Show simple item record

dc.contributor.advisorDíaz González, Carlos Aliriospa
dc.contributor.authorNaranjo Anaya, Edgar Andrésspa
dc.contributor.authorGamarra Quintero, Juan Sebastiánspa
dc.date.accessioned2020-06-26T19:39:13Z
dc.date.available2020-06-26T19:39:13Z
dc.date.issued2017-11
dc.identifier.urihttp://hdl.handle.net/20.500.12749/1474
dc.description.abstractEl presente proyecto, modeló y evaluó de manera termodinámica y exergoeconomica el desempeño de dos configuraciones de almacenamiento para un sistema de generación basado en gasificación de biomasa para una comunidad de la Orinoquia Colombiana no interconectada a la red eléctrica nacional. El modelo fue desarrollado en función de la curva de demanda de energía eléctrica de dicha comunidad. Se inició con la selección del motor a utilizar de acuerdo a la demanda máxima de potencia que tuviese la comunidad, posteriormente se realizó una búsqueda bibliográfica para escoger una composición de syngas que fuese adecuada para las condiciones del sitio, consecutivamente se realizó el modelado termodinámico y análisis exergoeconomico dando cumplimiento a los objetivos planteados. Con el proyecto se pretende dar un criterio de decisión al momento de llevar a cabo este tipo de proyectos en las zonas no interconectadas aportando así a la mejora en las soluciones que se brindan a las mismas. El criterio está fundamentado en el análisis de resultados realizado en el presente proyecto. En este documento se presenta el marco conceptual ubicando los conceptos teóricos necesarios para realizar las actividades presentadas en la metodología; el desarrollo del proyecto, donde se exponen de manera consecutiva y acorde al modelado del sistema, las ecuaciones y balances termodinámicos, exergéticos y termoeconomicos implementando el software de ingeniería EES1. Posteriormente se analizan y discuten los resultados mediante graficas que muestran el comportamiento de las variables del sistema. Finalmente se muestran las observaciones y conclusiones del proyecto realizado, discutiendo aspectos importantes para la evaluación del desempeño de cada configuración de acuerdo a los objetivos planteados. Los Anexos presentan los resultados numéricos del modelo.spa
dc.description.tableofcontentsCAPITULO 1. INTRODUCCIÓN 11 PLANTEAMIENTO 12 ANTECEDENTES 13 OBJETIVOS 15 METODOLOGÍA 16 CAPITULO 2 MARCO CONCEPTUAL 18 2-1 GENERACIÓN EN ZONAS NO INTERCONECTADAS 18 2-2 ANÁLISIS DEL SISTEMA DE GENERACIÓN DE POTENCIA 24 2-3 FUNDAMENTOS ANÁLISIS TERMODINÁMICO 29 2-4 FUNDAMENTOS ANÁLISIS EXERGÉTICO 39 2-5 FUNDAMENTOS ANÁLISIS TERMOECONÓMICO 41 2-6 INDICADORES DE EFICIENCIA ENERGÉTICA 44 CAPITULO 3 DESARROLLO DEL PROYECTO 48 3-1 PARÁMETROS INICIALES DEL SISTEMA 50 3-2 ANÁLISIS TERMODINÁMICO DEL SISTEMA 53 3-3 ANÁLISIS EXERGÉTICO DEL SISTEMA 59 3-4 ANÁLISIS TERMOECONÓMICO 65 3-4-1 Análisis Primera Configuración 65 3-4-2 Análisis Segunda Configuración 68 CAPITULO 4 RESULTADOS Y DISCUSIÓN 70 CONCLUSIONES Y OBSERVACIONES 81 BIBLIOGRAFIA 83 ANEXOS 87spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleEvaluación del desempeño de diferentes configuraciones para un sistema de generación de potencia con base en motor de combustión interna integrado a un sistema de gasificación de biomasaspa
dc.title.translatedPerformance evaluation of different configurations for a power generation system based on an internal combustion engine integrated to a biomass gasification systemeng
dc.degree.nameIngeniero en Energíaspa
dc.coverageBucaramanga (Colombia)spa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programPregrado Ingeniería en Energíaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsEnergy engineeringeng
dc.subject.keywordsPower generationeng
dc.subject.keywordsPower distributioneng
dc.subject.keywordsEnergy resourceseng
dc.subject.keywordsInvestigationseng
dc.subject.keywordsAnalysiseng
dc.subject.keywordsBiomasseng
dc.subject.keywordsEnergy demandeng
dc.subject.keywordsThermodynamic modelingeng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesNaranjo Anaya, Edgar Andrés, Gamarra Quintero, Juan Sebastián (2017). Evaluación de desempeño de diferentes configuraciones para un sistema de generación de potencia con base en motor de combustión interna integrado a un sistema de gasificación de biomasa. Bucaramanga (Santander, Colombia) : Universidad Autónoma de Bucaramanga UNABspa
dc.relation.referencesAl-Sulaiman FA, Dincer I, Hamdullahpur F. Energy and exergy analyses of a biomass trigeneration system using an organic Rankine cycle. Energy [Internet]. 2012; 45(1):975–85. Available from: http://dx.doi.org/10.1016/j.energy.2012.06.060
dc.relation.referencesBalli O, Aras H, Hepbasli A. Thermodynamic and thermoeconomic analyses of a trigeneration (TRIGEN) system with a gas-diesel engine: Part I - Methodology. Energy Conversion and Management. 2010; 51(11):2252–9.
dc.relation.referencesBaratieri M, Baggio P, Bosio B, Grigiante M, Longo GA. The use of biomass syngas in IC engines and CCGT plants: A comparative analysis. Applied Thermal Engineering [Internet]. 2009; 29(16):3309–18. Available from: http://dx.doi.org/10.1016/j.applthermaleng.2009.05.003
dc.relation.referencesBhaduri, S. (2016). HCCI engine operated with unscrubbed biomass syngas. ELSEVIER.
dc.relation.referencesCengel, Y. (2011). Termodinamica. Mc GrawHill.
dc.relation.referencesCouper, J. R. (1988). Costs of Individual Equipment. En J. R. Couper, Chemical Process Equipment (págs. 663-669).
dc.relation.referencesDurango Padilla, J. L. (2015). Análisis termoeconómico de gasificación integrada a motores de combustión interna, empleando cascarilla de arroz en el departamento de Córdoba.
dc.relation.referencesEngineering C, Cost P, Cepci I. Econom ic Ind icato rs. 2015;(January). estado
dc.relation.referencesEnvironmental AN, Analysis I. IMECE2008-67219. 2008;
dc.relation.referencesEtiqueta EDELA. Mezcla de Gases Mezcla de Gases. 2011; 3–5.
dc.relation.referencesFuente JRV. Chemical Process Design [Internet]. Chemical Engineering and Inorganic Chemistry Department. 2015. p. 30. Available from: http://ocw.unican.es/ensenanzas- tecnicas/procesos-quimicos-de-fabricacion/materiales/Subject 7. Equipment Sizing and Costing OCW.pdf
dc.relation.referencesFilippos K. Zisopoulos Msc, F. J.-M. (2015). The Use of Exergetic Indicators in the Food Industry - A Review. Food Science and Nutrition, 55-79.
dc.relation.referencesGupta, H. (2006). Fundamentals of Internal Combustion Engines.
dc.relation.referencesGurrea, J. (2014). Obtenido de http://tecnologia- compresores.blogspot.com.co/2010/04/compresor-alternativo-continuacion.html
dc.relation.referencesGonzalez NF. Estado del Arte del Uso del Gas de Gasificación Termoquímica de Biomasa (GG), en Motores de Combustión Interna Alternativos. 2003; 128. Available from: http://oa.upm.es/10905/
dc.relation.referencesGupta HN. Fundamentals of Internal Combustion Engines [Internet]. 2006. p. 616. Available from: http://books.google.co.in/books/about/Fundamentals_of_Internal_Combustion_Engi. html?id=MFx4VRErHNoC&pgis=1
dc.relation.referencesHuang Y, Wang YD, Rezvani S, McIlveen-Wright DR, Anderson M, Mondol J, et al. A techno-economic assessment of biomass fuelled trigeneration system integrated with organic Rankine cycle. Applied Thermal Engineering [Internet]. 2013; 53(2):325–31. Available from: http://dx.doi.org/10.1016/j.applthermaleng.2012.03.041
dc.relation.referencesInguez-Fern´ RND, Andez1 IA-V, Azquez2 JJC-P, Erez1∗ JSW-C, J. S. Alvarado-Gonz´ alez1 GC, On-Dom´, et al. Revista Mexicana de I ngeniería Q uímica. Revista Mexicana de Ingeniería Química. 2011; 10(1):17–28.
dc.relation.referencesInstituto de planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas. Soluciones energéticas para las zonas no interconectadas de Colombia IPSE. Ministerio de Minas y Energía [Internet]. 2014; 1–57. Available from: https://www.minminas.gov.co/documents/10180/742159/09C- SolucionesEnergeticasZNI-IPSE.pdf/2871b35d-eaf7-4787-b778-ee73b18dbc0e
dc.relation.referencesIEA. (7 de 11 de 2017). International Energy Agency. Obtenido de https://www.iea.org/
dc.relation.referencesIPSE. (2016). Memoria de Calculos del Diseño Tecnico de Soluciones de Energia Sostenibles.
dc.relation.referencesKhan SM, Aslam A, Iqbal A, Dar AJ. Cost Effectiveness of Waste Heat Recovery and Utilization of a 450 MW Combined Cycle Power Plant. Jordan Engineers Association [Internet]. 2(V). Available from: http://www.jeaconf.org/uploadedfiles/document/07bc6699-67e3-4e24-bca1- 0851d63928e4.pdf
dc.relation.referencesKowsary F, Jafari PH. Thermoeconomic comparison between the performance of small- scale internal combustion engines and gas turbines integrated with a biomass gasifier. Energy Equipment and Systems. 2014; 2:57–82.
dc.relation.referencesKumar R. A critical review on energy, exergy, exergoeconomic and economic (4-E) analysis of thermal power plants. Engineering Science and Technology, an International Journal [Internet]. 2017; 20(1):283–92. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2215098616305821
dc.relation.referencesKwon Y-H, Kwak H-Y, Oh S-D. Exergoeconomic analysis of gas turbine cogeneration systems. Exergy, An International Journal [Internet]. 2001; 1(1):31–40. Available from: http://www.sciencedirect.com/science/article/pii/S1164023501000073
dc.relation.referencesLemmens S. A perspective on costs and cost estimation techniques for organic Rankine cycle systems. Proceedings of the 3rd International Seminar on ORC Power Systems. 2015;(2010):1–10.
dc.relation.referencesMoharamian A, Soltani S, Rosen MA, Mahmoudi SMS, Morosuk T. A comparative thermoeconomic evaluation of three biomass and biomass-natural gas fired combined cycles using organic Rankine cycles. Journal of Cleaner Production [Internet]. 2017; 161(May):524–44. Available from: http://dx.doi.org/10.1016/j.jclepro.2017.05.174
dc.relation.referencesMondal P, Ghosh S. Exergo-economic analysis of a 1-MW biomass-based combined cycle plant with externally fired gas turbine cycle and supercritical organic Rankine cycle. Clean Technologies and Environmental Policy. 2017; 19(5):1475–86.
dc.relation.referencesMonteiro E, Bellenoue M, Sottton J, Rouboa A. Syngas Application to Spark Ignition Engine Working Simulations by Use of Rapid Compression Machine. Internal Combustion Engines. 2012;(x):51–74.
dc.relation.referencesOlson A, Nick S, Kush P, Gabe K. Capital Cost Review of Power Generation Technologies. Western Electric Coordinating Council. 2014;(March):105.
dc.relation.referencesPellegrini LF. Luiz Felipe Pellegrini Análise E Otimização Termo-Econômica-Ambiental Aplicada À Produção Combinada De Açúcar, Álcool E Eletricidade Análise E Otimização Termo-Econômica-Ambiental Aplicada À Produção Combinada De Açúcar, Álcool E. 2009; 349.
dc.relation.referencesProenza Pérez, Néstor. (2011). “Gas pobre: factibilidad de su uso en los motores ZIL- 130”, en: Ingeniería Energética. Vol. XXXII, 3/2011 Agosto-Noviembre p 1-8
dc.relation.referencesPetrakopoulou F, Tsatsaronis G, Boyano A, Morosuk T. Exergoeconomic and exergoenvironmental evaluation of power plants including CO2 capture. Chemical Engineering Research and Design [Internet]. 2011; 89(9):1461–9. Available from: http://dx.doi.org/10.1016/j.cherd.2010.08.001
dc.relation.referencesPetrakopoulou F, Tsatsaronis G, Morosuk T, Carassai A. Advanced Exergoeconomic Analysis Applied to a Complex Energy Conversion System. Journal of Engineering for Gas Turbines and Power [Internet]. 2012; 134(3):31801. Available from:http://gasturbinespower.asmedigitalcollection.asme.org/article.aspx?articleid=1421 314
dc.relation.referencesRamos Da Costa YJ, Barbosa De Lima AG, Becerra Filo CR, De Araujo Lima L. Energética and exergética analyses of a dual-fuel diesel engine. Remedable and Sustentable Energy Reviese. 2012; 16(7):4651–60.
dc.relation.referencesLenticelas A, Parellas S, Calaras E, Tatsiopoulos I. Biomass combustion with ORC for decentralized bioenergy applications: A techno-economic approach. 4th European Conference on Economics and Management of Energy in Industry (ECEMEI). 2007.
dc.relation.referencesRocco M, Toro C. Exergy Based Methods For Economic And Environmental Analysis Applied To A 320 Mw Combined Cycle Power Plant. Proceedings of the 12th Joint European Thermodynamics Conference, JETC 2013, Eds M Pilotelli and GP Beretta. 2013; 464–9.
dc.relation.referencesSarkar J, Bhattacharyya S. Operating characteristics of transcritical CO2 heat pump for simultaneous water cooling and heating. Archives of Thermodynamics. 2012; 33(4):23–40.
dc.relation.referencesShelar MN, Bagade SD, Kulkarni GN. Energy and Exergy Analysis of Diesel Engine Powered Trigeneration Systems. Energy Procedia [Internet]. 2016; 90(December 2015):27–Available from: http://linkinghub.elsevier.com/retrieve/pii/S1876610216313777
dc.relation.referencesSoltani S, Mahmoudi SMS, Yari M, Morosuk T, Rosen MA, Zare V. A comparative exergoeconomic analysis of two biomass and co-firing combined power plants. Energy Conversion and Management [Internet]. 2013; 76:83–91. Available from: http://dx.doi.org/10.1016/j.enconman.2013.07.030
dc.relation.referencesSymister OJ. An Analysis of Capital Cost Estimation Techniques for Chemical Processing. 2016;
dc.relation.referencesT. J. Kotas. The exergy method of thermal plant analysis. Vol. 20, International Journal of Refrigeration. 1985. p. 311.
dc.relation.referencesTobergte DR, Curtis S. Análisis termoeconómico de gasficiación integrada a motores de combustión interna, empleando cascarilla de arroz en el departamento de Córdoba. Journal of Chemical Information and Modeling. 2013; 53(9):1689–99.
dc.relation.referencesTsatsaronis G. A General Exergy-Based Method for Combining a Cost Analysis With an Environmental Impact Analysis: Part I --- Theoretical Development. ASME Conference Proceedings [Internet]. 2008;(May):453–62. Available from: http://link.aip.org/link/abstract/ASMECP/v2008/i48692/p453/s1
dc.relation.referencesV.4 Generacion. Elec. En las ZNI. Tec. Diesel.PDF.
dc.relation.referencesValero A, Lozano MA, Serra L, Tsatsaronis G, Pisa J, Frangopoulos C, et al. CGAM problem: Definition and conventional solution. Energy. 1994; 19(3):279–86.
dc.relation.referencesWang JJ, Yang K, Xu ZL, Fu C. Energy and exergy analyses of an integrated CCHP system with biomass air gasification. Applied Energy. 2015; 142:317–27.
dc.relation.referencesZainal, Z.; S. Bari and Abdullah, M. (2001). Experimental characterization of a batch feed biomassgasifier system for internal combustion engines, 4thInternational Conference on Mechanical Engineering, December 26-28, Dhaka, Bangladesh/ p. III 93-96.
dc.relation.references2013 Hagos Study of syngas combustion parameters effect on internal combustion engine.pdf.
dc.contributor.cvlacDíaz González, Carlos Alirio [0000785806]spa
dc.contributor.googlescholarDíaz González, Carlos Alirio [nqw4a5gAAAAJ]spa
dc.contributor.scopusDíaz González, Carlos Alirio [https://www.scopus.com/authid/detail.uri?authorId=56704404900]spa
dc.subject.lembIngeniería en energíaspa
dc.subject.lembGeneración de energíaspa
dc.subject.lembDistribución de energíaspa
dc.subject.lembRecursos energéticosspa
dc.subject.lembInvestigacionesspa
dc.subject.lembAnálisisspa
dc.description.abstractenglishThis project modeled and evaluated in a thermodynamic and exergoeconomic way the performance of two storage configurations for a generation system based on biomass gasification for a community in the Colombian Orinoquia not interconnected to the national electricity grid. The model was developed based on the electrical energy demand curve of said community. It began with the selection of the motor to be used according to the maximum power demand that the community had, later a bibliographic search was carried out to choose a composition of syngas that was adequate for the conditions of the site, subsequently the thermodynamic modeling was carried out and exergoeconomic analysis fulfilling the objectives set. The project aims to provide a decision criterion when carrying out this type of project in non-interconnected areas, thus contributing to the improvement of the solutions provided to them. The criterion is based on the analysis of results carried out in this project. This document presents the conceptual framework locating the theoretical concepts necessary to carry out the activities presented in the methodology; the development of the project, where the equations and thermodynamic, exergetic and thermoeconomic balances are exposed consecutively and according to the modeling of the system, implementing the EES1 engineering software. Subsequently, the results are analyzed and discussed using graphs that show the behavior of the system variables. Finally, the observations and conclusions of the project carried out are shown, discussing important aspects for the evaluation of the performance of each configuration according to the objectives set. The Annexes present the numerical results of the model.eng
dc.subject.proposalBiomasaspa
dc.subject.proposalDemanda energéticaspa
dc.subject.proposalModelado termodinámicospa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.contributor.researchgroupGrupo de Investigación Recursos, Energía, Sostenibilidad - GIRESspa
dc.contributor.researchgroupGrupo de Investigaciones Clínicasspa
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia