Mostrar el registro sencillo del ítem

dc.contributor.advisorArango Rodríguez, Martha Ligia
dc.contributor.advisorWandurraga Sánchez, Edwin Antonio
dc.contributor.advisorOchoa Vera, Miguel Enrique
dc.contributor.authorCelis Acevedo, Emmanuel José
dc.coverage.spatialColombiaspa
dc.date.accessioned2021-08-19T22:45:56Z
dc.date.available2021-08-19T22:45:56Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.12749/13931
dc.description.abstractIntroducción y objetivo: La úlcera de pie diabético (UPD), es una complicación frecuente con alta carga de morbi-mortalidad en pacientes con Diabetes Mellitus (DM). La medicina regenerativa aparece como estrategia efectiva y segura en el tratamiento de la UPD. Nuestro objetivo fue evaluar el efecto terapéutico de los derivados acelulares de células madre mesenquimales (dac-MSCs), en UPD tipo 1 y tipo 2. Materiales y métodos: Se realizó un análisis secundario de los datos obtenidos del ensayo clínico realizado en Foscal Internacional. El Análisis de datos para cinética y velocidad de la UPD se hizo realizando una comparación entro los grupos experimentales mediante la prueba de ANOVA y mediante un post-test de comparación múltiple de Bonferroni. Se calculó además la función de sobrevida de la úlcera hasta su cierre al 50% y 100% mediante el método de Kaplan-Meier. Finalmente se realizó un análisis de cociente de riesgo (HR, por sus siglas en ingles) al cierre de la úlcera al 50% y al 100%. Resultados: El 60.7% de los participantes fueron hombres, la media de edad fue de 61.5 ± 7.8 años y al inicio del tratamiento el 75% los participantes presentaron una HbA1c fuera de metas (HbA1c > 7%). Tanto los pacientes con UPD tipo 1 como tipo 2, lograron un velocidad y cinética de cierra mayor en comparación con el grupo de terapia convencional. El análisis de sobrevida de la úlcera hasta el cierre al 50 y 100% de la UPD mostró mayor eficacia tanto en el grupo de dac-MSCs y células madre mesenquimales de medula ósea (BM-MSCs) en comparación con el grupo convencional. El cociente de riesgo (HR, por sus siglas en ingles), de cierre de las UPD al 50 y 100%, fue significamente mayor en pacientes tratados con dac-MSCs y BM-MSCs en comparación con el grupo de tratamiento convencional. Conclusiones: La medicina regenerativa (BM-MSCs y dac-MSCS), surge como una estrategia terapéutica efectiva y segura para el tratamiento de pacientes con UPD.spa
dc.description.tableofcontents1. PLANTEAMIENTO Y JUSTIFICACIÓN DEL PROBLEMA .......................... 10 2. MARCO TEÓRICO .......................................................................................... 11 2.1. Diabetes Mellitus tipo 2: fisiopatología ............................................................. 11 2.2. Diabetes Mellitus tipo 2: epidemiología ............................................................ 12 2.3. Úlcera de pie diabético: fisiopatología ............................................................... 13 2.4. Úlcera de pie diabético: clasificación ................................................................ 15 2.5. Proceso de cicatrización de heridas ................................................................... 16 2.6. Tratamientos actuales ........................................................................................ 18 2.7. Células madre mesenquimales .......................................................................... 19 2.8. Mecanismos terapéuticos de las MSCs en lesiones cutáneas .............................. 20 2.9. Derivados acelulares de células madre mesenquimales (dacMSCs) en lesiones cutáneas ........................................................................................................................22 3. ESTADO DEL ARTE .......................................................................................22 4. PREGUNTA DE INVESTIGACIÓN ................................................................ 27 5. OBJETIVOS ..................................................................................................... 27 5.1 Objetivo general ................................................................................................ 27 5.2 Objetivos específicos ......................................................................................... 28 6. METODOLOGÍA ............................................................................................. 28 6.1 Tipo de estudio .................................................................................................. 28 6.2 Población .......................................................................................................... 28 6.3 Criterios de inclusión y exclusión ...................................................................... 28 6.4 Muestra y recolección de datos .......................................................................... 29 6.5 Hipótesis ............................................................................................................ 29 6.6 Variables ............................................................................................................ 30 6.7 Plan de análisis de datos ..................................................................................... 33 6.8 Consideraciones éticas ........................................................................................ 33 7. RESULTADOS ..................................................................................................33 7.1 Características demográficas de los participantes ............................................... 33 7.2 Evaluación del cierre de la úlcera de pie diabético tipo 1 ................................... 35 7 Protocolo V-01 – 26 de febrero 2020 7.3 Evaluación del cierre de la úlcera de pie diabético tipo 2 ................................... 37 7.4 Analisis de sobrevida de la UPD hasta el cierre: comparación entre los grupos dac-MSCs vs terapia convencional ................................................................................ 40 7.5 Analisis de sobrevida de la UPD hasta el cierre: comparación entre los grupos BM-MSCs vs terapia convencional ................................................................................ 41 7.6 Cociente de riesgo de cierre al 50% de las UPD y tasa de curación persona/día ................................................................................................................... 42 7.7 Cociente de riesgo de cierre al 100% de las UPD y tasa de curación persona/día ................................................................................................................... 43 8. DISCUSIÓN ...................................................................................................... 44 9. CONCLUSIONES ............................................................................................. 49 REFERENCIASspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleEvaluación de la velocidad de cierre de las úlceras de pie diabético con el uso de derivados acelulares de células madre mesenquimales como tratamientospa
dc.title.translatedEvaluation of the rate of closure of diabetic foot ulcers with the use of acellular derivatives of mesenchymal stem cells as treatmentspa
dc.degree.nameEspecialista en Medicina Internaspa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ciencias de la Saludspa
dc.publisher.programEspecialización en Medicina Internaspa
dc.description.degreelevelEspecializaciónspa
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.localTesisspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.subject.keywordsInternal medicinespa
dc.subject.keywordsMedicinespa
dc.subject.keywordsMedical sciencesspa
dc.subject.keywordsHealth sciencesspa
dc.subject.keywordsDiabetic foot ulcerspa
dc.subject.keywordsClinical trialspa
dc.subject.keywordsMother cellsspa
dc.subject.keywordsMetabolism disordersspa
dc.subject.keywordsEndocrine gland diseasesspa
dc.subject.keywordsFoot diseasesspa
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.references1. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019.spa
dc.relation.references2. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98spa
dc.relation.references3. A M. Diabetic Foot in Colombia. In: Dardik A (eds) Vascular Surgery Springer, Cham. 2017.spa
dc.relation.references4. Snyder RJ, Hanft JR. Diabetic foot ulcers--effects on QOL, costs, and mortality and the role of standard wound care and advanced-care therapies. Ostomy Wound Manage. 2009;55(11):28-38.spa
dc.relation.references5. Schwartz SS, Epstein S, Corkey BE, Grant SF, Gavin JR, 3rd, Aguilar RB. The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of the beta-Cell-Centric Classification Schema. Diabetes Care. 2016;39(2):179-86.spa
dc.relation.references6. Skyler JS, Bakris GL, Bonifacio E, Darsow T, Eckel RH, Groop L, et al. Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes. 2017;66(2):241-55.spa
dc.relation.references7. Vargas-Uricoechea H, Casas-Figueroa LA. An Epidemiologic Analysis of Diabetes in Colombia. Ann Glob Health. 2015;81(6):742-53.spa
dc.relation.references8. Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y. Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis (dagger). Ann Med. 2017;49(2):106-16spa
dc.relation.references9. Armstrong DG, Lavery LA. Diabetic foot ulcers: prevention, diagnosis and classification. Am Fam Physician. 1998;57(6):1325-32, 37-8spa
dc.relation.references10. Armstrong DG, Boulton AJM, Bus SA. Diabetic Foot Ulcers and Their Recurrence. N Engl J Med. 2017;376(24):2367-75.spa
dc.relation.references11. Perez-Favila A, Martinez-Fierro ML, Rodriguez-Lazalde JG, Cid-Baez MA, Zamudio-Osuna MJ, Martinez-Blanco MDR, et al. Current Therapeutic Strategies in Diabetic Foot Ulcers. Medicina (Kaunas). 2019;55(11).spa
dc.relation.references12. Schaper NC. Diabetic foot ulcer classification system for research purposes: a progress report on criteria for including patients in research studies. Diabetes Metab Res Rev. 2004;20 Suppl 1:S90-5spa
dc.relation.references13. Gonzalez AC, Costa TF, Andrade ZA, Medrado AR. Wound healing - A literature review. An Bras Dermatol. 2016;91(5):614-20spa
dc.relation.references14. Ridiandries A, Tan JTM, Bursill CA. The Role of Chemokines in Wound Healing. Int J Mol Sci. 2018;19(10).spa
dc.relation.references15. Jhamb S, Vangaveti VN, Malabu UH. Genetic and molecular basis of diabetic foot ulcers: Clinical review. J Tissue Viability. 2016;25(4):229-36.spa
dc.relation.references16. Nour S, Baheiraei N, Imani R, Khodaei M, Alizadeh A, Rabiee N, et al. A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling. J Mater Sci Mater Med. 2019;30(10):120.spa
dc.relation.references17. Matoori S, Veves A, Mooney DJ. Advanced bandages for diabetic wound healing. Sci Transl Med. 2021;13(585).spa
dc.relation.references18. Mavrogenis AF, Megaloikonomos PD, Antoniadou T, Igoumenou VG, Panagopoulos GN, Dimopoulos L, et al. Current concepts for the evaluation and management of diabetic foot ulcers. EFORT Open Rev. 2018;3(9):513-25spa
dc.relation.references19. Borys S, Ludwig-Slomczynska AH, Seweryn M, Hohendorff J, Koblik T, Machlowska J, et al. Negative pressure wound therapy in the treatment of diabetic foot ulcers may be mediated through differential gene expression. Acta Diabetol. 2019;56(1):115-20.spa
dc.relation.references20. Petrofsky JS, Lawson D, Berk L, Suh H. Enhanced healing of diabetic foot ulcers using local heat and electrical stimulation for 30 min three times per week. J Diabetes. 2010;2(1):41-6.spa
dc.relation.references21. Londahl M, Boulton AJM. Hyperbaric oxygen therapy in diabetic foot ulceration: Useless or useful? A battle. Diabetes Metab Res Rev. 2020;36 Suppl 1:e3233spa
dc.relation.references22. Cao Y, Gang X, Sun C, Wang G. Mesenchymal Stem Cells Improve Healing of Diabetic Foot Ulcer. J Diabetes Res. 2017;2017:9328347.spa
dc.relation.references23. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6(2):230-47spa
dc.relation.references24. Friedenstein AJ. Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transfus. 1980;25:19-29spa
dc.relation.references25. Hass R, Kasper C, Bohm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.spa
dc.relation.references26. Saeedi P, Halabian R, Imani Fooladi AA. A revealing review of mesenchymal stem cells therapy, clinical perspectives and Modification strategies. Stem Cell Investig. 2019;6:34.spa
dc.relation.references27. de Mayo T, Conget P, Becerra-Bayona S, Sossa CL, Galvis V, Arango-Rodriguez ML. The role of bone marrow mesenchymal stromal cell derivatives in skin wound healing in diabetic mice. PLoS One. 2017;12(6):e0177533.spa
dc.relation.references28. Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25(10):2648-59.spa
dc.relation.references29. Basiouny HS, Salama NM, Maadawi ZM, Farag EA. Effect of bone marrow derived mesenchymal stem cells on healing of induced full-thickness skin wounds in albino rat. Int J Stem Cells. 2013;6(1):12-25.spa
dc.relation.references30. L PK, Kandoi S, Misra R, S V, K R, Verma RS. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019;46:1-9spa
dc.relation.references31. Tocci A, Parolini I, Gabbianelli M, Testa U, Luchetti L, Samoggia P, et al. Dual action of retinoic acid on human embryonic/fetal hematopoiesis: blockade of primitive progenitor proliferation and shift from multipotent/erythroid/monocytic to granulocytic differentiation program. Blood. 1996;88(8):2878-88.spa
dc.relation.references32. Nuschke A. Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis. 2014;10(1):29-37.spa
dc.relation.references33. Obaid1 HAA, Eljedi2 A. Risk Factors for the Development of Diabetic Foot Ulcers in Gaza Strip: A Case-Control Study. International Journal of Diabetes Research 2019spa
dc.relation.references34. Eleuteri S, Fierabracci A. Insights into the Secretome of Mesenchymal Stem Cells and Its Potential Applications. Int J Mol Sci. 2019;20(18).spa
dc.relation.references35. Cargnoni A, Piccinelli EC, Ressel L, Rossi D, Magatti M, Toschi I, et al. Conditioned medium from amniotic membrane-derived cells prevents lung fibrosis and 51 Protocolo V-01 – 26 de febrero 2020 preserves blood gas exchanges in bleomycin-injured mice-specificity of the effects and insights into possible mechanisms. Cytotherapy. 2014;16(1):17-32.spa
dc.relation.references36. Guo ZY, Sun X, Xu XL, Zhao Q, Peng J, Wang Y. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms. Neural Regen Res. 2015;10(4):651-8spa
dc.relation.references37. Becerra-Bayona SM, Solarte-David VA, Sossa CL, Mateus LC, Villamil M, Pereira J, et al. Mesenchymal stem cells derivatives as a novel and potential therapeutic approach to treat diabetic foot ulcers. Endocrinol Diabetes Metab Case Rep. 2020;2020.spa
dc.relation.references38. Bakker K, Apelqvist J, Lipsky BA, Van Netten JJ, International Working Group on the Diabetic F. The 2015 IWGDF guidance documents on prevention and management of foot problems in diabetes: development of an evidence-based global consensus. Diabetes Metab Res Rev. 2016;32 Suppl 1:2-6spa
dc.relation.references39. Vargas-Uricoechea H, Casas-Figueroa LA. [Epidemiology of diabetes mellitus in South America: The experience of Colombia]. Clin Investig Arterioscler. 2016;28(5):245- 56spa
dc.relation.references40. Carstens MH, Quintana FJ, Calderwood ST, Sevilla JP, Rios AB, Rivera CM, et al. Treatment of chronic diabetic foot ulcers with adipose-derived stromal vascular fraction cell injections: Safety and evidence of efficacy at 1 year. Stem Cells Transl Med. 2021spa
dc.relation.references41. Zhao L, Guo Z, Chen K, Yang W, Wan X, Zeng P, et al. Combined Transplantation of Mesenchymal Stem Cells and Endothelial Colony-Forming Cells Accelerates Refractory Diabetic Foot Ulcer Healing. Stem Cells Int. 2020;2020:8863649spa
dc.relation.references42. Moon KC, Suh HS, Kim KB, Han SK, Young KW, Lee JW, et al. Potential of Allogeneic Adipose-Derived Stem Cell-Hydrogel Complex for Treating Diabetic Foot Ulcers. Diabetes. 2019;68(4):837-46.spa
dc.relation.references43. Maksimova N, Krasheninnikov M, Zhang Y, Ponomarev E, Pomytkin I, Melnichenko G, et al. Early passage autologous mesenchymal stromal cells accelerate diabetic wound re-epithelialization: A clinical case study. Cytotherapy. 2017;19(12):1548-50spa
dc.relation.references44. Qin HL, Zhu XH, Zhang B, Zhou L, Wang WY. Clinical Evaluation of Human Umbilical Cord Mesenchymal Stem Cell Transplantation After Angioplasty for Diabetic Foot. Exp Clin Endocrinol Diabetes. 2016;124(8):497-503spa
dc.relation.references45. Jiang X, Zhang H, Teng M. Effectiveness of Autologous Stem Cell Therapy for the Treatment of Lower Extremity Ulcers: A Systematic Review and Meta-Analysis. Medicine (Baltimore). 2016;95(11):e271spa
dc.relation.references46. Lavery LA, Fulmer J, Shebetka KA, Regulski M, Vayser D, Fried D, et al. The efficacy and safety of Grafix((R)) for the treatment of chronic diabetic foot ulcers: results of a multi-centre, controlled, randomised, blinded, clinical trial. Int Wound J. 2014;11(5):554-60.spa
dc.relation.references47. Jain P, Perakath B, Jesudason MR, Nayak S. The effect of autologous bone marrow-derived cells on healing chronic lower extremity wounds: results of a randomized controlled study. Ostomy Wound Manage. 2011;57(7):38-44spa
dc.relation.references48. Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC. Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res. 2009;12(5):359-66.spa
dc.relation.references49. Falanga V, Iwamoto S, Chartier M, Yufit T, Butmarc J, Kouttab N, et al. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin 52 Protocolo V-01 – 26 de febrero 2020 spray accelerate healing in murine and human cutaneous wounds. Tissue Eng. 2007;13(6):1299-312spa
dc.relation.references50. Xu Y, Huang S, Ma K, Fu X, Han W, Sheng Z. Promising new potential for mesenchymal stem cells derived from human umbilical cord Wharton's jelly: sweat gland cell-like differentiative capacity. J Tissue Eng Regen Med. 2012;6(8):645-54spa
dc.relation.references51. Santamaria N, Ogce F, Gorelik A. Healing rate calculation in the diabetic foot ulcer: comparing different methods. Wound Repair Regen. 2012;20(5):786-9.spa
dc.relation.references52. Pedras S, Carvalho R, Pereira Mda G. Sociodemographic and clinical characteristics of patients with diabetic foot ulcer. Rev Assoc Med Bras (1992). 2016;62(2):171-8spa
dc.relation.references54. Abolfotouh MA, Alfaifi SA, Al-Gannas AS. Risk factors of diabetic foot in central Saudi Arabia. Saudi Med J. 2011;32(7):708-13.spa
dc.relation.references55. MD MHJ. Disorders of the Foot and Ankle: Medical and Surgical Management,.3- Volume Set 2nd Ediciónspa
dc.relation.references56. Brand PW. Diabetic foot - what can we learn from leprosy? Diabetes/Metabolism Research and Reviews 2012(6).spa
dc.relation.references57. Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract. 2011;92(1):26-36spa
dc.relation.references58. Wu Q, Lei X, Chen L, Zheng Y, Huang H, Qian C, et al. Autologous platelet-rich gel combined with in vitro amplification of bone marrow mesenchymal stem cell transplantation to treat the diabetic foot ulcer: a case report. Ann Transl Med. 2018;6(15):307spa
dc.relation.references59. Arno AI, Amini-Nik S, Blit PH, Al-Shehab M, Belo C, Herer E, et al. Human Wharton's jelly mesenchymal stem cells promote skin wound healing through paracrine signaling. Stem Cell Res Ther. 2014;5(1):28spa
dc.relation.references60. Vieira Paladino F, de Moraes Rodrigues J, da Silva A, Goldberg AC. The Immunomodulatory Potential of Wharton's Jelly Mesenchymal Stem/Stromal Cells. Stem Cells Int. 2019;2019:3548917spa
dc.relation.references61. Stefanska K, Ozegowska K, Hutchings G, Popis M, Moncrieff L, Dompe C, et al. Human Wharton's Jelly-Cellular Specificity, Stemness Potency, Animal Models, and Current Application in Human Clinical Trials. J Clin Med. 2020;9(4)spa
dc.relation.references62. da Silva Meirelles L, Bolontrade MF, Markoski MM, Dallagiovanna B, Alaniz L. Improving the Therapeutic Ability of Mesenchymal Stem/Stromal Cells for the Treatment of Conditions Influenced by Immune Cells. Stem Cells Int. 2019;2019:6820395spa
dc.relation.references63. Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, et al. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol. 2009;259(2):150-6spa
dc.relation.references64. Li M, Soder R, Abhyankar S, Abdelhakim H, Braun MW, Trinidad CV, et al. WJMSC-derived small extracellular vesicle enhance T cell suppression through PD-L1. J Extracell Vesicles. 2021;10(4):e12067spa
dc.relation.references65. Maacha S, Sidahmed H, Jacob S, Gentilcore G, Calzone R, Grivel JC, et al. Paracrine Mechanisms of Mesenchymal Stromal Cells in Angiogenesis. Stem Cells Int. 2020;2020:4356359spa
dc.relation.references66. Valle-Prieto A, Conget PA. Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev. 2010;19(12):1885-93spa
dc.relation.references67. Lozito TP, Jackson WM, Nesti LJ, Tuan RS. Human mesenchymal stem cells generate a distinct pericellular zone of MMP activities via binding of MMPs and secretion of high levels of TIMPs. Matrix Biol. 2014;34:132-43spa
dc.relation.references68. Chen D, Hao H, Fu X, Han W. Insight into Reepithelialization: How Do Mesenchymal Stem Cells Perform? Stem Cells Int. 2016;2016:6120173.spa
dc.contributor.cvlacWandurraga Sánchez, Edwin Antonio [0001475567]spa
dc.contributor.cvlacOchoa Vera, Miguel Enrique [0000898465]spa
dc.contributor.orcidOchoa Vera, Miguel Enrique [0000-0002-4552-3388]spa
dc.contributor.researchgateWandurraga Sánchez, Edwin Antonio [Edwin-Antonio-Wandurraga-Sanchez-2168480303]spa
dc.contributor.researchgateOchoa Vera, Miguel Enrique [Miguel-Enrique-Ochoa-2186675588]spa
dc.subject.lembMedicina internaspa
dc.subject.lembMedicinaspa
dc.subject.lembCiencias médicasspa
dc.subject.lembTrastornos del metabolismospa
dc.subject.lembEnfermedades de las glándulas endocrinasspa
dc.subject.lembEnfermedades delos piesspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishIntroduction and objective: Diabetic foot ulcer (DFU) is a frequent complication with a high morbidity and mortality burden in patients with Diabetes Mellitus (DM). Regenerative medicine appears as an effective and safe strategy in the treatment of UPD. Our aim was to evaluate the therapeutic effect of acellular derivatives of mesenchymal stem cells (dac-MSCs) in type 1 and type 2 UPD. Materials and methods: A secondary analysis of the data obtained from the clinical trial conducted at Foscal International was performed. Data analysis for UPD kinetics and velocity was performed by comparing the experimental groups by ANOVA test and by Bonferroni's multiple comparison post-test. The survival function of the ulcer to closure at 50% and 100% was also calculated using the Kaplan-Meier method. Finally, a hazard ratio (HR) analysis was performed at ulcer closure at 50% and 100%. Results: 60.7% of the participants were men, the mean age was 61.5 ± 7.8 years and at the start of treatment 75% of the participants had an HbA1c outside the target range (HbA1c > 7%). Both type 1 and type 2 UPD patients achieved higher velocity and kinetics of closure compared to the conventional therapy group. Analysis of ulcer survival to closure at 50 and 100% UPD showed greater efficacy in both the dac-MSCs and bone marrow mesenchymal stem cells (BM-MSCs) group compared to the conventional group. The hazard ratio (HR) of 50 and 100% UPD closure was significantly higher in patients treated with dac-MSCs and BM-MSCs compared to the conventional treatment group. Conclusions: Regenerative medicine (BM-MSCs and dac-MSCS), emerge as an effective and safe therapeutic strategy for the treatment of patients with UPD.spa
dc.subject.proposalCiencias de la saludspa
dc.subject.proposalÚlcera de pie diabéticospa
dc.subject.proposalEnsayo clínicospa
dc.subject.proposalCélulas madrespa
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia