Mostrar el registro sencillo del ítem

dc.contributor.advisorBecerra Bayona, Silvia Milena
dc.contributor.advisorSolarte David, Víctor Alfonso
dc.contributor.authorMateus Suárez, Sofia Valentina
dc.contributor.authorTorres Pinzón, Michelle María
dc.coverage.spatialColombiaspa
dc.date.accessioned2021-08-12T13:53:24Z
dc.date.available2021-08-12T13:53:24Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.12749/13790
dc.description.abstractLas úlceras crónicas de pie diabético (UCPD) son una problemática que afecta la integridad de la piel, la cual necesita de una matriz extracelular (andamio) y biomoléculas para lograr el proceso cicatrización. Las biomoléculas inmersas en el plasma rico en plaquetas (PRP), incluyen factores de crecimiento que contribuyen a la regeneración de tejidos, por lo que se propuso el diseño de una tinta de biomaterial de polietilenglicol diacrilato (PEGDA) y PRP para potenciales aplicaciones en el desarrollo de apósitos personalizados, como tratamiento alternativo para promover la cicatrización de UCPD. El estudio planteo la búsqueda de un material viscoso (ThA) para aumentar la imprimibilidad del polímero, la inmovilización del PRP en la tinta de PEGDA al 10, 20 y 30% p/v, y ThA, y la evaluación de la imprimibilidad al variar los parámetros de flujo (150, 250 y 350%) y velocidad de extrusión (2 y 5 mm/s). Por lo anterior, se empleó gelatina para permitir la impresión de la mezcla, y utilizarla como una matriz de sacrificio que fuera liberada de la estructura. Así mismo se obtuvieron tintas de biomaterial con una óptima imprimibilidad según la fidelidad en la morfología y dimensiones diseñadas, con una formación de filamentos continuos. Posteriormente, se determinó que el PRP no es apto para la extrusión de un filamento y no permite la obtención de una solución homogénea al ser mezclado con la tinta de biomaterial, por lo que, basado en nuestro criterio, no puede ser utilizado para impresión. Con base en lo anterior, se establece que la tinta tiene potencial de ser usada para la inmovilización de biomoléculas y mejorar el tratamiento de las UCPD, al permitir la fabricación de andamios personalizados.spa
dc.description.tableofcontentsCapítulo 1. Problema u oportunidad ................................................................................................ 9 1.1 Introducción ............................................................................................................................ 9 1.2 Planteamiento del problema ................................................................................................... 9 1.3 Justificación .......................................................................................................................... 11 1.4 Pregunta Problema ................................................................................................................ 12 1.5 Objetivo General ................................................................................................................... 12 1.6 Objetivos Especificas ........................................................................................................... 12 1.7 Limitaciones y delimitaciones .............................................................................................. 13 Capítulo 2. Marco Teórico ............................................................................................................. 14 2.1 Úlceras crónicas de pie diabético y su proceso de cicatrización .......................................... 14 2.2 Los apósitos como alternativa terapéutica a las UCPD ........................................................ 15 2.2.1 Hidrogeles y el polímero PEGDA .................................................................................. 15 2.2.2 Biomoléculas y el Plasma Rico en Plaquetas ................................................................ 16 2.3 La bioimpresión y sus principales características ................................................................. 18 2.3.1 Tinta de biomaterial ....................................................................................................... 18 2.3.2 Características de imprimibilidad y los parámetros de impresión................................ 19 Capítulo 3. Estado del Arte ............................................................................................................ 23 Capítulo 4. Metodología ................................................................................................................. 28 4.1 Pruebas preliminares de viscosidad para la tinta .................................................................. 28 4.3 Fabricación de hidrogeles y estudio preliminar de liberación de gelatina ........................... 30 4.4 Caracterización mecánica preliminar de los hidrogeles ....................................................... 31 4.5 Impresión de los hidrogeles usando la tinta de biomaterial .................................................. 32 4.6 Evaluación de la velocidad y flujo de impresión según parámetros de imprimibilidad ....... 33 4.7 Estudio preliminar de liberación de gelatina en impresiones ............................................... 34 4.8 Análisis estadísticos .............................................................................................................. 34 Capítulo 5. Resultados y Análisis de resultados ............................................................................ 36 5.1 Resultados ............................................................................................................................. 36 5.1.1 Pruebas preliminares de viscosidad para la tinta ........................................................... 36 5.1.2 Preparación de la tinta de biomaterial ............................................................................ 39 5.1.3 Estudio preliminar de liberación de gelatina: Hidrogeles .............................................. 41 5.1.4 Caracterización mecánica preliminar de los hidrogeles ................................................. 42 5.1.5 Impresiones de los hidrogeles a partir de la tinta de biomaterial ................................... 44 5.1.5.1 Estandarización preliminar de las condiciones de impresión de la tinta de gelatina. ............................................................................................................................................. 46 5.1.5.2 Estandarización preliminar de las condiciones de impresión de la tinta de biomaterial de PEGDA y gelatina ....................................................................................... 49 5.1.6 Estudio preliminar de liberación de gelatina: Impresiones ............................................ 54 5.1.7 Preparación de la tinta de biomaterial con PRP ............................................................. 55 5.2. Análisis de Resultados ......................................................................................................... 56 Capítulo 6: Conclusiones y recomendaciones ................................................................................ 63 Referencias ..................................................................................................................................... 65spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleDiseño de una tinta de biomaterial a base de pegda y plasma rico en plaquetas para potenciales aplicaciones en el desarrollo de apósitos personalizados para úlceras crónicas de pie diabéticospa
dc.title.translatedDesign of a pegda-based biomaterial ink and platelet-rich plasma for potential applications in the development of personalized dressings for chronic diabetic foot ulcersspa
dc.degree.nameIngeniero Biomédicospa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programPregrado Ingeniería Biomédicaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsBiomedical engineeringspa
dc.subject.keywordsEngineeringspa
dc.subject.keywordsMedical electronicsspa
dc.subject.keywordsBiological physicsspa
dc.subject.keywordsBioengineeringspa
dc.subject.keywordsMedical instruments and apparatusspa
dc.subject.keywordsMedicinespa
dc.subject.keywordsPegdaspa
dc.subject.keywords3D bioprintingspa
dc.subject.keywordsBiomaterial inkspa
dc.subject.keywordsCDFUspa
dc.subject.keywordsFoot diseasesspa
dc.subject.keywordsBiomoleculesspa
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.referencesAlavi , A., Sibbald, R., Mayer, D., Goodman, L., Botros, M., Armstrong, D., . . . Kirsner, R. (2014). Diabetic foot ulcers: Part I. Pathophysiology and prevention. Journal of the American Academy of Dermatology. doi:10.1016/j.jaad.2013.06.055spa
dc.relation.referencesAlexiadou, K., & Doupis, J. (2012). Management of Diabetic Foot Ulcers. Diabetes therapy : research, treatment and education of diabetes and related disorders. doi:10.1007/s13300012-0004-9spa
dc.relation.referencesAmable, P. R., Carias, R. B., Teixeira, M. V., da Cruz Pacheco, I., Corrêa do Amaral, R. J., Granjeiro, J. M., & Borojevic, R. (2013). Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem cell research & therapy. doi:10.1186/scrt218spa
dc.relation.referencesArmstrong, D., Boulton , A., & Bus, S. (2017). Diabetic Foot Ulcers and Their Recurrence. The New England journal of medicine. doi:10.1056/NEJMra1615439spa
dc.relation.referencesBahney, C. S., Lujan, T. J., Hsu, C. W., Bottlang, M., West, J. L., & Johnstone, B. (2011). Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogel. European cells & materials. doi:10.22203/ecm.v022a04spa
dc.relation.referencesCarr, M. E., & Carr, S. L. (1995). Fibrin structure and concentration alter clot elastic modulus but do not alter platelet mediated force development. Blood Coagulation & Fibrinolysis. doi:10.1097/00001721-199502000-00013spa
dc.relation.referencesChung, J., Naficy, S., Yue, Z., Kapsa, R., Quigley, A., Moulton, S. E., & Wallace, G. G. (2013). Bio-ink properties and printability for extrusion printing living cells. Biomaterials science. doi:10.1039/c3bm00012espa
dc.relation.referencesConde-Montero, E., de la Cueva Dobao, P., & Martínez González, J. (2017). Platelet-rich plasma for the treatment of chronic wounds: evidence to date. Chronic Wound Care Management and Research. doi:https://doi.org/10.2147/CWCMR.S118655spa
dc.relation.referencesDeuel, T. F., & Chang, Y. (2014). Growth factors. In R. Lanza, R. Langer, & J. Vacanti, Principles of Tissue Engineering (pp. 291 - 308). doi:10.1016/b978-0-12-3983589.00016-1spa
dc.relation.referencesFrost, B. A., Sutliff, B. P., Thayer, P., Bortner, M. J., & Foster, E. J. (2019). Gradient poly (ethylene glycol) diacrylate and cellulose nanocrystals tissue engineering composite scaffolds via extrusion bioprinting. Frontiers in bioengineering and biotechnology. Frontiers in bioengineering and biotechnology. doi:10.3389/fbioe.2019.00280spa
dc.relation.referencesGame, F., Apelqvist, J., Attinger, C., Hartemann, A., Hinchliffe, R., Löndahl, M., . . . Jeffcoate, W. (2016). Effectiveness of interventions to enhance healing of chronic ulcers of the foot in diabetes: a systematic review. Diabetes/metabolism research and reviews. Retrieved from https://pubmed.ncbi.nlm.nih.gov/26344936/spa
dc.relation.referencesGao, X., Gao, L., Groth, T., Liu, T., He, D., Wang, M., . . . Zhao, M. (2019). Fabrication and properties of an injectable sodium alginate/PRP composite hydrogel as a potential cell carrier for cartilage repair. Journal of biomedical materials research. Part A. doi:10.1002/jbm.a.36720spa
dc.relation.referencesGroll, J., Boland, T., Blunk, T., Burdick, J. A., Cho, D. W., Dalton, P. D., & Malda, J. (2016). Biofabrication: reappraising the definition of an evolving field. Biofabrication. Retrieved from https://iopscience.iop.org/article/10.1088/1758-5090/8/1/013001spa
dc.relation.referencesGroll, J., Burdick, J., Cho, D.-W., Derby, B., Gelinsky, M., Heilshorn, S., . . . Woodfield, T. (2018). A definition of bioinks and their distinction from biomaterial inks. Biofabrication. doi:10.1088/1758-5090/aaec52spa
dc.relation.referencesGungor-Ozkerim, P., Inci, I., Zhang, Y., Khademhosseini, A., & Dokmeci, M. (2018). Bioinks for 3D bioprinting: an overview. Biomaterials science. doi:10.1039/c7bm00765espa
dc.relation.referencesHe, Y., Yang, F., Zhao, H., Gao, Q., Xia, B., & Fu , J. (2016). Research on the printability of hydrogels in 3D bioprinting. Scientific reports. doi:10.1038/srep29977spa
dc.relation.referencesHicks, C., Canner , J., Mathioudakis, N., Lippincott , C., Sherman, R., & Abularrage, C. (2020). Incidence and Risk Factors Associated With Ulcer Recurrence Among Patients With Diabetic Foot Ulcers Treated in a Multidisciplinary Setting. The Journal of surgical research. doi:10.1016/j.jss.2019.09.025spa
dc.relation.referencesHong, N., Yang, G.-H., Lee , J., & Kim , G. (2017). 3D bioprinting and its in vivo applications. Journal of biomedical materials research. Part B, Applied biomaterials. Retrieved from https://pubmed.ncbi.nlm.nih.gov/28106947/spa
dc.relation.referencesHuber, S. C., Junior, J., Silva, L. Q., Montalvão, S., & Annichino-Bizzacchi, J. M. (2019). Freeze-dried versus fresh platelet-rich plasma in acute wound healing of an animal model. Regenerative medicine. doi:https://doi.org/10.2217/rme-2018-0119spa
dc.relation.referencesInternational Diabetes Federation. (2019). IDF Diabetes Atlas (9th ed.). Brussels, Belgium. Retrieved from https://www.diabetesatlas.org/en/spa
dc.relation.referencesJain, E., Chinzei, N., Blanco, A., Case, N., Sandell, L., Sell, S., . . . Zustiak, S. (2019). PlateletRich Plasma Released From Polyethylene Glycol Hydrogels Exerts Beneficial Effects on Human Chondrocytes. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. doi:10.1002/jor.24404spa
dc.relation.referencesJain, E., Sheth, S., Dunn, A., Zustiak, S., & Sell, S. (2017). Sustained release of multicomponent platelet-rich plasma proteins from hydrolytically degradable PEG hydrogels. Journal of biomedical materials research. Part A. Retrieved from https://pubmed.ncbi.nlm.nih.gov/28865187/spa
dc.relation.referencesJo, C. H., Roh, Y. H., Kim, J. E., Shin, S., & Yoon, K. S. (2013). Optimizing Platelet-Rich Plasma Gel Formation by Varying Time and Gravitational Forces During Centrifugation. Journal of Oral Implantology. doi:10.1563/AAID-JOI-D-10-00155spa
dc.relation.referencesJoas, S., Tovar, G., Celik, O., Bonten, C., & Southan, A. (2018). Extrusion-Based 3D Printing of Poly(ethylene glycol) Diacrylate Hydrogels Containing Positively and Negatively Charged Groups. Gels (Basel, Switzerland). doi:https://doi.org/10.3390/gels4030069spa
dc.relation.referencesLi, H., Ma, T., Zhang, M., Zhu, J., Liu, J., & Tan, F. (2018). Fabrication of sulphonated poly(ethylene glycol)-diacrylate hydrogel as a bone grafting scaffold. Journal of materials science. Materials in medicine. doi:10.1007/s10856-018-6199-1spa
dc.relation.referencesLi, Z., Zhang, X., Yuan, T., Zhang, Y., Luo, C., Zhang, J., . . . Fan, W. (2020). Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration. Tissue engineering. Part A. doi:10.1089/ten.TEA.2019.0304spa
dc.relation.referencesLiang, J., Guo, Z., Timmerman, A., Grijpma, D., & Poot, A. (2018). Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks. Biomedical Materials. Retrieved from https://iopscience.iop.org/article/10.1088/1748-605X/aaf31b/metaspa
dc.relation.referencesLuo, Y., Engelmayr, G., Auguste, D., Ferreira, L., Karp, J., Saigal, R., & Langer, R. (2014). 3D Scaffolds. In R. Lanza, R. Langer, & J. Vacanti, Principles of Tissue Engineering (4 ed., pp. 475 - 494). doi:https://doi.org/10.1016/B978-0-12-398358-9.00024-0spa
dc.relation.referencesMaione, A., Smith , A., Kashpur, O., Yanez, V., Knight, E., Mooney, D., . . . Garlick, J. (2016). Altered ECM deposition by diabetic foot ulcer-derived fibroblasts implicates fibronectin in chronic wound repair. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society. Retrieved from https://pubmed.ncbi.nlm.nih.gov/27102877/spa
dc.relation.referencesMarinel.lo Roura, J., & Verdú Soriano, J. (2018). Conferencia nacional de consenso sobre las úlceras de la extremidad inferior (C.O.N.U.E.I.) (2da Edición ed.). Madrid, Ergon, España. Retrieved from https://gneaupp.info/wpcontent/uploads/2018/04/CONUEIX2018.pdfspa
dc.relation.referencesMazzucco, L., Balbo, V., Cattana, E., & Borzini, P. (2008). Platelet-rich plasma and platelet gel preparation using Plateltex®. Vox sanguinis. doi:10.1111/j.1423-0410.2007.01027.xspa
dc.relation.referencesMehta, S., & Watson, J. (2008). Platelet rich concentrate: basic science and current clinical applications. Journal of orthopaedic trauma. doi:10.1097/BOT.0b013e31817e793fspa
dc.relation.referencesMiraftab, M., Smart, G., Kennedy, J. F., Knill, C. J., Mistry, J., & Groocock, M. R. (2006). Novel chitosan-alginate fibres for advanced wound dressings. Medical Textiles and Biomaterials for Healthcare. doi:10.1533/9781845694104.1.3spa
dc.relation.referencesMouser, V., Melchels, F., Visser, J., Dhert, W., Gawlitta, D., & Malda, J. (2016). Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication. doi:10.1088/1758-5090/8/3/035003spa
dc.relation.referencesMurray, M. M., Spindler, K. P., Abreu, E., Muller, J. A., Nedder, A., Kelly, M., . . . Connolly, S. A. (2007). Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. doi:10.1002/jor.20282spa
dc.relation.referencesNaghieh, S., & Chen, D. (2021). Printability – a Key Issue in Extrusion-based Bioprinting. Journal of Pharmaceutical Analysis. doi:https://doi.org/10.1016/j.jpha.2021.02.001spa
dc.relation.referencesNaghieh, S., Sarker, M., Sharma, N., Barhoumi, Z., & Chen, X. (2020). Printability of 3D Printed Hydrogel Scaffolds: Influence of Hydrogel Composition and Printing Parameters. Applied Sciences. doi:https://doi.org/10.3390/app10010292spa
dc.relation.referencesNemir, S., Hayenga, H. N., & West, J. L. (2010). PEGDA Hydrogels With Patterned Elasticity: Novel Tools for the Study of Cell Response to Substrate Rigidity. Biotechnology and bioengineering. doi:10.1002/bit.22574spa
dc.relation.referencesOrtiz-Vargas, I., García-Campos, M. L., Beltrán-Campos, V., Gallardo-López, F., SánchezEspinosa, A., & Montalvo, M. E. (2017). Cura húmeda de úlceras por presión. Atención en el ámbito domiciliar. Enfermería universitaria. doi:14(4), 243-250spa
dc.relation.referencesOuyang, L., Armstrong, J., Lin, Y., Wojciechowski, J. P., Lee-Reeves, C., Hachim, D., . . . Stevens, M. M. (2020). Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Science advances. doi:10.1126/sciadv.abc5529spa
dc.relation.referencesOuyang, L., Highley, C. B., Sun, W., & Burdick, J. A. (2017). A Generalizable Strategy for the 3D Bioprinting of Hydrogels from Nonviscous Photo-crosslinkable Inks. Advanced materials (Deerfield Beach, Fla.). Retrieved from https://pubmed.ncbi.nlm.nih.gov/27982464spa
dc.relation.referencesOuyang, L., Yao, R., Zhao, Y., & Sun, W. (2016). Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. doi:10.1088/1758-5090/8/3/035020spa
dc.relation.referencesPan, L., Yong, Z., Yuk, K. S., Hoon, K. Y., Yuedong, S., & Xu, J. (2016). Growth Factor Release from Lyophilized Porcine Platelet-Rich Plasma: Quantitative Analysis and Implications for Clinical Applications. Aesthetic plastic surgery. doi:https://doi.org/10.1007/s00266015-0580-yspa
dc.relation.referencesPang, L., Wang, Y., Zheng, M., Wang, Q., Lin, H., Zhang, L., & Wu, L. (2016). Transcriptomic study of high-glucose effects on human skin fibroblast cells. Molecular medicine reports. doi:https://doi.org/10.3892/mmr.2016.4822spa
dc.relation.referencesPaxton, N., Smolan, W., Böck, T., Melchels, F., Groll, J., & Jungst, T. (2017). Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. doi:10.1088/1758-5090/aa8dd8spa
dc.relation.referencesPeters, E., Christoforou , N., Leong, K., Truskey , G., & West, J. (2016). Poly(ethylene glycol) Hydrogel Scaffolds Containing Cell-Adhesive and Protease-Sensitive Peptides Support Microvessel Formation by Endothelial Progenitor Cells. Cellular and molecular bioengineering. doi:10.1007/s12195-015-0423-6spa
dc.relation.referencesPop, M. A., & Almquist, B. D. (2017). Biomaterials: A potential pathway to healing chronic wounds? Experimental dermatology. Retrieved from https://pubmed.ncbi.nlm.nih.gov/28094868spa
dc.relation.referencesQi , M., Zhou, Q., Zeng, W., Wu, L., Zhao, S., Chen, W., . . . Tang , C.-E. (2018). Growth factors in the pathogenesis of diabetic foot ulcers. Frontiers in bioscience (Landmark edition). doi:10.2741/4593spa
dc.relation.referencesQiu, M., Chen, D., Shen, C., Shen, J., Zhao, H., & He, Y. (2016). Platelet-Rich Plasma-Loaded Poly(d,l-lactide)-Poly(ethylene glycol)-Poly(d,l-lactide) Hydrogel Dressing Promotes Full-Thickness Skin Wound Healing in a Rodent Model. International journal of molecular sciences. doi:10.3390/ijms17071001spa
dc.relation.referencesRanganathan, N., Joseph Bensingh, R., Abdul Kader, M., & Nayak, S. (2018). Synthesis and Properties of Hydrogels Prepared by Various Polymerization Reaction Systems. In Polymers and Polymeric Composites: A Reference Series. Springer, Cham. doi:https://doi.org/10.1007/978-3-319-76573-0_18-1spa
dc.relation.referencesRodríguez Flor, J., Palomar Gallego, M., & García-Denche, J. (2012). Plasma rico en plaquetas: fundamentos biológicos y aplicaciones en cirugía maxilofacial y estética facial. Revista Española de cirugía oral y maxilofacial. doi:https://doi.org/10.1016/j.maxilo.2011.10.007spa
dc.relation.referencesRutz, A. L., Hyland, K. E., Jakus, A. E., Burghardt, W. R., & Shah, R. N. (2015). A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels. Advanced Materials. doi:https://doi.org/10.1002/adma.201405076spa
dc.relation.referencesSadeghi-Ataabadi, M., Mostafavi-pou, Z., Vojdani, Z., Sani, M., Latifi, M., & Talaei-Khozan, T. (2016). Fabrication and charaterization of platelet-rich plasma scaffolds for tissue engineering application. Materials Science & Engineering C. doi:10.1016/j.msec.2016.10.001spa
dc.relation.referencesSamberg, M., Stone II, R., Natesan, S., Kowalczewski, A., Becerra, S., Wrice, N., & Christy, R. (2019). Platelet rich plasma hydrogels promote in vitro and in vivo angiogenic potential of adipose-derived stem cells. Acta biomaterialia. doi:10.1016/j.actbio.2019.01.039spa
dc.relation.referencesSamberg, M., Stone, R. 2., Kowalczewski, A., Becerra, S., Wrice, N., Cap, A., & Christy, R. (2019). Platelet rich plasma hydrogels promote in vitro and in vivo angiogenic potential of adipose-derived stem cells. Acta biomaterialia. doi:10.1016/j.actbio.2019.01.039spa
dc.relation.referencesSomasekharan, L. T., Kasoju, N., Raju, R., & Bhatt, A. (2020). Formulation and Characterization of Alginate Dialdehyde, Gelatin, and Platelet-Rich Plasma-Based Bioink for Bioprinting Applications. Bioengineering (Basel, Switzerland). doi:10.3390/bioengineering7030108spa
dc.relation.referencesTan, C. T., Liang, K., Ngo, Z. H., Dube, C. T., & Lim, C. Y. (2020). Application of 3D Bioprinting Technologies to the Management and Treatment of Diabetic Foot Ulcers. Biomedicines. doi:https://doi.org/10.3390/biomedicines8100441spa
dc.relation.referencesTan, C. T., Liang, K., Ngo, Z. H., Dube, C. T., & Lim, C. Y. (2020). Application of 3D Bioprinting Technologies to the Management and Treatment of Diabetic Foot Ulcers. Biomedicines, 8. doi:https://doi.org/10.3390/biomedicines8100441spa
dc.relation.referencesTan, F., Xu, X., Deng, T., Yin, M., Zhang, X., & Wang, J. (2012). Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold. Biomedical materials. doi:https://doi.org/10.1088/1748-6041/7/5/055009spa
dc.relation.referencesUccioli, L., Izzo, V., Meloni, M., Vainieri, E., Ruotolo, V., & Giurato, L. (2015). Non-healing foot ulcers in diabetic patients: general and local interfering conditions and management options with advanced wound dressings. Journal of wound care. doi:10.12968/jowc.2015.24.Sup4b.35spa
dc.relation.referencesWilliams, D., Thayer, P., Martinez, H., Gatenholm, E., & Khademhosseini, A. (2018). A Perspective on the Physical, Mechanical and Biological Specifications of Bioinks and the Development of Functional Tissues in 3D Bioprinting. Bioprinting. doi:https://doi.org/10.1016/j.bprint.2018.02.003spa
dc.relation.referencesYang , J., Olanrele, O., Zhang, X., & Hsu, C. (2018). Fabrication of Hydrogel Materials for Biomedical Applications. Advances in experimental medicine and biology. doi:10.1007/978-981-13-0947-2_12spa
dc.relation.referencesZhang, B., Cristescu, R., Chrisey, D., & Narayan, R. (2020). Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds. International journal of bioprinting. doi:10.18063/ijb.v6i1.211spa
dc.relation.referencesZhang, X., Yang, D., & Nie, J. (2008). Chitosan/polyethylene glycol diacrylate films as potential. International journal of biological macromoleculesspa
dc.relation.referencesZhang, Z., Jin, Y., Yin, J., Xu, C., Xiong, R., Christensen, K., . . . Ringeisen, B. (2018). Evaluation of bioink printability for bioprinting applications. Applied Physics Reviews. doi:https://doi.org/10.1063/1.5053979spa
dc.contributor.cvlacBecerra Bayona, Silvia Milena [0001568861]spa
dc.contributor.cvlacSolarte David, Víctor Alfonso [0001329391]spa
dc.contributor.googlescholarBecerra Bayona, Silvia Milena [5wr21EQAAAAJ&hl=es&oi=ao]spa
dc.contributor.orcidBecerra Bayona, Silvia Milena [0000-0002-4499-5885]spa
dc.contributor.orcidSolarte David, Víctor Alfonso [0000-0002-9856-1484]spa
dc.contributor.scopusBecerra Bayona, Silvia Milena [36522328100]
dc.contributor.researchgateBecerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]spa
dc.contributor.researchgateSolarte David, Víctor Alfonso [Victor-Solarte-David]spa
dc.subject.lembIngeniería biomédicaspa
dc.subject.lembIngenieríaspa
dc.subject.lembBiofísicaspa
dc.subject.lembBioingenieríaspa
dc.subject.lembMedicinaspa
dc.subject.lembEnfermedades de los piesspa
dc.subject.lembBiomoléculasspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishChronic diabetic foot ulcers (UCPD) are a problem that affects the integrity of the skin, which needs an extracellular matrix (scaffold) and biomolecules to achieve the healing process. Biomolecules immersed in platelet-rich plasma (PRP) include growth factors that contribute to tissue regeneration, which is why the design of a polyethylene glycol diacrylate (PEGDA) and PRP biomaterial ink was proposed for potential applications in the development of personalized dressings, as an alternative treatment to promote the healing of UCPD. The study proposed the search for a viscous material (ThA) to increase the printability of the polymer, the immobilization of PRP in the PEGDA ink at 10, 20 and 30% w / v, and ThA, and the evaluation of the printability by varying the flow parameters (150, 250 and 350%) and extrusion speed (2 and 5 mm / s). Therefore, gelatin was used to allow the impression of the mixture, and use it as a sacrificial matrix that was released from the structure. Likewise, biomaterial inks were obtained with optimal printability according to the fidelity in the morphology and designed dimensions, with a formation of continuous filaments. Subsequently, it was determined that PRP is not suitable for the extrusion of a filament and does not allow obtaining a homogeneous solution when mixed with the biomaterial ink, therefore, based on our criteria, it cannot be used for printing. Based on the foregoing, it is established that the ink has the potential to be used for the immobilization of biomolecules and improve the treatment of UCPD, by allowing the manufacture of customized scaffolds.spa
dc.subject.proposalIngeniería clínicaspa
dc.subject.proposalClinical engineeringspa
dc.subject.proposalElectrónica médicaspa
dc.subject.proposalInstrumentos y aparatos médicosspa
dc.subject.proposalPegdaspa
dc.subject.proposalBioimpresión 3Dspa
dc.subject.proposalTinta de biomaterialspa
dc.subject.proposalPRPspa
dc.subject.proposalUCPDspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.contributor.apolounabBecerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa
dc.contributor.linkedinBecerra Bayona, Silvia Milena [silvia-becerra-3174455a]


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia