–66.spa
dc.relation.referencesRusso, C., Ramón, H., Alonso, N., Cicerchia, B., Esnaola, L., & Tessore, J. P. (2015). Tratamiento Masivo de Datos Utilizando Técnicas de Machine Learning Resumen Contexto Introducción. 131–134spa
dc.relation.referencesSamaranayake, P., Ramanathan, K., & Laosirihongthong, T. (2017). Implementing industry 4.0 — A technological readiness perspective. 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 529–533. https://doi.org/10.1109/IEEM.2017.8289947spa
dc.relation.referencesSaravanan, K., Anusuya, E., Kumar, R., & Son, L. H. (2018). Real-time water quality monitoring using Internet of Things in SCADA. Environmental Monitoring and Assessment, 190(9). https://doi.org/10.1007/s10661-018-6914xspa
dc.relation.referencesSchwaber, K. (2004). Agile Project Management with Scrum (Vol. 7, Issue CMM). https://doi.org/10.1201/9781420084191-c2spa
dc.relation.referencesSeamark, P., & Martens, T. (2019). Pro Dax with Power Bi: Business Intelligence with Powerpivot and SQL Server Analysis Services Tabular. Apress. https://doi.org/10.1007/978-1-4842-4897-3spa
dc.relation.referencesSebastian, A. (2020). Smart Systems and IoT: Innovations in Computing. In A. K. Somani, R. S. Shekhawat, A. Mundra, S. Srivastava, & V. K. Verma (Eds.), Smart Innovation, Systems and Technologies. Springer Singapore. https://doi.org/10.1007/978-981-13-8406-6spa
dc.relation.referencesSerpanos, D., & Wolf, M. (2018). Internet-of-Things (IoT) Systems. In Internet-ofThings (IoT) Systems. Springer International Publishing. https://doi.org/10.1007/978-3-319-69715-4spa
dc.relation.referencesSerrano Castaño, C. E. (2002). Modelo integral para el profesional en ingeniería (Universidad del Cauca (Ed.)).spa
dc.relation.referencesShaw, P. (2013). Postgres Succinctly. In Syncfusion Incspa
dc.relation.referencesSierra, C. A. (2011). Calidad del Agua. Evaluación y diagnóstico. In Journal of Chemical Information and Modeling. https://repository.udem.edu.co/handle/11407/2568spa
dc.relation.referencesSiow, E., Tiropanis, T., & Hall, W. (2018). Analytics for the Internet of Things. ACM Computing Surveys, 51(4), 1–36. https://doi.org/10.1145/3204947spa
dc.relation.referencesSpandana, K., & Rao, V. R. S. (2018). Internet of Things (Iot) Based smart water quality monitoring system. International Journal of Engineering and Technology(UAE), 7(3), 259–262. https://doi.org/10.14419/ijet.v7i3.6.14985spa
dc.relation.referencesSuresh, A., Nandagopal, M., Pethuru Raj, Neeba, E. A., & Lin, J.-W. (2020). Industrial IoT Application Architectures and Use Cases. Auerbach Publications.spa
dc.relation.referencesSuseendran, G., & Balaganesh, D. (2021). Smart cattle health monitoring system using IoT sensors. Materials Today: Proceedings. https://doi.org/https://doi.org/10.1016/j.matpr.2021.01.873spa
dc.relation.referencesSutradhar, B. C. (2013). ISS-2012 Proceedings Volume On Longitudinal Data Analysis Subject to Measurement Errors, Missing Values, and/or Outliers (B. C. Sutradhar (Ed.); Vol. 211). Springer New York. https://doi.org/10.1007/9781-4614-6871-4spa
dc.relation.referencesTanwar, S. (2020). Fog Data Analytics for IoT Applications: Next Generation Process Model with State of the Art Technologies (S. Tanwar (Ed.); Vol. 76). Springer Singapore. https://doi.org/10.1007/978-981-15-6044-6spa
dc.relation.referencesThe Government Office for Science. (2014). The IoT: making the most of the Second Digital Revolution. WordLink, 1–40. https://doi.org/GS/14/1230spa
dc.relation.referencesTorres Pardo, J. C. (2017). Definition of a Reference Architecture for Information Systems in Ubiquitous Wireless Sensor Networks based on quality of service. Master’s Degree Option Work. Universidad Nacional de Colombiaspa
dc.relation.referencesTukey, J. W. (1962). The Future of Data Analysis. The annals of mathematical statistics.spa
dc.relation.referencesUNESCO. (2015). El Crecimiento Insostenible Y La Creciente Demanda Mundial De Agua. Wwdr, 12spa
dc.relation.referencesUNESCO. (2019). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019. No dejar a nadie atrás. In Organización de las Naciones Unidas para la Educación, la Ciencia y la Culturaspa
dc.relation.referencesUNESCO. (2020). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2020. In Agua y Cambio Climáticospa
dc.relation.referencesUrrútia, G., & Bonfill, X. (2010). Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Medicina Clínica, 135(11), 507–511. https://doi.org/10.1016/j.medcli.2010.01.015spa
dc.relation.referencesvan Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. Text Mining and Visualization, 1–5.spa
dc.relation.referencesvan Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. https://doi.org/10.1007/s11192-017-2300-7spa
dc.relation.referencesVélez, A., & Calvo, G. (1992). La investigación documental. Estado del arte y del conocimiento. Análisis de la investigación en la formación de investigadores. Universidad de la Sabanaspa
dc.relation.referencesViegas, V., Pereira, J. M. D., Girao, P., Postolache, O., & Salgado, R. (2018). IoT applied to Environmental Monitoring in Oysters’ Farms. 2018 International Symposium in Sensing and Instrumentation in IoT Era (ISSI), 1–5. https://doi.org/10.1109/ISSI.2018.8538136spa
dc.relation.referencesVikesland, P. J. (2018). Nanosensors for water quality monitoring. Nature Nanotechnology, 13(8), 651–660. https://doi.org/10.1038/s41565-018-0209-9spa
dc.relation.referencesViloria, A., Acuña, G. C., Alcázar Franco, D. J., Hernández-Palma, H., Fuentes, J. P., & Rambal, E. P. (2019). Integration of Data Mining Techniques to PostgreSQL Database Manager System. Procedia Computer Science, 155, 575–580. https://doi.org/10.1016/j.procs.2019.08.080spa
dc.relation.referencesWade, R. (2020). Advanced Analytics in Power BI with R and Python. Apress. https://doi.org/10.1007/978-1-4842-5829-3spa
dc.relation.referencesWater-quality engineering in natural systems: fate and transport processes in the water environment. (2013). Choice Reviews Online, 50(12), 50-6781-50–6781. https://doi.org/10.5860/choice.50-6781spa
dc.relation.referencesWeber, R. H., & Weber, R. (2010). Internet of Things. In Development. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-11710-7spa
dc.relation.referencesWeiser, M. (1991). The computer for the 21st century. Scientific American (International Edition), 265(3), 66–75. https://doi.org/10.1038/scientificamerican0991-94spa
dc.relation.referencesWolf, W. H. W. H. (1994). Hardware-software co-design of embedded systems. Proceedings of the IEEE, 82(7), 967–989. https://doi.org/10.1109/5.293155spa
dc.relation.referencesWong, B. P., & Kerkez, B. (2016). Real-time environmental sensor data: An application to water quality using web services. Environmental Modelling & Software, 84, 505–517. https://doi.org/10.1016/j.envsoft.2016.07.020spa
dc.relation.referencesWorld Health Organization. (2019). Safe water, better health. In Geneva: World Health Organization; 2019. Licence: CC BY-NC-SA 3.0 IGOspa
dc.relation.referencesWortham, R. H. (2020). Transparency for Robots and Autonomous Systems. The Institution of Engineering and Technologyspa
dc.relation.referencesYanes, A. R., Martinez, P., & Ahmad, R. (2020). Towards automated aquaponics: A review on monitoring, IoT, and smart systems. Journal of Cleaner Production, 263, 121571. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121571spa
dc.relation.referencesZelenakova, M., Hlavínek, P., & Negm, A. M. (2020). Management of Water Quality and Quantity. Springer International Publishing. https://doi.org/10.1007/978-3-030-18359-2spa
dc.relation.referencesZiegler, A. (2014). In-situ Materials Characterization (A. Ziegler, H. Graafsma, X. F. Zhang, & J. W. M. Frenken (Eds.); Vol. 193). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-45152-2spa
dc.relation.referencesZimányi, E., Sakr, M., & Lesuisse, A. (2020). MobilityDB: A Mobility Database Based on PostgreSQL and PostGIS. ACM Transactions on Database Systems, 45(4), 1–42. https://doi.org/10.1145/3406534spa
dc.relation.referencesZou, Q., Xiong, Q., Li, Q., Yi, H., Yu, Y., & Wu, C. (2020). A water quality prediction method based on the multi-time scale bidirectional long short-term memory network. Environmental Science and Pollution Research, 27(14), 16853– 16864. https://doi.org/10.1007/s11356-020-08087-7spa
dc.contributor.cvlacRoa Prada, Sebastián [0000295523]spa
dc.contributor.googlescholarRoa Prada, Sebastián [es&oi=ao]spa
dc.contributor.orcidRoa Prada, Sebastián [0000-0002-1079-9798]spa
dc.contributor.researchgateRoa Prada, Sebastián [Sebastian-Roa-Prada]spa
dc.subject.lembDesarrollo de Softwarespa
dc.subject.lembIngeniería de sistemasspa
dc.subject.lembAgua potablespa
dc.subject.lembSalud públicaspa
dc.subject.lembRecursos hídricosspa
dc.subject.lembVigilancia ambientalspa
dc.subject.lembInternetspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishDrinking water is a human right, it is constituted as the basis of the health and life of living beings. However, due to the variety of factors such as mining, oil exploitation, fecal contamination, among others, the lack of monitoring and the lack of knowledge of its quality, it can lead to infectious diseases that send people, among they are the most vulnerable (children and the elderly), as well as the lack of systems to detect in real time for human consumption the different coverage areas, including rural areas and those with difficult access. As a result, a monitoring system based on IoT was developed for the acquisition of data through specialized meters that achieve the capture of variables in real time and through descriptive analytical models contribute in the detection of anomalies in the physicochemical parameters of the water to human consumption. The methodology to carry out the research corresponding to a research scheme known as the Integral Model for the Professional in Engineering, which applies activities of documentation, design and development, validation and experimental evaluation. The results between the conventional method for measuring the quality of drinking water in hard-to-reach areas and the device based on IoT for this work, show reliability of the measurements carried out since they present a relative error of less than 5%. It can be concluded with this research that the prototype could be used to inform users about anomalies in the data of the drinking water quality parameters in real time, making it possible in the future to create a database that can be compared with future ones. measurements at each site in the field and develop predictive algorithms that with the information obtained can estimate the prevention of people's health.spa
dc.subject.proposalMonitoreospa
dc.subject.proposalCalidad del aguaspa
dc.subject.proposalTiempo realspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa


Ficheros en el ítem

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia