Mostrar el registro sencillo del ítem

dc.contributor.advisorSolarte David, Víctor Alfonso
dc.contributor.advisorBecerra Bayona, Silvia Milena
dc.contributor.authorSierra Sánchez, Freddy Alexis
dc.contributor.authorBrito Lizarazo, Carlos David
dc.coverage.spatialColombiaspa
dc.date.accessioned2021-08-19T14:56:30Z
dc.date.available2021-08-19T14:56:30Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.12749/13895
dc.description.abstractLos hidrogeles de fibrina obtenidos a partir de plasma rico en plaquetas (PRP) han despertado gran interés en los últimos años, ya que han demostrado resultados favorables en la ingeniería de tejidos, debido a su alto contenido de factores de crecimiento, así como la posibilidad de permitir la fabricación de andamios naturales, similares a las matrices extracelulares, idóneos para la regeneración tisular. Sin embargo, sus características mecánicas no han sido caracterizadas plenamente, lo que puede representar un obstáculo para el uso de este material como andamio para la regeneración de un tejido en específico. Por esta razón, en este estudio se fabricó hidrogeles de fibrina a partir de PRP, bajo diferentes parámetros de concentración de PRP y tiempos de gelación del hidrogel, con el fin de realizar pruebas de compresión, y documentar sus características mecánicas. Se fabricaron hidrogeles con tres concentraciones, la metodología estándar para fabricar PRP se denominó “concentración 100%”, respecto a ésta, se fabricó a una menor y mayor concentración de PRP, 75% y 133% respectivamente (los porcentajes se usan como etiqueta y no se refiere a la concentración real); asimismo, se variaron los tiempos de gelación para cada concentración de hidrogel, 2, 4 y 24 horas. Como resultado se evidenció que los módulos de elasticidad de los hidrogeles varían entre 2 kPa y 35 kPa. Adicionalmente, se determinó que los hidrogeles de PRP tienen una relación de hinchamiento de 6 a 32 veces su peso seco, una relación de re-hinchamiento entre 3.5 y 7.2 veces su peso seco, y una tasa de degradación entre 14% y 47% por hora. Este estudio permite tener un punto de partida para adecuar los hidrogeles de PRP según el uso que se busque en el área de ingeniería de tejidos, con el fin de obtener hidrogeles biomiméticos al ajustar sus propiedades mecánicas a las que presentan los tejidos a regenerar.spa
dc.description.tableofcontentsProblema u oportunidad .................................................................................................................. 9 Introducción ................................................................................................................................ 9 Planteamiento del problema ......................................................................................................... 9 Justificación ............................................................................................................................... 12 Pregunta Problema .................................................................................................................... 13 Objetivo General ........................................................................................................................ 13 Objetivos específicos .................................................................................................................. 13 Marco teórico ................................................................................................................................ 14 Biomateriales ............................................................................................................................. 14 Andamios ................................................................................................................................... 14 Biocompatibilidad .................................................................................................................. 14 Biodegradabilidad .................................................................................................................. 15 Arquitectura del andamio ...................................................................................................... 15 Propiedades mecánicas............................................................................................................... 16 Relación de hinchamiento de los hidrogeles................................................................................ 17 Trasplantes autólogos................................................................................................................. 17 Plaquetas .................................................................................................................................... 17 Fibrina y fibrinógeno ................................................................................................................. 18 Hemostasia ................................................................................................................................. 19 Plasma rico en plaquetas (PRP) ................................................................................................. 20 Hidrogeles .................................................................................................................................. 21 Hidrogeles de fibrina a partir de PRP ........................................................................................ 22 Análogos del PRP ....................................................................................................................... 23 Estado del arte ............................................................................................................................... 25 Metodología ................................................................................................................................... 33 Obtención del PRP ..................................................................................................................... 33 Fabricación de hidrogeles de PRP .............................................................................................. 34 Caracterización mecánica de los hidrogeles ............................................................................ 35 Pruebas de hinchamiento ........................................................................................................... 35 Pruebas de re-hinchamiento ....................................................................................................... 36 Pruebas de degradación ............................................................................................................. 37 Análisis estadístico ..................................................................................................................... 37 Resultados y análisis ...................................................................................................................... 39 Resultados .................................................................................................................................. 39 Obtención del PRP ................................................................................................................. 39 Fabricación de los hidrogeles de PRP ..................................................................................... 40 Medición del peso y tamaño de los hidrogeles ......................................................................... 42 Pruebas de compresión ........................................................................................................... 44 Relación de hinchamiento ....................................................................................................... 48 Relación de re-hinchamiento .................................................................................................. 50 Tasa de degradación ............................................................................................................... 51 Análisis de Resultados ................................................................................................................ 53 Conclusiones y recomendaciones ................................................................................................... 59 Bibliografía .................................................................................................................................... 59 ANEXOS ....................................................................................................................................... 70spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleCaracterización mecánica de hidrogeles de fibrina partir de plasma rico en plaquetas con potencial uso en el diseño de matrices biomiméticasspa
dc.title.translatedMechanical characterization of fibrin hydrogels from platelet-rich plasma with potential use in the design of biomimetic matricesspa
dc.degree.nameIngeniero Biomédicospa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programPregrado Ingeniería Biomédicaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsBiomedical engineeringspa
dc.subject.keywordsEngineeringspa
dc.subject.keywordsMedical electronicsspa
dc.subject.keywordsBiological physicsspa
dc.subject.keywordsBioengineeringspa
dc.subject.keywordsMedical instruments and apparatusspa
dc.subject.keywordsMedicinespa
dc.subject.keywordsPlatelet-rich plasmaspa
dc.subject.keywordsHydrogelsspa
dc.subject.keywordsCompression modulusspa
dc.subject.keywordsBiomaterialsspa
dc.subject.keywordsTissue regenerationspa
dc.subject.keywordsFibrinspa
dc.subject.keywordsBlood clottingspa
dc.subject.keywordsBloodspa
dc.subject.keywordsBlood plasmaspa
dc.subject.keywordsClinical engineeringspa
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAbdulghani, S., & Mitchell, G. R. (2019). Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules, 9(11). doi:10.3390/biom9110750spa
dc.relation.referencesAlkhouli, N., Mansfield, J., Green, E., Bell, J., Knight, B., Liversedge, N., Tham, J. C., Welbourn, R., Shore, A. C., Kos, K., & Winlove, C. P. (2013). The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix. American journal of physiology. Endocrinology and metabolism, 305(12), E1427–E1435. https://doi.org/10.1152/ajpendo.00111.2013spa
dc.relation.referencesAlves, R., & Grimalt, R. (2018). A Review of Platelet-Rich Plasma: History, Biology, Mechanism of Action, and Classification. Skin Appendage Disord, 4(1), 18-24. doi:10.1159/000477353spa
dc.relation.referencesAmable, P. R., Carias, R. B., Teixeira, M. V., da Cruz Pacheco, I., Correa do Amaral, R. J., Granjeiro, J. M., & Borojevic, R. (2013). Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Res Ther, 4(3), 67. doi:10.1186/scrt218spa
dc.relation.referencesAhmed, M., Reffat, S., Hassan, A., & Eskander, F. (2017). Platelet-Rich Plasma for the Treatment of Clean Diabetic Foot Ulcers. Annals Of Vascular Surgery, 38, 206 211. https://doi.org/10.1016/j.avsg.2016.04.023spa
dc.relation.referencesAndia, I. y Abate, M. (2013). Plasma rico en plaquetas: biología subyacente y correlatos clínicos. Medicina regenerativa, 8 (5), 645–658. doi: 10.2217 / rme.13.59spa
dc.relation.referencesAnitua, E., Tejero, R., Alkhraisat, M. H., & Orive, G. (2013). Platelet-rich plasma to improve the bio-functionality of biomaterials. BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy, 27(2), 97–111. https://doi.org/10.1007/s40259-012-0004-3spa
dc.relation.referencesArtzi, N., Oliva, N., Puron, C., Shitreet, S., Artzi, S., bon Ramos, A., . . . Edelman, E. R. (2011). In vivo and in vitro tracking of erosion in biodegradable materials using non-invasive fluorescence imaging. Nat Mater, 10(9), 704-709. doi:10.1038/nmat3095spa
dc.relation.referencesCensi R, Casadidio C, Deng S, Gigliobianco MR, Sabbieti MG, Agas D, Laus F, Di Martino P (2020). Interpenetrating Hydrogel Networks Enhance Mechanical Stability, Rheological Properties, Release Behavior and Adhesiveness of Platelet Rich Plasma. Int J Mol Sci. 2020 Feb 19;21(4):1399. doi: 10.3390/ijms21041399. PMID: 32092976; PMCID: PMC7073123.spa
dc.relation.referencesCatoira, M. C., Fusaro, L., Di Francesco, D., Ramella, M., & Boccafoschi, F. (2019). Overview of natural hydrogels for regenerative medicine applications. J Mater Sci Mater Med, 30(10), 115. doi:10.1007/s10856-019-6318-7spa
dc.relation.referencesCavallo, C., Roffi, A., Grigolo, B., Mariani, E., Pratelli, L., Merli, G., . . . Filardo, G. (2016). Platelet-Rich Plasma: The Choice of Activation Method Affects the Release of Bioactive Molecules. Biomed Res Int, 2016, 6591717. doi:10.1155/2016/6591717spa
dc.relation.referencesCarducci, M., Bozzetti, M., Spezia, M., Ripamonti, G., & Saglietti, G. (2016). Treatment of a Refractory Skin Ulcer Using Punch Graft and Autologous Platelet-Rich Plasma. Case reports in dermatological medicine, 2016, 7685939. https://doi.org/10.1155/2016/7685939spa
dc.relation.referencesConstantin, C. P., Aflori, M., Damian, R. F., & Rusu, R. D. (2019). Biocompatibility of Polyimides: A Mini-Review. Materials (Basel), 12(19). doi:10.3390/ma12193166spa
dc.relation.referencesCroce, S., Peloso, A., Zoro, T., Avanzini, M. A., & Cobianchi, L. (2019). A Hepatic Scaffold from Decellularized Liver Tissue: Food for Thought. Biomolecules, 9(12). doi:10.3390/biom9120813spa
dc.relation.referencesde Melo, B., França, C. G., Dávila, J. L., Batista, N. A., Caliari-Oliveira, C., d'Ávila, M. A., Luzo, Â., Lana, J., & Santana, M. (2020). Hyaluronic acid and fibrin from L PRP form semi-IPNs with tunable properties suitable for use in regenerative medicine. Materials science & engineering. C, Materials for biological applications, 109, 110547. https://doi.org/10.1016/j.msec.2019.110547spa
dc.relation.referencesDong-Xu, L., Hong-Ning, W., Chun-Ling, W., Hong, L., Ping, S., & Xiao, Y. (2011). Modulus of elasticity of human periodontal ligament by optical measurement and numerical simulation. Angle Orthod, 81(2), 229-236. doi:10.2319/060710-311.1spa
dc.relation.referencesDohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet rich fibrin (L-PRF). Trends Biotechnol. 2009 Mar;27(3):158-67. doi: 10.1016/j.tibtech.2008.11.009. Epub 2009 Jan 31. PMID: 19187989spa
dc.relation.referencesEverts, P. A., Overdevest, E. P., Jakimowicz, J. J., Oosterbos, C. J., Schönberger, J. P., Knape, J. T., & van Zundert, A. (2007). The use of autologous platelet-leukocyte gels to enhance the healing process in surgery, a review. Surgical endoscopy, 21(11), 2063–2068. https://doi.org/10.1007/s00464-007-9293-xspa
dc.relation.referencesFidel Jesús-Ramirez, e. a. (2017). Partial characterization of digestive proteases of fat snook (Centropomus paralellus).spa
dc.relation.referencesGupta, N., Cruz, M. A., Nasser, P., Rosenberg, J. D., & Iatridis, J. C. (2019). Fibrin Genipin Hydrogel for Cartilage Tissue Engineering in Nasal Reconstruction. Ann Otol Rhinol Laryngol, 128(7), 640-646. doi:10.1177/0003489419836667spa
dc.relation.referencesGarcía-Chávez J, Carrillo-Esper R, Majluf-Cruz A (2007). Fisiología del sistema de coagulación. Gac Med Mex.;143(Suppl: 1):7-9. https://www.medigraphic.com/pdfs/gaceta/gm-2007/gms071c.pdfspa
dc.relation.referencesGuzmán Castillo, G., Paltas Miranda, M., Benenaula Bojorque, J., Núñez Barragán, K., & Simbaña García, D. (2017). Revista Odontológica Mexicana. Cicatrización De Tejido Óseo Y Gingival En Cirugías De Terceros Molares Inferiores. Estudio Comparativo Entre El Uso De Fibrina Rica En Plaquetas Versus Cicatrización Fisiológica‡, (Vol. 21, Núm. 2), 114-120. Retrieved 25 April 2021, from https://www.medigraphic.com/cgi bin/new/contenido.cgi?IDPUBLICACION=6955spa
dc.relation.referencesHolinstat, M. (2017). Normal platelet function. Cancer Metastasis Rev, 36(2), 195-198. doi:10.1007/s10555-017-9677-xspa
dc.relation.referencesHokugo, A., Ozeki, M., Kawakami, O., Sugimoto, K., Mushimoto, K., Morita, S., & Tabata, Y. (2005). Augmented bone regeneration activity of platelet-rich plasma by biodegradable gelatin hydrogel. Tissue engineering, 11(7-8), 1224–1233. https://doi.org/10.1089/ten.2005.11.1224spa
dc.relation.referencesIntini, G., Andreana, S., Intini, F. E., Buhite, R. J., & Bobek, L. A. (2007). Calcium sulfate and platelet-rich plasma make a novel osteoinductive biomaterial for bone regeneration. Journal of translational medicine, 5, 13. https://doi.org/10.1186/1479-5876-5-13spa
dc.relation.referencesJanouskova, O. (2018). Synthetic polymer scaffolds for soft tissue engineering. Physiol Res, 67(Suppl 2), S335-S348. doi:10.33549/physiolres.933983spa
dc.relation.referencesKardos, D., Hornyak, I., Simon, M., Hinsenkamp, A., Marschall, B., Vardai, R., . . . Lacza, Z. (2018). Biological and Mechanical Properties of Platelet-Rich Fibrin Membranes after Thermal Manipulation and Preparation in a Single-Syringe Closed System. Int J Mol Sci, 19(11). doi:10.3390/ijms19113433spa
dc.relation.referencesKeane, T. J., Londono, R., Turner, N. J., & Badylak, S. F. (2012). Consequences of ineffective decellularization of biologic scaffolds on the host response. Elsevier. Pages 1771-1781. de https://www.sciencedirect.com/science/article/pii/S0142961211012580?via%3Di hub. doi:10.1016/j.biomaterials.2011.10.054spa
dc.relation.referencesLanger, R., & Vacanti, J. (2016). Advances in tissue engineering. J Pediatr Surg, 51(1), 8-12. doi:10.1016/j.jpedsurg.2015.10.022spa
dc.relation.referencesLauricella, Ana María (2007). Variabilidad de las redes de fibrina. Acta Bioquímica Clínica Latinoamericana, 41(1),7-19. ISSN: 0325-2957. Disponible en: https://www.redalyc.org/articulo.oa?id=53541102spa
dc.relation.referencesLobo Vega, N. (2014). Evaluación clínica del tiempo de cicatrización de alvéolos post extracción, aplicando distintas técnicas de cierre de heridas.. Repositorio.unab.cl. Retrieved 25 April 2021, from http://repositorio.unab.cl/xmlui/handle/ria/1871spa
dc.relation.referencesMartins Shimojo, A. A., Santos Duarte, A. D. S., Santos Duarte Lana, J. F., Malheiros Luzo, A. C., Fernandes, A. R., Sanchez-Lopez, E., . . . Andrade Santana, M. H. (2019). Association of Platelet-Rich Plasma and Auto-Crosslinked Hyaluronic Acid Microparticles: Approach for Orthopedic Application. Polymers (Basel), 11(10). doi:10.3390/polym11101568spa
dc.relation.referencesMikula, E. R., Jester, J. V., & Juhasz, T. (2016). Measurement of an Elasticity Map in the Human Cornea. Invest Ophthalmol Vis Sci, 57(7), 3282-3286. doi:10.1167/iovs.15-18248spa
dc.relation.referencesMunoz-Pinto, D. J., Bulick, A. S., & Hahn, M. S. (2009). Uncoupled investigation of scaffold modulus and mesh size on smooth muscle cell behavior. J Biomed Mater Res A, 90(1), 303-316. doi:10.1002/jbm.a.32492spa
dc.relation.referencesMurphy, K. C., Whitehead, J., Zhou, D., Ho, S. S., & Leach, J. K. (2017). Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids. Acta biomaterialia, 64, 176–186. https://doi.org/10.1016/j.actbio.2017.10.007spa
dc.relation.referencesMurray P. E. (2018). Platelet-Rich Plasma and Platelet-Rich Fibrin Can Induce Apical Closure More Frequently Than Blood-Clot Revascularization for the Regeneration of Immature Permanent Teeth: A Meta-Analysis of Clinical Efficacy. Frontiers in bioengineering and biotechnology, 6, 139. https://doi.org/10.3389/fbioe.2018.00139spa
dc.relation.referencesMa, K., Titan, A. L., Stafford, M., Zheng, C. h., & Levenston, M. E. (2012). Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels. Acta biomaterial, 8(10), 3754–3764. https://doi.org/10.1016/j.actbio.2012.06.028spa
dc.relation.referencesMarine, D., & Manley, O. T. (1920). HOMEOTRANSPLANTATION AND AUTOTRANSPLANTATION OF THE SPLEEN IN RABBITS : III. FURTHER DATA ON GROWTH, PERMANENCE, EFFECT OF AGE, AND PARTIAL OR COMPLETE REMOVAL OF THE SPLEEN. The Journal of experimental medicine, 32(1), 113–133. https://doi.org/10.1084/jem.32.1.113spa
dc.relation.referencesMarlon Andrés Osorio-Delgado, Leydi Johanna Henao-Tamayo, Jorge Andrés Velásquez-Cock, Ana Isabel Cañas-Gutierrez, Luz Marina Restrepo-Múnera, Piedad Felisinda Gañán-Rojo, Robín Octavio ZuluagaGallego, Isabel Cristina Ortiz-Trujillo & Cristina Isabel Castro-Herazo. (2017). Biomedical applications of polymeric biomaterials. DYNA. de http://www.scielo.org.co/pdf/dyna/v84n201/0012-7353-dyna-84-201-00241.pdfspa
dc.relation.referencesNaahidi, S., Jafari, M., Logan, M., Wang, Y., Yuan, Y., Bae, H., . . . Chen, P. (2017). Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv, 35(5), 530-544. doi:10.1016/j.biotechadv.2017.05.006spa
dc.relation.referencesNordin, M., y Frankel V. (2004). Basic biomechanics of the musculoskeletal system (3rd ed.). Lippincott Williams and Wililins. (9-35). Available from https://fbeobrasil.com.br/wp-content/uploads/2017/07/Biomecanica-Basica-del Sistema-Muscoesqueletico-Nordin-ilovepdf-compressed.pdfspa
dc.relation.referencesOckerman, A., Braem, A., EzEldeen, M., Castro, A., Coucke, B., & Politis, C. et al. (2020). Mechanical and structural properties of leukocyte‐ and platelet‐rich fibrin membranes: An in vitro study on the impact of anticoagulant therapy. Journal Of Periodontal Research, 55(5), 686-693. https://doi.org/10.1111/jre.12755spa
dc.relation.referencesO’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-Xspa
dc.relation.referencesOliva, N., Conde, J., Wang, K., & Artzi, N. (2017). Designing Hydrogels for On-Demand Therapy. Acc Chem Res, 50(4), 669-679. doi:10.1021/acs.accounts.6b00536spa
dc.relation.referencesSadeghi-Ataabadi, M., Mostafavi-pour, Z., Vojdani, Z., Sani, M., Latifi, M., & Talaei Khozani, T. (2017). Fabrication and characterization of platelet-rich plasma scaffolds for tissue engineering applications. Retrieved from. http://dx.doi.org/10.1016/j.msec.2016.10.001spa
dc.relation.referencesShah, J.V., Janmey, P.A. Strain hardening of fibrin gels and plasma clots. Rheola Acta 36, 262–268 (1997). https://doi.org/10.1007/BF00366667spa
dc.relation.referencesShah, D., & Mital, K. (2018). The Role of Trypsin:Chymotrypsin in Tissue Repair. Adv Ther, 35(1), 31-42. doi:10.1007/s12325-017-0648-y Singh, V. K., Yadav, D., & Garg, P. K. (2019). Diagnosis and Management of Chronic Pancreatitis: A Review. JAMA, 322(24), 2422-2434. doi:10.1001/jama.2019.19411spa
dc.relation.referencesTabata, Y. (2009). Biomaterial technology for tissue engineering applications. J R Soc Interface, 6 Suppl 3, S311-324. doi:10.1098/rsif.2008.0448.focusspa
dc.relation.referencesTaskin, O. C., & Adsay, V. (2019). Lipase hypersecretion syndrome: A distinct form of paraneoplastic syndrome specific to pancreatic acinar carcinomas. Semin Diagn Pathol, 36(4), 240-245. doi:10.1053/j.semdp.2019.07.001spa
dc.relation.referencesTibbitt, M. W., & Anseth, K. S. (2009). Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnology and bioengineering, 103(4), 655–663 https://doi.org/10.1002/bit.22361spa
dc.relation.referencesVargas-Ruiz, D. (2016). El fibrinógeno: su fisiología e interacciones en el sistema de la coagulación [Ebook]. Revista Mexicana de Anestesiología. Retrieved from https://www.medigraphic.com/pdfs/rma/cma-2016/cmas162g.pdfspa
dc.relation.referencesVladimir Kepler Atamari- Soncco, Clarise Sanga-Mamani, Krishna Yadine Huayhua Vargas (2021). Fibrina rica en plaquetas en el cierre clínico de la mucosa alveolar post-exodoncia en pacientes sometidos a cirugía bucal. (Vol. 3– Num.2), 40-45. Retrieved from https://www.researchgate.net/publication/335478597_FIBRINA_RICA_EN_PLA QUETAS_EN_EL_CIERRE_CLINICO_DE_LA_MUCOSA_ALVEOLAR_POS T EXODONCIA_EN_PACIENTES_SOMETIDOS_A_CIRUGIA_BUCAL/fulltext /5d68758ca6fdccadeae435d5/FIBRINA-RICA-EN-PLAQUETAS-EN-EL CIERRE-CLINICO-DE-LA-MUCOSA-ALVEOLAR-POST-EXODONCIA-EN PACIENTES-SOMETIDOS-A-CIRUGIA-BUCAL.pdf.spa
dc.relation.referencesVento Vegas, D. (2015). Efecto clínico del plasma rico en fibrina (PRF) como terapia conjunta a la fase quirúrgica en el tratamiento de la periodontitis crónica [Ebook]. Universidad Nacional Mayor De San Marcos. Retrieved from https://cybertesis.unmsm.edu.pe/handle/20.500.12672/4017spa
dc.relation.referencesWei, J., Han, J., Zhao, Y., Cui, Y., Wang, B., Xiao, Z., . . . Dai, J. (2014). The importance of three-dimensional scaffold structure on stemness maintenance of mouse embryonic stem cells. Biomaterials, 35(27), 7724-7733. doi:10.1016/j.biomaterials.2014.05.060spa
dc.relation.referencesWilliams, D. F. (2019). Specifications for Innovative, Enabling Biomaterials Based on the Principles of Biocompatibility Mechanisms. Front Bioeng Biotechnol, 7, 255. doi:10.3389/fbioe.2019.00255spa
dc.relation.referencesYuan, L., Li, X., Ge, L., Jia, X., Lei, J., Mu, C., & Li, D. (2019). Emulsion Template Method for the Fabrication of Gelatin-Based Scaffold with a Controllable Pore Structure. ACS Appl Mater Interfaces, 11(1), 269-277. doi:10.1021/acsami.8b17555spa
dc.relation.referencesZeng, D., Juzkiw, T., Read, A. T., Chan, D. W., Glucksberg, M. R., Ethier, C. R., & Johnson, M. (2010). Young's modulus of elasticity of Schlemm's canal endothelial cells. Biomech Model Mechanobiol, 9(1), 19-33. doi:10.1007/s10237-009-0156-3spa
dc.relation.referencesZhang, L., Miao, H., Wang, D., Qiu, H., Zhu, Y., Yao, X., Wang, Z. (2020). Pancreatic extracellular matrix and platelet-rich plasma constructing injectable hydrogel for pancreas tissue engineering. Artif Organs, 44(12), e532-e551. doi:10.1111/aor.13775spa
dc.relation.referencesZheng Shu, X., Liu, Y., Palumbo, F. S., Luo, Y., & Prestwich, G. D. (2004). In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials, 25(7-8), 1339-1348. doi:10.1016/j.biomaterials.2003.08.014spa
dc.contributor.cvlacSolarte David, Víctor Alfonso [0001329391]spa
dc.contributor.cvlacBecerra Bayona, Silvia Milena [0001568861]spa
dc.contributor.googlescholarBecerra Bayona, Silvia Milena [5wr21EQAAAAJ&hl=es&oi=ao]spa
dc.contributor.orcidSolarte David, Víctor Alfonso [0000-0002-9856-1484]spa
dc.contributor.orcidBecerra Bayona, Silvia Milena [0000-0002-4499-5885]spa
dc.contributor.scopusBecerra Bayona, Silvia Milena [36522328100]
dc.contributor.researchgateSolarte David, Víctor Alfonso [Victor-Solarte-David]spa
dc.contributor.researchgateBecerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]spa
dc.subject.lembIngeniería biomédicaspa
dc.subject.lembIngenieríaspa
dc.subject.lembBiofísicaspa
dc.subject.lembBioingenieríaspa
dc.subject.lembMedicinaspa
dc.subject.lembCoagulación sanguíneaspa
dc.subject.lembSangrespa
dc.subject.lembPlasma sanguíneospa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishFibrin hydrogels obtained from platelet-rich plasma (PRP) have aroused great interest in recent years, as they have shown favorable results in tissue engineering, due to their high content of growth factors, as well as the possibility to allow the manufacture of natural scaffolds, similar to extracellular matrices, suitable for tissue regeneration. However, its mechanical characteristics have not been characterized. fully, which can represent an obstacle to the use of this material as a scaffold for the regeneration of a specific tissue. For this reason, in this study, fibrin hydrogels were manufactured from PRP, under different parameters of PRP concentration and hydrogel gelation times, in order to perform compression tests and document their mechanical characteristics. Hydrogels were manufactured with three concentrations, the standard methodology to manufacture PRP was called "100% concentration", with respect to this, it was manufactured at a lower and higher concentration of PRP, 75% and 133% respectively (the percentages are used as labels and does not refer to the actual concentration); likewise, the gelation times were varied for each hydrogel concentration, 2, 4 and 24 hours. As a result, it was evidenced that the modulus of elasticity of the hydrogels varies between 2 kPa and 35 kPa. Additionally, it was determined that PRP hydrogels have a swelling ratio of 6 to 32 times their dry weight, a re-swelling ratio between 3.5 and 7.2 times their dry weight, and a degradation rate between 14% and 47% per time. This study allows us to have a starting point to adapt the PRP hydrogels according to the use sought in the area of ​​tissue engineering, with in order to obtain biomimetic hydrogels by adjusting their mechanical properties to those of the tissues to be regenerated.spa
dc.subject.proposalIngeniería clínicaspa
dc.subject.proposalElectrónica médicaspa
dc.subject.proposalInstrumentos y aparatos médicosspa
dc.subject.proposalPlasma rico en plaquetasspa
dc.subject.proposalHidrogelesspa
dc.subject.proposalMódulo de compresiónspa
dc.subject.proposalBiomaterialesspa
dc.subject.proposalRegeneración de tejidosspa
dc.subject.proposalFibrinaspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.contributor.apolounabBecerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa
dc.contributor.linkedinBecerra Bayona, Silvia Milena [silvia-becerra-3174455a]


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia