Mostrar el registro sencillo del ítem

dc.contributor.advisorChalela Álvarez, Gracielaspa
dc.contributor.advisorQuintero Pérez, Henderson Ivánspa
dc.contributor.authorCastañeda Ramírez, Luis Carlosspa
dc.date.accessioned2020-06-26T19:39:11Z
dc.date.available2020-06-26T19:39:11Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/20.500.12749/1465
dc.description.abstractEl constante crecimiento en la demanda de lípidos y ácidos grasos para uso industrial, ha generado la necesidad de encontrar nuevas y mejores fuentes para la obtención de los mismos. Por esto se buscan mecanismos que trabajen de forma eficiente, eliminando los daños ambientales y, a su vez, permitan abastecer satisfactoriamente la demanda de estas materias primas. Se considera que los combustibles provenientes de biomasa de microalga tienen un alto potencial y pueden verse como una de las alternativas promisorias para el reemplazo del petróleo en el mediano plazo dado su desempeño en motores diésel y la disminución de liberación de CO2 [2]. Las algas verdes (conocidas también en la industria como microalgas) objeto del estudio, son un grupo diverso de microorganismos eucariótica y eucarióticos fotosintéticos que cresen rápidamente debido a su estructura simple. Potencialmente pueden ser empleadas para la producción de biocombustibles (biodiesel, biogás, hidrocarburos y bio-hidrógeno) ambientalmente sostenibles y económicamente eficaces. La obtención de ácidos grasos y lípidos, a partir de biomasa de microalga, es un tema que se viene estudiando desde hace mucho tiempo, por ser una alternativa para producir energías más limpias y amigables con el medio ambiente, y reduciendo costos a la hora de su producción. En comparación con otras materias primas, no son fuente de alimento humano, no presentan gran complejidad química en su estructura, lo que hace su modificación y manipulación más sencilla. El cultivo de las microalgas y sus condiciones, permiten que se produzcan a gran escala y en muy cortos periodos de tiempo. Además, por ser fotosintéticas, absorben en gran medida el dióxido de carbono presente en la atmosfera. Por lo anterior Este trabajo de grado centra sus esfuerzos en evaluar las mejores condiciones de cultivo, los mejores medios químicos y físicos para la producción de lípidos y ácidos grasos de microalga, además se evalúan las cargas ambientales en todo el proceso de producción utilizando la metodología de análisis de ciclo de vida.spa
dc.description.tableofcontents1. INTRODUCCIÓN 10 1.1 OBJETIVO GENERAL 12 1.2 OBJETIVOS ESPECÍFICOS 12 2. MARCO TEÓRICO 13 2.1 MICROALGAS COMO FUENTE DE COMBUSTIBLE 13 2.2 DESCRIPCIÓN Y CARACTERÍSTICAS PRINCIPALES DEL BIODIESEL 15 2.3 ACV – GENERALIDADES (FASES DEL ACV) 17 2.3.1 Metodología del ACV 17 3. METODOLOGÍA DE INVESTIGACIÓN 20 4. SÍNTESIS DE BIODIESEL A PARTIR DE LA MICROALGA CHLORELLA VULGARIS 22 4.1 CEPA DE MICROALGA, CONDICIONES Y MEDIO DE CULTIVO 22 4.2 SELECCIÓN DE FLUJOS DE AIRE 24 4.3 COSECHA DE MICROALGAS 27 4.3.1 Centrifugación 28 4.3.2 Sedimentación por gravedad 29 4.3.3 Floculación 30 4.4 PRETRATAMIENTO DE BIOMASA PARA DISRUPCIÓN CELULAR 32 4.4.1 Microondas 34 4.4.2 Autoclave 34 4.5 EXTRACCIÓN DE LÍPIDOS 35 4.5.1 Extracción de lípidos de microalga en un solo proceso 37 4.6 Método de verificación de lípidos TG color GPO/PAP AA 43 4.7 TRANSESTERIFICACIÓN DE LÍPIDOS 46 5. ANÁLISIS DE CICLO DE VIDA DE BIODIESEL A PARTIR DE LA MICROALGA Chlorella vulgaris 49 5.1 DEFINICIÓN DEL OBJETIVO DEL ACV 49 5.2 DEFINICIÓN DE ALCANCE 49 5.2.1 Sistema del producto bajo estudio 49 5.2.2 Funciones del sistema bajo estudio 50 5.2.3 Unidad funcional 50 5.2.4 Límites del sistema 50 5.2.5 Reglas de asignación 51 5.2.6 Tipos de impacto y metodología de evaluación 52 6. INVENTARIO DE CICLO DE VIDA (ICV) 53 7. ANÁLISIS DE RESULTADOS 54 7.1 Resultados de cultivo y selección de ruta de producción de biodiesel a partir de la microlaga Chlorella vulgaris. 54 7.2 Selección de categorías de impacto 55 7.3 Asignación e interpretación de resultados del inventario a las categorías de impacto 55 8. CONCLUSIONES 1 9. RECOMENDACIONES 3 10. BIBLIOGRAFÍA 4spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleSíntesis y análisis de ciclo de vida de biodiesel producido a partir de microalgasspa
dc.title.translatedSynthesis and life cycle analysis of biodiesel produced from microalgaeeng
dc.degree.nameIngeniero en Energíaspa
dc.coverageBucaramanga (Colombia)spa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programPregrado Ingeniería en Energíaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsEnergy engineeringeng
dc.subject.keywordsMicroalgaeeng
dc.subject.keywordsBiofuel productioneng
dc.subject.keywordsProduct life cycleeng
dc.subject.keywordsEnvironmental aspectseng
dc.subject.keywordsInvestigationseng
dc.subject.keywordsAnalysiseng
dc.subject.keywordsEnvironmental damageeng
dc.subject.keywordsRaw materialseng
dc.subject.keywordsRegulationseng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesCastañeda Ramírez, Luis Carlos (2017). Síntesis y análisis de ciclo de vida de biodiesel producido a partir de microalgas. Bucaramanga (Santander, Colombia) : Universidad Autónoma de Bucaramanga UNABspa
dc.relation.referencesHenderson Quintero; “Desenvolvimento E Avaliação De Metodologias Para Purificação De Biolubrificantes Via Destilação Molecular De Filme Descendente” Campinas, 2012
dc.relation.referencesHATAKEYAMA, T., QUINN, F. X. Thermal Analysis Fundamentals and Applications to Polymer Science, 2 ed. John Wiley & Sons, England, 1999.
dc.relation.referencesHANSEN, C. M. Hansen Solubility Parameter. A User’s Handbook. New York. Boca Raton, P. 208, 2000.
dc.relation.referencesQUISPE TRINIDAD, Isabel et al; Análisis de ciclo de vida de los Biocombustibles en Perú. Red Peruana de ciclo de vida – sección Ingenieria Industrial: Pontificia Universidad Católica del Perú- Perú, 2009. 59p.
dc.relation.referencesYAO, L., HAMMOND, E., WANG, T. Melting points and viscosities of fatty acid esters that are potential targets for engineered oilseed. Journal of the American Oil Chemists' Society, v. 85, p.77–82, 2008.
dc.relation.referencesWILLING, A. Lubricants Based on Renewable Reosurces – an Enviromentally Compatible Alternative to Mineral Oil Products. Chemosphere, v.53, p 89-98. 2001.
dc.relation.referencesHAUS, F., BOISSEL, O., JUNTER, G.-A. Primary and Ultimate Biodegradabilities of Mineral Base Oils and Their Relationship with Oil Viscosity. International Biodeterioration & Biodegradation, v.54, p189-192, 2004.
dc.relation.referencesGUNSTONE, F.D., HARWOOD, J.L., DIJKSTRA, A.J. The Lipid Handbook. 3.ed. Taylor & Francis Ltd.,United Kingdom, 2004.
dc.relation.referencesASPENTech. 2001. Aspen plus, Unit Operation Models. Worldwide Headquarters. Aspen Technology, Inc.200 Wheeler Road Burlington, United States.
dc.relation.referencesChisti, Y., Biodiesel From microalgae, Biotechnology Advances, 2007. 25: P. 294- 306.
dc.relation.referencesLiam Brennan, P.O., Biofuels From Microalgae- A Review Of Technologies For Production, Processing, And Extractions Of Biofuels And Co-Products. Renewable And Sustainable Energy Reviews, 2009 Accepted.
dc.relation.referencesSarmidi Amin. Review on biofuel oil and gas production processes from microalgae. Energy Conversion and Management. 2009; 50: 1834-1887.
dc.relation.referencesWoon Wallace, Fong Leung. Centrifugal separations in biotechnology. Elsevier. 2007.
dc.relation.referencesMurphy Thomas, Berberoglu Halil. Effect of algae pigmentation on photobioreactor productivity and scale-up: A light transfer perspective. Journal of Quantitative Spectroscopy & Radiative Transfer. 2011; 2-10.
dc.relation.referencesCardozo, K.H.M., Et Al., Metabolites From Algae With Economical Impact. Comparative Biochemistry And Physiology Part C: Toxicology & Pharmacology. 146(1-2): P. 60-78.
dc.relation.referencesFrater, D., Kaloustian, J., Teixeira, C., Garcia, M, Biodiesel A Partir De Aceite De Algas, In Conferencia Monográfica Internacional. 23 De Enero Del 2008. 2008, Global Energy.
dc.relation.referencesRojan P. John, G.S.A., K. Madhavan Nampoothiri, Ashok Pandey, Micro And Macroalgal Biomass: A Renewable Source For Bioethanol. Bioresource Technology, 2011. 102: P. 186-193.
dc.relation.referencesLiang, Y., N. Sarkany, And Y. Cui, Biomass And Lipid Productivities Of Chlorella Vulgaris Under Autotrophic, Heterotrophic And Mixotrophic Growth Conditions. Biotechnology Letters, 2009. 31(7): P. 1043-1049.
dc.relation.referencesLi, Y., Et Al., Effects Of Nitrogen Sources On Cell Growth And Lipid Accumulation Of Green Alga Neochloris Oleoabundans. Applied Microbiology And Biotechnology, 2008. 81(4): P. 629-636.
dc.relation.referencesChisti, Y., Biodiesel From microalgae, Biotechnology Advances, 2007. 25: P. 294- 306.
dc.relation.referencesLiam Brennan, P.O., Biofuels From Microalgae- A Review Of Technologies For Production, Processing, And Extractions Of Biofuels And Co-Products. Renewable And Sustainable Energy Reviews, 2009 Accepted.
dc.relation.referencesSarmidi Amin. Review on biofuel oil and gas production processes from microalgae. Energy Conversion and Management. 2009; 50: 1834-1887.
dc.relation.referencesWoon Wallace, Fong Leung. Centrifugal separations in biotechnology. Elsevier. 2007.
dc.relation.referencesMurphy Thomas, Berberoglu Halil. Effect of algae pigmentation on photobioreactor productivity and scale-up: A light transfer perspective. Journal of Quantitative Spectroscopy & Radiative Transfer. 2011; 2-10
dc.relation.referencesRamón Piloto-Rodríguez, Yisel Sánchez-Borroto, Eliezer Ahmed Melo-Espinosa, Sebastian Verhelst, Assessment of diesel engine performance when fueled with biodiesel from algae and microalgae: An overview, Renewable and Sustainable Energy Reviews, Volume 69, March 2017, Pages 833-842, ISSN 1364-0321, http://doi.org/10.1016/j.rser.2016.11.015.
dc.relation.referencesAjith J. Kings, R. Edwin Raj, L.R. Monisha Miriam, M. Adhi Visvanathan, Cultivation, extraction and optimization of biodiesel production from potential microalgae Euglena sanguinea using eco-friendly natural catalyst, Energy Conversion and Management, Volume 141, 1 June 2017, Pages 224-235, ISSN 0196-8904, http://doi.org/10.1016/j.enconman.2016.08.018.
dc.relation.referencesPeyman Fasahati, J. Jay Liu, Application of MixAlco® processes for mixed alcohol production from brown algae: Economic, energy, and carbon footprint assessments, Fuel Processing Technology, Volume 144, April 2016, Pages 262-273, ISSN 0378-3820, http://doi.org/10.1016/j.fuproc.2016.01.008.
dc.relation.referencesRamón Piloto-Rodríguez, Yisel Sánchez-Borroto, Eliezer Ahmed Melo-Espinosa, Sebastian Verhelst, Assessment of diesel engine performance when fueled with biodiesel from algae and microalgae: An overview, Renewable and Sustainable Energy Reviews, Volume 69, March 2017, Pages 833-842, ISSN 1364-0321, http://doi.org/10.1016/j.rser.2016.11.015.
dc.relation.referencesHoward Passell, Harnoor Dhaliwal, Marissa Reno, Ben Wu, Ami Ben Amotz, Etai Ivry, Marcus Gay, Tom Czartoski, Lise Laurin, Nathan Ayer, Algae biodiesel life cycle assessment using current commercial data, Journal of Environmental Management, Volume 129, 15 November 2013, Pages 103-111, ISSN 0301-4797, http://doi.org/10.1016/j.jenvman.2013.06.055.
dc.relation.referencesEdgard Gnansounou, Jegannathan Kenthorai Raman, Life cycle assessment of algae biodiesel and its co-products, Applied Energy, Volume 161, 1 January 2016, Pages 300-308, ISSN 0306-2619, http://doi.org/10.1016/j.apenergy.2015.10.043.
dc.relation.referencesSimone P. Souza, Anand R. Gopal, Joaquim E.A. Seabra, Life cycle assessment of biofuels from an integrated Brazilian algae-sugarcane biorefinery, Energy, Volume 81, 1 March 2015, Pages 373-381, ISSN 0360-5442, http://doi.org/10.1016/j.energy.2014.12.050.
dc.relation.referencesJia Yang, Ming Xu, Xuezhi Zhang, Qiang Hu, Milton Sommerfeld, Yongsheng Chen, Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance, Bioresource Technology, Volume 102, Issue 1, January 2011, Pages 159-165, ISSN 0960-8524, http://doi.org/10.1016/j.biortech.2010.07.017.
dc.relation.referencesH.H. Khoo, C.Y. Koh, M.S. Shaik, P.N. Sharratt, Bioenergy co-products derived from microalgae biomass via thermochemical conversion – Life cycle energy balances and CO2 emissions, Bioresource Technology, Volume 143, September 2013, Pages 298-307, ISSN 0960-8524, http://doi.org/10.1016/j.biortech.2013.06.004.
dc.relation.referencesAtta Ajayebi, Edgard Gnansounou, Jegannathan Kenthorai Raman, Comparative life cycle assessment of biodiesel from algae and jatropha: A case study of India, Bioresource Technology, Volume 150, December 2013, Pages 429-437, ISSN 0960-8524, http://doi.org/10.1016/j.biortech.2013.09.118.
dc.relation.referencesGeorge Brownbridge, Pooya Azadi, Andrew Smallbone, Amit Bhave, Benjamin Taylor, Markus Kraft, The future viability of algae-derived biodiesel under economic and technical uncertainties, Bioresource Technology, Volume 151, January 2014, Pages 166-173, ISSN 0960-8524, http://doi.org/10.1016/j.biortech.2013.10.062.
dc.relation.referencesDongyan Mu, Roger Ruan, Min Addy, Sarah Mack, Paul Chen, Yong Zhou, Life cycle assessment and nutrient analysis of various processing pathways in algal biofuel production, Bioresource Technology, Volume 230, April 2017, Pages 33-42, ISSN 0960-8524, http://doi.org/10.1016/j.biortech.2016.12.108.
dc.relation.referencesMaria Luisa N.M. Carneiro, Florian Pradelle, Sergio L. Braga, Marcos Sebastião P. Gomes, Ana Rosa F.A. Martins, Franck Turkovics, Renata N.C. Pradelle, Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA), Renewable and Sustainable Energy Reviews, Volume 73, June 2017, Pages 632-653, ISSN 1364-0321, http://doi.org/10.1016/j.rser.2017.01.152.
dc.relation.referencesCynthia Alcántara, Pedro A. García-Encina, Raúl Muñoz, Evaluation of mass and energy balances in the integrated microalgae growth-anaerobic digestion process, Chemical Engineering Journal, Volume 221, 1 April 2013, Pages 238-246, ISSN 1385-8947, http://doi.org/10.1016/j.cej.2013.01.100.
dc.relation.referencesMelissa Rickman, John Pellegrino, Jason Hock, Stephanie Shaw, Brice Freeman, Life-cycle and techno-economic analysis of utility-connected algae systems, Algal Research, Volume 2, Issue 1, January 2013, Pages 59-65, ISSN 2211-9264, http://doi.org/10.1016/j.algal.2012.11.003.spa
dc.relation.referencesScott Grierson, Vladimir Strezov, Jonas Bengtsson, Life cycle assessment of a microalgae biomass cultivation, bio-oil extraction and pyrolysis processing regime, Algal Research, Volume 2, Issue 3, July 2013, Pages 299-311, ISSN 2211-9264, http://doi.org/10.1016/j.algal.2013.04.004.
dc.relation.referencesRobert M. Handler, David R. Shonnard, Tom N. Kalnes, F. Stephen Lupton, Life cycle assessment of algal biofuels: Influence of feedstock cultivation systems and conversion platforms, Algal Research, Volume 4, April 2014, Pages 105-115, ISSN 2211-9264, http://doi.org/10.1016/j.algal.2013.12.001.
dc.relation.referencesH.H. Khoo, C.Y. Koh, M.S. Shaik, P.N. Sharratt, Bioenergy co-products derived from microalgae biomass via thermochemical conversion – Life cycle energy balances and CO2 emissions, Bioresource Technology, Volume 143, September 2013, Pages 298-307, ISSN 0960-8524, http://doi.org/10.1016/j.biortech.2013.06.004.
dc.relation.referencesE. Gnansounou, A. Dauriat, J. Villegas, L. Panichelli, Life cycle assessment of biofuels: Energy and greenhouse gas balances, Bioresource Technology, Volume 100, Issue 21, November 2009, Pages 4919-4930, ISSN 0960-8524, http://doi.org/10.1016/j.biortech.2009.05.067.
dc.relation.referencesDan Zhou, Baoquan Qiao, Gen Li, Song Xue, Jianzhong Yin, Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions, Bioresource Technology, Available online 27 April 2017, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2017.04.097.
dc.relation.referencesNamita Pragya, Krishan K. Pandey, P.K. Sahoo, A review on harvesting, oil extraction and biofuels production technologies from microalgae, Renewable and Sustainable Energy Reviews, Volume 24, August 2013, Pages 159-171, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2013.03.034.
dc.relation.referencesJingcheng Wu, Md. Asraful Alam, Ying Pan, Dalong Huang, Zhongming Wang, Tiejun Wang, Enhanced extraction of lipids from microalgae with eco-friendly mixture of methanol and ethyl acetate for biodiesel production, Journal of the Taiwan Institute of Chemical Engineers, Volume 71, February 2017, Pages 323-329, ISSN 1876-1070, https://doi.org/10.1016/j.jtice.2016.12.039.
dc.relation.referencesGlacio S. Araujo, Leonardo J.B.L. Matos, Luciana R.B. Gonçalves, Fabiano A.N. Fernandes, Wladimir R.L. Farias, Bioprospecting for oil producing microalgal strains: Evaluation of oil and biomass production for ten microalgal strains, Bioresource Technology, Volume 102, Issue 8, April 2011, Pages 5248-5250, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2011.01.089.
dc.relation.referencesSergio D. Ríos, Joandiet Castañeda, Carles Torras, Xavier Farriol, Joan Salvadó, Lipid extraction methods from microalgal biomass harvested by two different paths: Screening studies toward biodiesel production, Bioresource Technology, Volume 133, April 2013, Pages 378-388, ISSN 0960-8524, https://doi.org/10.1016/j.biortech.2013.01.093.
dc.relation.referencesSongmei Wang, Johnny Zhu, Lingmei Dai, Xuebing Zhao, Dehua Liu, Wei Du, A novel process on lipid extraction from microalgae for biodiesel production, Energy, Volume 115, Part 1, 15 November 2016, Pages 963-968, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2016.09.078.
dc.contributor.cvlacChalela Álvarez, Graciela [0000987611]spa
dc.contributor.cvlacQuintero Pérez, Henderson Iván [0001555674]spa
dc.contributor.orcidChalela Álvarez, Graciela [0000-0002-2053-1859]spa
dc.subject.lembIngeniería en energíaspa
dc.subject.lembMicroalgasspa
dc.subject.lembProducción de biocombustiblesspa
dc.subject.lembCiclo de vida de los productosspa
dc.subject.lembAspectos ambientalesspa
dc.subject.lembInvestigacionesspa
dc.subject.lembAnálisisspa
dc.description.abstractenglishThe constant growth in the demand for lipids and fatty acids for industrial use has generated the need to find new and better sources to obtain them. For this reason, mechanisms are sought that work efficiently, eliminating environmental damage and, in turn, allow satisfying the demand for these raw materials. It is considered that fuels from microalgae biomass have a high potential and can be seen as one of the promising alternatives for the replacement of oil in the medium term given its performance in diesel engines and the decrease in CO2 release [2]. The green algae (also known in the industry as microalgae) under study are a diverse group of photosynthetic eukaryotic and eukaryotic microorganisms that grow rapidly due to their simple structure. They can potentially be used for the production of environmentally sustainable and economically efficient biofuels (biodiesel, biogas, hydrocarbons and bio-hydrogen). Obtaining fatty acids and lipids, from microalgae biomass, is a topic that has been studied for a long time, as it is an alternative to produce cleaner and more environmentally friendly energies, and reducing costs when it comes to their production. Compared to other raw materials, they are not a source of human food, they do not present great chemical complexity in their structure, which makes their modification and manipulation easier. The cultivation of microalgae and its conditions allow them to be produced on a large scale and in very short periods of time. In addition, because they are photosynthetic, they largely absorb the carbon dioxide present in the atmosphere. Therefore, this degree work focuses its efforts on evaluating the best cultivation conditions, the best chemical and physical means for the production of lipids and fatty acids from microalgae, in addition, environmental loads are evaluated throughout the production process using the methodology life cycle analysis.eng
dc.subject.proposalDaños ambientalesspa
dc.subject.proposalMaterias primasspa
dc.subject.proposalNormatividadspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.contributor.researchgroupGrupo de Investigación Recursos, Energía, Sostenibilidad - GIRESspa
dc.contributor.researchgroupGrupo de Investigaciones Clínicasspa
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia