Show simple item record

dc.contributor.advisorMoreno Corzo, Feisar Enrique
dc.contributor.advisorTalero Sarmiento, Leonardo Hernán
dc.contributor.authorSaavedra Álvarez, Juan Sebastián
dc.coverage.spatialColombiaspa
dc.date.accessioned2021-10-21T13:56:24Z
dc.date.available2021-10-21T13:56:24Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.12749/14762
dc.description.abstractEste documento se encuentra estructurado de manera que inicialmente es una etapa de definición de problemática a abordar y su respectiva justificación con el fin de dejar claro, a quiénes afecta dicha problemática, cómo los afecta y qué se está haciendo en este momento para solucionar esto, en este caso, el proyecto es de investigación, en el cual se evalúa la posibilidad de llegar a un resultado mediante una pregunta de investigación y se presenta un posible resultado mediante una hipótesis. Acto seguido, se plantean objetivos del proyecto, en ellos se definen lo que se va a hacer, cómo se va a hacer y para qué se va a hacer, para posteriormente definir una serie de actividades que permiten llegar a cumplir cada uno de los objetivos planteados. Se estudian diferentes soluciones que otras personas han presentado para esta misma problemática, como fue su inicio y cómo ha evolucionado, esto en la sección de antecedentes y estado del arte. Es importante tener claras cada una de las temáticas que va a abordar el desarrollo de todo el proyecto, para esto, en la sección de marco teórico se presenta un acercamiento a dichas temáticas, las cuales son, teoría del color, edición digital de imágenes, inteligencia artificial y manejo de colores en formato HSL. En el marco metodológico se presenta toda la fase de planeación y diseño para el desarrollo, aspectos como metodología de investigación, casos de uso, requerimientos, diagramas de clases, un aspecto muy específico del proyecto que es la definición del filtro a utilizar, entre otras cosas. La experiencia de desarrollo narra paso a paso como fue el proceso de trabajar en el proyecto y cada una de las problemáticas a la cual se vio enfrentado el mismo, así como la solución obtenida por parte del equipo de trabajo. El análisis de resultados presenta lo que se obtuvo en cada modificación del proyecto hasta la fase que se considera final del mismo en el marco de este desarrollo, para posteriormente concluir y presentar algunas recomendaciones para seguir desarrollando y llevarlo a un entorno real y comercial.spa
dc.description.tableofcontents1. Introducción ........................................................................................................ 12 2. Resumen ............................................................................................................ 13 3. Planteamiento del problema y justificación ......................................................... 14 3.1. Planteamiento del problema ......................................................................... 14 3.2. Justificación .................................................................................................. 16 3.2.1. Pregunta de investigación ..................................................................... 17 3.2.2. Hipótesis ................................................................................................ 18 4. Objetivos y productos ......................................................................................... 19 4.1. Objetivo general ........................................................................................... 19 4.2. Objetivos específicos ................................................................................... 19 4.3. Productos ..................................................................................................... 19 5. Antecedentes y estado del arte .......................................................................... 21 5.1. Antecedentes ............................................................................................... 21 5.2. Estado del arte ............................................................................................. 22 6. Marco teórico ...................................................................................................... 26 6.1. Teoría del color ............................................................................................ 26 6.2. Parámetros de la edición digital de imágenes .............................................. 28 6.2.1. La exposición ......................................................................................... 28 6.2.2. El contraste ............................................................................................ 29 6.2.3. Altas luces ............................................................................................. 30 6.2.4. Sombras ................................................................................................ 30 6.2.5. Blancos .................................................................................................. 31 6.2.6. Negros ................................................................................................... 32 6.3. Inteligencia artificial ...................................................................................... 33 6.3.1. Deep Learning ....................................................................................... 34 6.4. HSL .............................................................................................................. 36 7. Marco metodológico ........................................................................................... 37 7.1. Metodología de investigación ....................................................................... 38 7.2. Requerimientos ............................................................................................ 39 7.3. Casos de uso ............................................................................................... 40 7.3.1. Cargar imagen base .............................................................................. 41 7.3.2. Cargar imágenes a tratar ....................................................................... 43 7.3.3. Retornar resultados de las imágenes tratadas ...................................... 45 7.3.4. Almacenar resultados en el sistema ...................................................... 46 7.3.5. Aplicar algoritmo para la edición de imágenes ...................................... 48 7.4. Diagrama de clases...................................................................................... 49 7.5. Diseño de interfaces..................................................................................... 49 7.5.1. Pantalla de carga de imagen base ........................................................ 50 7.5.2. Pantalla de carga de imágenes a tratar ................................................. 51 7.5.3. Pantalla de espera ................................................................................. 52 7.5.4. Pantalla de visualización de resultados ................................................. 52 7.6. Definición del modelo de filtro fotográfico a aplicar ...................................... 53 7.7. Modelo de solución tentativa ........................................................................ 57 7.8. Experiencia de desarrollo ............................................................................. 59 8. Análisis de resultados ......................................................................................... 79 9. Conclusiones y recomendaciones ...................................................................... 89 9.1. Conclusiones ................................................................................................ 89 9.2. Recomendaciones........................................................................................ 91 10. Bibliografía....................................................................................................... 93 Anexo 1 ..................................................................................................................... 95 Guía de ejecución del programa ............................................................................ 95 Anexo 2 ..................................................................................................................... 96 Anexo 3 ................................................................................................................... 146spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleDesarrollo de un algoritmo basado en inteligencia artificial para la edición digital de imágenes mediante un “filtro fotográfico inteligente” que se adapta estéticamente a cualquier imagen con apariencia distintaspa
dc.title.translatedDevelopment of an algorithm based on artificial intelligence for digital image editing using an “intelligent photographic filter” that aesthetically adapts to any image with a different appearancespa
dc.degree.nameIngeniero de Sistemasspa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programPregrado Ingeniería de Sistemasspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsSystems engineerspa
dc.subject.keywordsTechnological innovationsspa
dc.subject.keywordsDigital editionspa
dc.subject.keywordsImagesspa
dc.subject.keywordsPhotographic filterspa
dc.subject.keywordsArtificial intelligencespa
dc.subject.keywordsPhotographic imagesspa
dc.subject.keywordsElectronic data processingspa
dc.subject.keywordsSimulation methodsspa
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.relation.referencesAngeline, M., Chandra, S., Kinanti, F., Singgih, Y., & Safitri, Y. (2019). Digitalize Your Brand: Case Study on How Brands Utilize Social Media Platforms to Achieve Branding and Marketing Goals. Proceedings of 2019 International Conference on Information Management and Technology, ICIMTech 2019, August, 278–283. https://doi.org/10.1109/ICIMTech.2019.8843823spa
dc.relation.referencesBianco, S., Cusano, C., Piccoli, F., & Schettini, R. (2020). Personalized Image Enhancement Using Neural Spline Color Transforms. IEEE Transactions on Image Processing, 29, 6223–6236. https://doi.org/10.1109/TIP.2020.2989584spa
dc.relation.referencesChoi, H. C., & Kim, M. S. (2019). Image style transfer learning for style-strength control. Electronics Letters, 55(23), 1231–1233. https://doi.org/10.1049/el.2019.23spa
dc.relation.referencesDahal, B., & Zhan, J. (2019). USRRM: Pairwise ranking and scoring images using its aesthetic quality. IEEE Access, 7, 141171–141178. https://doi.org/10.1109/ACCESS.2019.2943460spa
dc.relation.referencesDwight J. Petruchik, H. F., & Joseph A. Manico, R. (1982). United States Patent ( 19 ).spa
dc.relation.referencesDzenko, C. (2009). Analog to Digital: The Indexical Function of Photographic Images (Volume 37,). Media Literacy. https://doi.org/https://doi.org/10.1525/aft.2009.37.2.19spa
dc.relation.referencesEfrain, G., & Ruben, O. (2017). Fundamentos de la imagen. 1–13spa
dc.relation.referencesFernandez Bozal, J. (2004). Fotografía digital : ventajas e inconvenientes. Revista Española de Ortodoncia, 34, 335–34spa
dc.relation.referencesHoltzschue, L. (2017). Understanding Color: An Introduction for Designers (Fifth Edit). Wiley. file:///C:/Users/youhe/Downloads/kdoc_o_00042_01.pdfspa
dc.relation.referencesKalist, V., Ganesan, P., Sathish, B. S., Jenitha, J. M. M., & Basha.shaik, K. (2015). Possiblistic-Fuzzy C-Means Clustering Approach for the Segmentation of Satellite Images in HSL Color Space. Procedia Computer Science, 57, 49–56. https://doi.org/10.1016/j.procs.2015.07.364spa
dc.relation.referencesLi, Y., Nie, J., & Chao, X. (2020). Do we really need deep CNN for plant diseases identification ? Computers and Electronics in Agriculture, 178(August), 105803. https://doi.org/10.1016/j.compag.2020.105803spa
dc.relation.referencesLucioni, M. (2015). Bicono del modelo HSL. https://es.wikipedia.org/wiki/Modelo_de_color_HSL#/media/Archivo:Doble_cono _de_la_coloración_HSL.pngspa
dc.relation.referencesMarsh, A. (2005). The Image Factory: Consumer Culture, Photography and the Visual Content Industry (Issue 115). Media International Australia, Incorporating Culture & Policyspa
dc.relation.referencesMoxley-Wyles, B., Colling, R., & Verrill, C. (2020). Artificial intelligence in pathology: an overview. Diagnostic Histopathology, 1–8. https://doi.org/10.1016/j.mpdhp.2020.08.004spa
dc.relation.referencesPressman, R. (2002). Ingeniería del Software. Un enfoque prácticospa
dc.relation.referencesSen, M., & Chakraborty, P. (2020). A deep convolutional neural network based approach to extract and apply photographic transformations. Communications in Computer and Information Science, 1148 CCIS, 155–162. https://doi.org/10.1007/978-981-15-4018-9_14spa
dc.relation.referencesSupannarach, S., & Thanapatay, D. (2008). The study of using RGB color sensor to measure the curcuminiods amount in turmeric (curcuma longa linn.) and zedoary (curcuma zedoarie rose.) by comparing colors with HSL system. 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2008, 1, 529–532. https://doi.org/10.1109/ECTICON.2008.4600487spa
dc.relation.referencesTehrani, M., Bagheri, M., Ahmadi, M., Norouzi, A., Karimi, N., & Samavi, S. (2019). Artistic Instance-Aware Image Filtering by Convolutional Neural Networks. 9th International Symposium on Telecommunication: With Emphasis on Information and Communication Technology, IST 2018, 710–714. https://doi.org/10.1109/ISTEL.2018.8661048spa
dc.relation.referencesWang, Z. Z., & Sobey, A. (2020). A comparative review between Genetic Algorithm use in composite optimisation and the state-of-the-art in evolutionary computation. Composite Structures, 233(October 2019), 111739. https://doi.org/10.1016/j.compstruct.2019.111739spa
dc.relation.referencesWindha Mega, P. D., & Haryoko. (2019). Optimization of parameter support vector machine (SVM) using genetic algorithm to review go-jek’s services. 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering, ICITISEE 2019, 6, 301–304. https://doi.org/10.1109/ICITISEE48480.2019.9003894spa
dc.relation.referencesYu, C. E., Xie, S. Y., & Wen, J. (2020). Coloring the destination: The role of color psychology on Instagram. Tourism Management, 80(February), 104110. https://doi.org/10.1016/j.tourman.2020.10411spa
dc.contributor.cvlacMoreno Corzo, Feisar Enrique [0001499008]spa
dc.contributor.cvlacTalero Sarmiento, Leonardo Hernán [0000031387]spa
dc.contributor.googlescholarMoreno Corzo, Feisar Enrique [es&oi=ao]spa
dc.contributor.orcidMoreno Corzo, Feisar Enrique [0000-0002-5007-3422]spa
dc.contributor.orcidTalero Sarmiento, Leonardo Hernán [0000-0002-4129-9163]spa
dc.contributor.researchgateMoreno Corzo, Feisar Enrique [Feisar-Enrique-Moreno-Corzo-2169498891]spa
dc.contributor.researchgateTalero Sarmiento, Leonardo Hernán [Leonardo-Talero]spa
dc.subject.lembIngeniería de sistemasspa
dc.subject.lembInnovaciones tecnológicasspa
dc.subject.lembAlgoritmospa
dc.subject.lembImágenes fotográficasspa
dc.subject.lembProcesamiento electrónico de datosspa
dc.subject.lembMétodos de simulaciónspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishThis document is structured in such a way that initially it is a stage of definition of the problem to be addressed and its respective justification in order to make it clear, who is affected by said problem, how it affects them and what is being done at this time to solve this, In this case, the project is a research project, in which the possibility of reaching a result is evaluated through a research question and a possible result is presented through a hypothesis. Immediately afterwards, the objectives of the project are set, they define what is going to be done, how it is going to be done and what it is going to be done for, to later define a series of activities that allow each of the objectives to be met. raised. Different solutions that other people have presented for this same problem are studied, as was its beginning and how it has evolved, this in the background and state of the art section. It is important to be clear about each of the topics that the development of the entire project is going to address, for this, in the theoretical framework section an approach to these topics is presented, which are, color theory, digital image editing, artificial intelligence and color management in HSL format. In the methodological framework, the entire planning and design phase for development is presented, aspects such as research methodology, use cases, requirements, class diagrams, a very specific aspect of the project that is the definition of the filter to be used, among others. stuff. The development experience narrates step by step how the process of working on the project was and each of the problems it was faced with, as well as the solution obtained by the work team. The analysis of results presents what was obtained in each modification of the project until the phase that is considered to be the end of the project within the framework of this development, to later conclude and present some recommendations to continue developing and take it to a real and commercial environment.spa
dc.subject.proposalEdición digitalspa
dc.subject.proposalImágenesspa
dc.subject.proposalFiltro fotográficospa
dc.subject.proposalInteligencia artificialspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia