Show simple item record

dc.contributor.advisorDíaz González, Carlos Alirio
dc.contributor.advisorGonzález Acevedo, Hernando
dc.contributor.authorFigueroa Pérez, Daniel Andrés
dc.coverage.spatialBucaramanga (Santander, Colombia)spa
dc.date.accessioned2021-11-12T18:38:59Z
dc.date.available2021-11-12T18:38:59Z
dc.date.issued2020-08
dc.identifier.urihttp://hdl.handle.net/20.500.12749/14908
dc.description.abstractEn los procesos industriales, es muy común la búsqueda de modelos o estructuras matemáticas implementadas para la simulación y diseño de equipos industriales, con estos modelos el objetivo es controlar, crear, mejorar y entender de forma precisa procesos complejos, por lo tanto, el objetivo principal es hallar un modelo matemático que describa el comportamiento del sistema caldera-intercambiador de calor de casco y tubos, por medio de una recopilación de datos experimentales, tratamiento de datos para la debida implementación del modelo, el cual es un paso fundamental para evitar crear modelos complejos que no sea viables de implementar, búsqueda de modelos pertinentes al comportamiento del sistema calderaintercambiador de casco y tubos, los cuales definen en su estructura el comportamiento matemático y físico del proceso; y la debida simulaci´on y validación del modelo matemático que mejor se ajuste al sistema seleccionado de planta piloto.spa
dc.description.tableofcontentsINTRODUCCI´ON 3 1. MARCOTE´ORICO 6 1.1. ANALIZADOR DE GASES . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2. DESVIACI´ON ABSOLUTA DE LA MEDIANA . . . . . . . . . . . . . . . 7 1.3. INTERPOLACI´ON POR EL M´ETODO AKIMA . . . . . . . . . . . . . . . 8 1.4. INTERCAMBIADOR DE CASCO Y TUBOS . . . . . . . . . . . . . . . . 10 1.5. CALDERA PIROTUBULAR . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6. MODELO CAJA BLANCA, NEGRA Y GRIS . . . . . . . . . . . . . . . . 12 1.7. ESPACIO DE ESTADOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.8. REDES NEURONALES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. ALMACENAMIENTODEDATOS 15 2.1. TOMA DE DATOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2. BASE DE DATOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3. PROCESAMIENTODEDATOS 23 3.1. VALORES AT´IPICOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2. FILTRADO DE DATOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.1. Dise˜no Filtro FIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4. MODELOMATEM´ATICO 39 4.1. MODELO CAJA NEGRA LINEAL . . . . . . . . . . . . . . . . . . . . . . 39 4.2. MODELO DE REDES NEURONALES . . . . . . . . . . . . . . . . . . . . 45 4.3. CARACTER´ISTICAS RED NEURONAL . . . . . . . . . . . . . . . . . . . 52 4.4. MODELO INTERCAMBIADOR . . . . . . . . . . . . . . . . . . . . . . . 53 5. RESULTADOS 60 5.1. SIMULACI´ON DEL MODELO . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2. VALIDACI´ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 CONCLUSIONES 72 RECOMENDACIONES 73 BIBLIOGRAF´IA 74spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleEstudio del comportamiento dinámico del sistema caldera-intercambiador de calor del laboratorio planta piloto mediante modelamiento matemáticospa
dc.title.translatedStudy of the dynamic behavior of the boiler-heat exchanger system of the pilot plant laboratory through mathematical modelingspa
dc.degree.nameIngeniero en Energíaspa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.programPregrado Ingeniería en Energíaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsEnergy engineeringspa
dc.subject.keywordsTechnological innovationsspa
dc.subject.keywordsEnergyspa
dc.subject.keywordsMathematical modelsspa
dc.subject.keywordsData processingspa
dc.subject.keywordsSimulationspa
dc.subject.keywordsIndustrial processesspa
dc.subject.keywordsAutomationspa
dc.subject.keywordsAutomatic controlspa
dc.subject.keywordsManufacture processspa
dc.subject.keywordsSimulation methodsspa
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.relation.references[1] S. Moral, “Modelos de computaci´on i,” Granada, Espa˜na: Guias de asignatura. Universidad de Granada, 2006.spa
dc.relation.references[2] E. ul Haq, T. U. Rahman, A. Ahad, F. Ali, and M. Ijaz, “Modeling and simulation of an industrial steam boiler,” International Journal of Computer Engineering and Information Technology, vol. 8, no. 1, p. 7, 2016spa
dc.relation.references[3] J. Makovicka, V. Havlena, and M. Beneˇs, “Mathematical modelling of steam and flue gas flow in a heat exchanger of a steam boiler,” in Proceedings of ALGORITMY–2002: Conference of Scientific Computing, pp. 171–178, Citeseer, 2002.spa
dc.relation.references[4] J. Bujak, “Mathematical modelling of a steam boiler room to research thermal efficiency,” Energy, vol. 33, no. 12, pp. 1779–1787, 2008spa
dc.relation.references[5] M.-N. Dumont and G. Heyen, “Mathematical modelling and design of an advanced once-through heat recovery steam generator,” Computers & chemical engineering, vol. 28, no. 5, pp. 651–660, 2004spa
dc.relation.references[6] S.-X. Li and J.-S. Wang, “Dynamic modeling of steam condenser and design of pi controller based on grey wolf optimizer,” Mathematical Problems in Engineering, vol. 2015, 2015.spa
dc.relation.references[7] S.ChenandS.Billings,“Neuralnetworksfornonlineardynamicsystemmodellingand identification,” International journal of control, vol. 56, no. 2, pp. 319–346, 1992.spa
dc.relation.references[8] M. Electronics, “Skelprom.com,” 2008.spa
dc.relation.references[9] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata, “Detecting outliers: Do not use standarddeviationaroundthemean,useabsolutedeviationaroundthemedian,”Journal of Experimental Social Psychology, vol. 49, no. 4, pp. 764–766, 2013spa
dc.relation.references[10] P. J. Rousseeuw and C. Croux, “Alternatives to the median absolute deviation,” Journal of the American Statistical association, vol. 88, no. 424, pp. 1273–1283, 1993.spa
dc.relation.references[11] H. Akima, “A new method of interpolation and smooth curve fitting based on local procedures,” Journal of the ACM (JACM), vol. 17, no. 4, pp. 589–602, 1970.spa
dc.relation.references[12] “Modified akima piecewise cubic hermite interpolation - matlab makima.”spa
dc.relation.references[13] D.Gonz´alez-Mendizabal,“Gu´ıadeintercambiadoresdecalor:tiposgeneralesyaplicaciones,” Universidad Sim´on Bol´ıvar, 2002spa
dc.relation.references[14] Y.A.C¸engel,Transferenciadecalorymasa:unenfoquepr´actico. McGraw-Hill,2007.spa
dc.relation.references[15] F. G. Ortiz, “Modeling of fire-tube boilers,” Applied Thermal Engineering, vol. 31, no. 16, pp. 3463–3478, 2011.spa
dc.relation.references[16] L. Ljung, “Black-box models from input-output measurements,” in Imtc 2001. proceedingsofthe18thieeeinstrumentationandmeasurementtechnologyconference.rediscoveringmeasurementintheageofinformatics(cat.no.01ch37188),vol.1,pp.138–146, IEEE, 2001.spa
dc.relation.references[17] E.B.AlbertoHerreros,“Cursodeprogramacionenmatlabysimulink,”tech.rep.,Universidad de Valladolid, 2013.spa
dc.relation.references[18] J. C. M. Eugenio, “Neural network toolbox de matlab,” tech. rep., Ciencias Computacionales - INAOE, 2006.spa
dc.relation.references[19] Mathworks, “Matlab product description,” 2020spa
dc.relation.references[20] E. W. Kamen and B. S. Heck, Fundamentos de se˜nales y sistemas usando la web y Matlab. Pearson Educaci´on, 2008spa
dc.relation.references[21] “Filtrado digital lectura 3: Dise˜no de filtros fir.”spa
dc.relation.references[22] “Choose a multilayer neural network training function - matlab and simulink.”spa
dc.relation.references[23] H. Bastida, C. E. Ugalde-Loo, M. Abeysekera, and M. Qadrdan, “Dynamic modeling and control of a plate heat exchanger,” in 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 1–6, IEEE, 2017.spa
dc.relation.references[24] A. A. Emhemed, R. B. Mamat, and D. Hanafi, “Mathematical modeling of industrial heatexchangersystem,”inAppliedMechanicsandMaterials,vol.229,pp.2122–2124, Trans Tech Publ, 2012.spa
dc.relation.references[25] S. Y. Gandur Adarme, “Dise˜no de control ´optimo y control robusto para regular la temperatura de un intercambiador de calor,” 2016.spa
dc.relation.references[26] D. N. L´opez and R. M. Mart´ınez, “Memoria: Control de una caldera de vapor,” 2012.spa
dc.relation.references[27] G. Vanti, “¿qu´e es? - grupo vanti,” 2020.spa
dc.contributor.cvlacDíaz González, Carlos Alirio [0000785806]spa
dc.contributor.cvlacGonzález Acevedo, Hernando [0000544655]spa
dc.contributor.googlescholarDíaz González, Carlos Alirio [es&oi=ao]spa
dc.contributor.googlescholarGonzález Acevedo, Hernando [V8tga0cAAAAJ&hl=es&oi=ao]spa
dc.contributor.orcidDíaz González, Carlos Alirio [0000-0001-7869-4610]spa
dc.contributor.orcidGonzález Acevedo, Hernando [0000-0001-6242-3939]spa
dc.contributor.researchgateGonzález Acevedo, Hernando [Hernando-Gonzalez-Acevedo-2199006362]spa
dc.subject.lembIngeniería en energíaspa
dc.subject.lembInnovaciones tecnológicasspa
dc.subject.lembEnergíaspa
dc.subject.lembAutomatizaciónspa
dc.subject.lembControl automáticospa
dc.subject.lembProcesos de manufacturaspa
dc.subject.lembMetodos de simulaciónspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishIn industrial processes, it is very common to search for models or mathematical structures implemented for the simulation and design of industrial equipment, with these models the objective is to control, create, improve and accurately understand complex processes, therefore, the objective The main thing is to find a mathematical model that describes the behavior of the boiler-shell and tube heat exchanger system, through a compilation of experimental data, data treatment for the proper implementation of the model, which is a fundamental step for avoid creating complex models that are not feasible to implement, search for models relevant to the behavior of the shell and tube boiler-exchanger system, which define in their structure the mathematical and physical behavior of the process; and the due simulation and validation of the mathematical model that best fits the selected pilot plant system.spa
dc.subject.proposalModelos matemáticosspa
dc.subject.proposalProcesamiento de datosspa
dc.subject.proposalSimulaciónspa
dc.subject.proposalProcesos industrialesspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia