Mostrar el registro sencillo del ítem

dc.contributor.advisorMoreno Corzo, Feisar Enrique
dc.contributor.authorTigreros Niño, Jhenner Sneyder
dc.coverage.spatialColombiaspa
dc.date.accessioned2021-08-19T15:24:12Z
dc.date.available2021-08-19T15:24:12Z
dc.date.issued2020
dc.identifier.urihttp://hdl.handle.net/20.500.12749/13898
dc.description.abstractLas dificultades físicas y desplazamiento a las que se ven sometidas personas con algún tipo de disminución en las capacidades motoras de su cuerpo, personas con parálisis o cuadripléjicos por algún accidente sufrido, es un problema al cual la sociedad ha estado integrándose lentamente, convirtiendo la infraestructura física de las grandes ciudades y las edificaciones de estas, con el fin de tener un ambiente más incluyente con esta población vulnerable. Actualmente con la implementación de nuevas tecnologías como la Inteligencia Artificial, principalmente el Aprendizaje de Maquina y el Aprendizaje Profundo, para la detección y clasificación de las acciones que desea hacer una persona en situación de discapacidad mediante el procesamiento de las señales cerebrales capturadas por un dispositivo de Interfaz Cerebro-Maquina, ha generado una nueva posibilidad y oportunidad a estas personas de usar modernas prótesis para sus extremidades inferiores y superiores. En este proyecto se desarrollará un algoritmo para la clasificación de estas ondas cerebrales enfocado en el movimiento de miembros inferior mediante la Inteligencia Artificial, para ser la base de nuevos productos de apoyo para estas poblaciones vulnerables.spa
dc.description.tableofcontents1. PLANTEAMIENTO DEL PROBLEMA Y JUSTIFICACIÓN 13 1.1 PLANTEAMIENTO DEL PROBLEMA 13 1.2 JUSTIFICACIÓN 14 1.3 LINEA DE INVESTIGACIÓN 15 2. OBJETIVOS Y PRODUCTOS 16 2.1. OBJETIVO GENERAL 16 2.2. OBJETIVOS ESPECÍFICOS 16 2.3. PRODUCTOS 16 3. ANTECEDENTES Y ESTADO DEL ARTE 18 3.1. ANTECEDENTES 18 3.2. ESTADO DEL ARTE 19 4. MARCO CONCEPTUAL 22 4.1. INTERFAZ CEREBRO-COMPUTADORA BASADA EN ELECTROENCEFALOGRAFÍA (EEG) 22 4.1.1. Ritmos motores sensoriales e imágenes motores 22 4.2. PREPROCESAMIENTO DE SEÑALES 23 4.2.1. Filtro de Band-Stop 23 4.2.2. Filtro High Pass 24 4.2.3. Normalización 25 4.3. REDES NEURONALES ARTIFICIALES 25 4.3.1. Neurona 26 4.3.1.1. Estructura 26 4.3.2. Función de activación 27 4.3.2.1. ReLU 27 4.3.2.2. Tanh 28 4.3.3. Función de costos 28 4.3.3.1. Linear 29 4.3.3.2. Sigmoide 29 4.3.3.3. Softmax 31 4.4. APRENDIZAJE PROFUNDO 31 4.4.1. Red Neuronal Recurrente Clásica. 31 4.4.2. Red Long Short-Term Memory (LSTM) 33 5. MARCO METODOLÓGICO 37 5.1 DEFINICIÓN DE STACK TECNOLOGICO 40 5.1.2 Python 40 5.1.3 Tensorflow 40 5.1.4 Google Cloud Platform 40 5.1.5 Scipy 41 5.1.6 Scikit-Learn 41 5.2 DEFINICIÓN DE CASOS DE USO 41 5.3 DESCRIPCIÓN DE CASOS DE USO 43 5.3.1 Carga de información en batch 43 Actores 43 Precondiciones 43 Flujo Básico 43 Flujo Alternativo 1 44 Flujo Alternativo 2 44 Descripción de Objetos e Interacciones 44 Implementación 45 5.3.2 Carga de información en tiempo real 45 Actores 46 Precondiciones 46 Flujo Básico 46 Flujo Alternativo 1 46 Flujo Alternativo 2 46 Descripción de Objetos e Interacciones 47 Implementación 48 5.3.3 Visualizar predicción 48 Actores 49 Precondiciones 49 Flujo Básico 49 Descripción de Objetos e Interacciones 49 Implementación 50 5.3.4 Preprocesamiento de datos 51 Actores 51 Precondiciones 51 Flujo Básico 51 Flujo Alternativo 51 Descripción de Objetos e Interacciones 52 Implementación 53 5.3.5 Visualizar señales 53 Actores 54 Precondiciones 54 Flujo Básico 54 Flujo Alternativo 54 Descripción de Objetos e Interacciones 54 Implementación 55 5.3.6 Guardar información en la nube 55 Actores 56 Precondiciones 56 Flujo Básico 56 Flujo Alternativo 56 Descripción de Objetos e Interacciones 57 Implementación 57 5.4 LEVANTAMIENTO DE DATOS 58 5.4.1 Recolección de datos 58 5.4.2 Muestra de datos 59 5.4.3 Método experimental 59 5.4.4 Datos 60 5.4.5 Validación técnica 60 5.5 PROCESAMIENTO DE SEÑALES 60 5.5.1 Filtro Band-Stop 60 5.5.2 Filtro High-Pass 62 5.5.3 Normalización 63 6. ARQUITECTURA DE RED NEURONAL 64 6.1 Capas 64 6.2 Funciones de activación 65 6.3 Modelo 65 7. RESULTADOS OBTENIDOS 67 7.1 CONJUNTO DE DATOS EN BRUTO Y PREPROCESAMIENTO DE INFORMACIÓN. 67 7.2 CARACTERIZACIÓN DE LAS ONDAS EEG 67 7.3 ARQUITECTURA DE APRENDIZAJE PRONFUNDO 68 7.4 IMPLEMENTACIÓN DE LA ARQUITECTURA DE APRENDIZAJE PRONFUNDO 68 7.5 ENTRENAMIENTO DE LA RED NEURONAL 68 7.6 PRUEBAS DE LA RED NEURONAL ENTRENADA 68 8. ANALISIS DE RESULTADOS 69 8.1 ENTRENAMIENTO DE LA RED NEURONAL 69 8.2 PRUEBAS EN EL CONJUNTO DE VALIDACIÓN 73 8.3 PROCESAMIENTO DE DATOS 74 8.4 CONJUNTO DE ENTRENAMIENTO 75 8.5 DIAGRAMA DE DESPLIEGUE 75 9. CONCLUSIONES 76 10. RECOMENDACIONES 77 BIBLIOGRAFÍA 79 ANEXOS 85spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleAlgoritmo para la clasificación de ondas cerebrales mediante técnicas de aprendizaje profundo enfocado en el movimiento de miembros inferiores haciendo uso de una interfaz cerebro-máquinaspa
dc.title.translatedAlgorithm for the classification of brain waves using deep learning techniques focused on the movement of the lower limbs using a brain-machine interfacespa
dc.degree.nameIngeniero de Sistemasspa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programPregrado Ingeniería de Sistemasspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsSystems engineerspa
dc.subject.keywordsTechnological innovationsspa
dc.subject.keywordsBrain-signalspa
dc.subject.keywordsArtificial intelligencespa
dc.subject.keywordsMovementspa
dc.subject.keywordsBrain-machine interfacespa
dc.subject.keywordsAdaptive control systemsspa
dc.subject.keywordsSimulation methodsspa
dc.subject.keywordsAlgorithmsspa
dc.subject.keywordsMachine theoryspa
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesKoutník, J., Greff, K., Gomez, F., & Schmidhuber, J. (2014). A clockwork RNN. 31st International Conference on Machine Learning, ICML 2014, 5, 3881– 3889.spa
dc.relation.referencesSchmidhuber, J. (2015). Deep Learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003spa
dc.relation.referencesCho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 1724–1734. https://doi.org/10.3115/v1/d141179spa
dc.relation.referencesBayer, J., & Osendorfer, C. (2014). Learning Stochastic Recurrent Networks. 1–9. http://arxiv.org/abs/1411.7610spa
dc.relation.referencesXu, K., Ba, J. L., Kiros, R., Cho, K., Courville, A., Salakhutdinov, R., Zemel, R. S., & Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. 32nd International Conference on Machine Learning, ICML 2015, 3, 2048–2057.spa
dc.relation.referencesGregor, K., Danihelka, I., Graves, A., Rezende, D. J., & Wierstra, D. (2015). DRAW: A recurrent neural network for image generation. 32nd International Conference on Machine Learning, ICML 2015, 2, 1462–1471.spa
dc.relation.referencesGreff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. https://doi.org/10.1109/TNNLS.2016.2582924spa
dc.relation.referencesChung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., & Bengio, Y. (2015). A recurrent latent variable model for sequential data. Advances in Neural Information Processing Systems, 2015-Janua, 2980–2988spa
dc.relation.referencesKalchbrenner, N., Danihelka, I., & Graves, A. (2016). Grid long short-term memory. 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings, 1–14spa
dc.relation.referencesYao, K., Cohn, T., Vylomova, K., Duh, K., & Dyer, C. (2015). Depth-Gated LSTM. 1–5. http://arxiv.org/abs/1508.03790spa
dc.relation.referencesHochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735spa
dc.relation.referencesWang, L., Xu, G., Wang, J., Yang, S., & Yan, W. (2007). Feature extraction of mental task in BCI based on the method of approximate entropy. Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings, 1941–1944. https://doi.org/10.1109/IEMBS.2007.4352697spa
dc.relation.referencesGowreesunker, B. V., Tewfik, A. H., Tadipatri, V. A., Ashe, J., Pellize, G., & Gupta, R. (2011). A subspace approach to learning recurrent features from brain activity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(3), 240–248. https://doi.org/10.1109/TNSRE.2011.2106802spa
dc.relation.referencesGandhi, V., Arora, V., Behera, L., Prasad, G., Coyle, D. H., & Mcginnity, T. M. (n.d.). A RECURRENT QUANTUM NEURAL NETWORK MODEL ENHANCES THE EEG SIGNAL FOR AN IMPROVED BRAIN- COMPUTER INTERFACEspa
dc.relation.referencesShuhanaz, M., Azalan, Z., Paulraj, M. P., & Yaacob, S. (n.d.). Classification of Hand Movement Imagery Tasks for Brain Machine Interface Using FeedForward Network. 2014 2nd International Conference on Electronic Design (ICED), 3, 431–436. https://doi.org/10.1109/ICED.2014.7015844spa
dc.relation.referencesElgharabawy, A., & Wahed, M. A. (2016). Decoding Of Finger Movement Using Kinematic Model Classification And Regression Model Switching. 2016 8th Cairo International Biomedical Engineering Conference (CIBEC), 84–89. https://doi.org/10.1109/CIBEC.2016.7836126spa
dc.relation.referencesThomas, J., Maszczyk, T., Sinha, N., Kluge, T., & Dauwels, J. (2017). Deep Learning-based Classification for Brain-Computer Interfaces. 234–239spa
dc.relation.referencesRathore, H., & Al-ali, A. K. (2020). SPECIAL SECTION ON NEW TRENDS IN BRAIN A Novel Deep Learning Strategy for Classifying Different Attack Patterns for Deep Brain Implants. IEEE Access, 7, 24154–24164. https://doi.org/10.1109/ACCESS.2019.2899558spa
dc.relation.referencesColamarino, E., Muceli, S., Ibanez, J., Mrachacz-Kersting, N., Mattia, D., Cincotti, F., & Farina, D. (2019). Adaptive learning in the detection of Movement Related Cortical Potentials improves usability of associative Brain-Computer Interfaces. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 3079–3082. https://doi.org/10.1109/EMBC.2019.8856580spa
dc.relation.referencesKapsalyamov, A., Hussain, S., Sharipov, A., & Jamwal, P. (2019). Brain–computer interface and assist-as-needed model for upper limb robotic arm. Advances in Mechanical Engineering, 11(9), 1–9. https://doi.org/10.1177/1687814019875537spa
dc.relation.referencesWitten, I. H., Frank, E., & Hall, M. a. (2011). Data Mining: Practical Machine Learning Tools and Techniques (Google eBook). In Complementary literature None. http://books.google.com/books?id=bDtLM8CODsQC&pgis=1spa
dc.relation.referencesHinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507. https://doi.org/10.1126/science.1127647spa
dc.relation.referencesJozefowicz, R., Zaremba, W., & Sutskever, I. (2015). An empirical exploration of Recurrent Network architectures. 32nd International Conference on Machine Learning, ICML 2015, 3, 2332–2340.spa
dc.relation.referencesLuigjes, J., Segrave, R., de Joode, N., Figee, M., & Denys, D. (2019). Efficacy of Invasive and Non-Invasive Brain Modulation Interventions for Addiction. In Neuropsychology Review (Vol. 29, Issue 1, pp. 116–138). Neuropsychology Review. https://doi.org/10.1007/s11065-018-9393-5spa
dc.relation.referencesLecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436– 444. https://doi.org/10.1038/nature14539spa
dc.relation.referencesDANE. (2010). SANTANDER. DANE. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/discapacidadspa
dc.relation.referencesSchulz, H., & Behnke, S. (2012). Deep Learning: Layer-Wise Learning of Feature Hierarchies. KI - Künstliche Intelligenz, 26(4), 357–363. https://doi.org/10.1007/s13218-012-0198-zspa
dc.relation.referencesHe, Y., Luu, T. P., Nathan, K., Nakagome, S., & Contreras-Vidal, J. L. (2018). Data Descriptor: A mobile brainbody imaging dataset recorded during treadmill walking with a brain-computer interface. Scientific Data, 5, 1–10. https://doi.org/10.1038/sdata.2018.74spa
dc.relation.referencesYoshua Bengio, Patrice Simard, & Paolo Frasconi. (2014). Learning Long-term Dependencies with Gradient Descent is Difficult. IEEE Transactions on Neural Network, 5(2), 157. http://www.dsi.unifi.it/~paolo/ps/tnn-94-gradient.pdfspa
dc.relation.referencesFlach, P. (2012). The Art and Science of Algorithms that Make Sense of Data (Vol. 2010).spa
dc.relation.referencesUniversitario, B. (2018). UNAB recibe reconocimiento por garantizar derecho a la educación de personas con discapacidad. 1. https://www.unab.edu.co/publicaciones/unab-recibe-reconocimientogarantizar-derecho-la-educación-personas-discapacidadspa
dc.relation.referencesWorld Economic Forum. (2019). Man with quadriplegia is able to control his prosthetic arms using just his thoughts. https://www.weforum.org/agenda/2019/10/man-with-quadriplegia-is-able-tocontrol-his-prosthetic-arms-using-just-his-thoughts/spa
dc.relation.referencesChristopher & Dana Reeve Foundation. (2013). Prevalence of paralysis in the United States. https://www.christopherreeve.org/living-with-paralysis/statsabout-paralysisspa
dc.relation.referencesMore, A. (2019). Brain Computer Interface (BCI) Market 2019: Global Industry Size, Share, Future Challenges, Revenue, Demand, Industry Growth and Top Players Analysis to 2025. Market Watch. https://www.marketwatch.com/pressrelease/brain-computer-interface-bci-market-2019-global-industry-size-sharefuture-challenges-revenue-demand-industry-growth-and-top-players-analysisto-2025-2019-08-20spa
dc.relation.referencesNICHD - Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). (2015). ¿Cuántas personas tienen una lesión de la médula espinal (SCI por sus siglas en inglés)? https://espanol.nichd.nih.gov/salud/temas/spinalinjury/informacion/riesgospa
dc.relation.referencesNational Spinal Cord Injury Statistical Center. (2017). Lesión de la médula espinal Referencia rápida de datos y cifras. Spain Rehabilitation Center, 4–5. https://www.nscisc.uab.edu/public/SCI Facts and Figures at a Glance - 2017 - Spanish.pdfspa
dc.relation.referencesCenter, N. S. C. I. S. (2014). 2014 Annual Report Complete Public Version. 106spa
dc.relation.referencesFazel-Rezai, R., Allison, B. Z., Guger, C., Sellers, E. W., Kleih, S. C., & Kübler, A. (2012). P300 brain computer interface: Current challenges and emerging trends. Frontiers in Neuroengineering, 5(JUNE), 1–30. https://doi.org/10.3389/fneng.2012.00014spa
dc.relation.referencesDecety, J. (1996). The neurophysiological basis of motor imagery. Behavioural Brain Research, 77(1), 45–52. https://doi.org/https://doi.org/10.1016/01664328(95)00225-1spa
dc.relation.referencesPfurtscheller, G., & Neuper, C. (2001). Motor imagery and direct brain-computer communication. Proceedings of the IEEE, 89(7), 1123–1134. https://doi.org/10.1109/5.939829spa
dc.relation.referencesFedjaev, J. (2017). Decoding EEG Brain Signals using Recurrent Neural Networks [Technische Universit¨at M¨unchen]. https://mediatum.ub.tum.de/doc/1422453/552605125571.pdfspa
dc.relation.referencesWatkinson, J. (1998). The art of sound reproduction. https://archive.org/details/artofsoundreprod0000watkspa
dc.relation.referencesFreedman, D., Pisani, R., & Purver, R. (2007). Statistics (Septima).spa
dc.relation.referencesHopfield, J. J. (1988). Artificial neural networks. IEEE Circuits and Devices Magazine, 4(5), 3–10. https://doi.org/10.1109/101.8118spa
dc.relation.referencesGoodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Pressspa
dc.relation.referencesKrizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2, 1097–1105spa
dc.relation.referencesRumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0spa
dc.relation.referencesHochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735spa
dc.relation.referencesOlah, C. (2015). Understanding LSTM Networks. http://colah.github.io/posts/201508-Understanding-LSTMs/spa
dc.relation.referencesStanford. (n.d.). Convolutional Neural Networks for Visual Recognition. 2020. Retrieved April 20, 2020, from https://cs231n.github.io/neural-networks-1spa
dc.relation.referencesCodecademy. (2020). Normalization. https://www.codecademy.com/articles/normalizationspa
dc.relation.referencesKuhlman, D. (2013). A Python Book. A Python Book, 1–227spa
dc.relation.referencesRodrigues, I. (2020). CRISP-DM methodology leader in data mining and big data. https://towardsdatascience.com/crisp-dm-methodology-leader-in-data-miningand-big-data-467efd3d3781spa
dc.relation.referencesIEEE. (2020). IEEE Member Digital Library. https://www.ieee.org/content/dam/ieeeorg/ieee/web/org/pubs/productmarketing/member-digital-library.pdfspa
dc.relation.referencesService, A. W. (2020). SageMaker (p. 1). https://aws.amazon.com/es/sagemaker/pricing/spa
dc.relation.referencesHAYS. (2020). ANÁLISIS DE TENDENCIAS & SALARIOS, AMÉRICA LATINA 2020. https://www.hays.com.br/documents/63221/0/Hays+Análisis+de+Tendencias+ LATAM+2020+CO.pdfspa
dc.relation.referencesMoine, J. Mi., Haedo, A., & Gordillo, S. (2011). Estudio comparativo de metodologías para minería de datos. XIII Workshop de Investigadores En Ciencias de La Computación, 278–281. http://sedici.unlp.edu.ar/handle/10915/20034spa
dc.relation.referencesScopus. (2020). Pricing. https://www.elsevier.com/about/policies/pricingspa
dc.relation.referencesOxford. (2020). Purchase. https://academic.oup.com/jcr/subscribespa
dc.relation.referencesSpss, I. B. M., & Guide, M. C. (2016). IBM SPSS Modeler CRISP-DM.spa
dc.relation.referencesTensorflow. (2015). TensorFlow: Open source machine learning. Youtube. https://www.youtube.com/watch?v=oZikw5k_2FMspa
dc.relation.referencesGoogle. (2020). ¿Por qué Google Cloud? Google Cloud Blog. https://cloud.google.com/why-google-cloudspa
dc.relation.referencesScipy. (2020). Scipy.org. https://scipy.org/spa
dc.relation.referencesScikit-Learn. (2020). Machine Learning in Python. https://scikitlearn.org/stable/index.htmlspa
dc.relation.referencesNeuraLink. (2020). Interfacing with the Brain. https://neuralink.com/approach/spa
dc.contributor.cvlacMoreno Corzo, Feisar Enrique [0001499008]spa
dc.contributor.googlescholarMoreno Corzo, Feisar Enrique [jz75nEcAAAAJ&hl=es&oi=ao]spa
dc.contributor.orcidMoreno Corzo, Feisar Enrique [0000-0002-5007-3422]spa
dc.contributor.researchgateMoreno Corzo, Feisar Enrique [Feisar-Enrique-Moreno-Corzo-2169498891]spa
dc.subject.lembIngeniería de sistemasspa
dc.subject.lembInnovaciones tecnológicasspa
dc.subject.lembSistemas de control adaptablespa
dc.subject.lembMétodos de simulaciónspa
dc.subject.lembAlgoritmosspa
dc.subject.lembTeoría de las máquinasspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishThe physical difficulties and displacement to which people with some type of decrease in the motor capacities of their body are subjected, people with paralysis or quadriplegics due to an accident suffered, is a problem to which society has been slowly integrating, converting the infrastructure physics of large cities and their buildings, in order to have a more inclusive environment with this vulnerable population. Currently with the implementation of new technologies such as Artificial Intelligence, mainly Machine Learning and Deep Learning, for the detection and classification of the actions that a person in a situation of disability wishes to do through the processing of brain signals captured by a device. Brain-Machine Interface, has generated a new possibility and opportunity for these people to use modern prostheses for their lower and upper extremities. In this project, an algorithm will be developed for the classification of these brain waves focused on the movement of lower limbs through Artificial Intelligence, to be the basis of new support products for these vulnerable populations.spa
dc.subject.proposalSeñal cerebralspa
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalMovimientospa
dc.subject.proposalInterfaz cerebro-máquinaspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia