Mostrar el registro sencillo del ítem

dc.contributor.advisorMoncada Guayazán, Camilo Enrique
dc.contributor.advisorRoa Prada, Sebastián
dc.contributor.authorMejía Espitia, Julián Arturo
dc.coverage.spatialColombiaspa
dc.date.accessioned2021-08-10T19:23:07Z
dc.date.available2021-08-10T19:23:07Z
dc.date.issued2021-04-25
dc.identifier.urihttp://hdl.handle.net/20.500.12749/13725
dc.description.abstractEl trabajo elaborado presenta el diseño, simulación e implementación de dos estrategias de control, PID en su configuración de control proporcional y derivativo (PD), y LQG de 2 grados de libertad (LQR y observador de Luenberger), para ello se comienza por plasmar el modelo matemático del drone, seguido de simulaciones para corroborar el modelo, se presenta también la identificación de parámetros del modelo, tales como la masa, momentos de inercia y fuerzas de empuje generadas por los motores, con el fin de ajustar el modelo a parámetros reales del sistema. Para la fase de implementación se elabora un plan de pruebas para control de orientación y para ello se utiliza la controladora de vuelo PX4 la cual es utilizada para proyectos de desarrollo, logrando modificar partes de su código desde Simulink y observando en tiempo real variables de control y actuación del sistema. Se incluye en la sección de resultados, el estado de implementación de las 2 estrategias de control planteadas, para las orientaciones (variables roll, pitch e yaw).spa
dc.description.tableofcontentsINTRODUCCION ..................................................................................................... 1 1. MARCO TEORICO ........................................................................................... 2 1.1. Historia de los Vehículos Aéreos no Tripulados (UAV) ............................... 2 1.2. Clasificación de los vehículos aéreos no tripulados (UAV) ......................... 6 1.3. Quadrotor: Definición ................................................................................ 10 1.4. Multi-rotores .............................................................................................. 11 2. ESTADO DEL ARTE ....................................................................................... 13 3. OBJETIVOS .................................................................................................... 14 3.1. Objetivo General ....................................................................................... 14 3.2. Objetivos Específicos ................................................................................ 14 4. METODOLOGIA ............................................................................................. 15 5. MODELAMIENTO MATEMATICO DEL QUADROTOR .................................. 17 5.1. Modelo Dinámico ...................................................................................... 17 5.2. Modelo CAD Intel Aero Ready to Fly ........................................................ 21 5.3. Simulación por FEM para verificación de resistencia de la jaula .............. 24 5.4. Identificación de Parámetros .................................................................... 29 5.4.1. Masas ................................................................................................. 29 5.4.2. Momentos de inercia .......................................................................... 30 5.4.3. Fuerza de Empuje .............................................................................. 31 5.5. Sintonización de modelo teórico a partir de datos experimentales. .......... 33 6. DISEÑO Y SIMULACION DEL CONTROLADOR ........................................... 35 6.1. Control de Orientación y Altitud ................................................................ 35 6.1.1. Modelo matemático Lineal, representación en espacio de estados. .. 35 6.1.2. Representación del modelo en espacio de estados en simulink, Matlab 39 6.1.3. Control PID ......................................................................................... 42 6.1.4. Simulación controlador PID (PD_Pseudo derivador) .......................... 42 6.1.5. Control LQR ....................................................................................... 44 6.1.6. Simulación del Controlador LQR ........................................................ 45 6.1.7. Observador para estimación de estados usando ubicación de polos.47 6.1.8. Unificación de control LQR con observador por ubicación de polos (LQG 2DOF) ................................................................................................... 49 6.2. Control para posición X e Y ...................................................................... 50 6.2.1. Ecuaciones de transformación para roll y pitch .................................. 50 6.2.2. Diseño del controlador ....................................................................... 51 6.2.3. Simulación para el control de posición y orientación .......................... 52 6.2.4. Comparación de controladores (PID, LQG 2DOF) ............................. 57 7. CARACTERISTICAS DEL DRONE, HARDWARE Y SOFTWARE ................. 59 7.1. Intel Aero Ready to Fly Drone (Frame) ..................................................... 59 7.2. Pixhawk 4 mini (Flight Controller) ............................................................. 59 7.2.1. Características o especificaciones PX4 mini ...................................... 59 7.2.2. Interfaces ........................................................................................... 60 7.2.3. Pinouts o Conexiones ........................................................................ 61 7.2.4. Dimensiones....................................................................................... 61 7.3. Estructura de control para multicopteros PX4 ........................................... 61 7.3.1. Estructura de control de velocidades angulares. ................................ 62 7.3.2. Estructura de control de orientación ................................................... 62 7.3.3. Estructura de control de velocidad ..................................................... 62 7.3.4. Estructura de control para posiciones. ............................................... 63 7.4. Holybro Telemetry Radio .......................................................................... 63 7.4.1. Especificaciones Técnicas ................................................................. 64 7.5. Qgroundcontrol, configuración y calibración de sensores Pixhawk 4 mini. 64 7.5.1. Firmware ............................................................................................ 64 7.5.2. Fuselaje, frame o marco ..................................................................... 65 7.5.3. Calibración de Sensores .................................................................... 65 8. IMPLEMENTACION........................................................................................ 69 8.1. Planta de pruebas e implementación ........................................................ 69 8.2. Construcción Firmware PX4 para el Drone ............................................... 70 8.2.1. Instalación toolbox Matlab .................................................................. 70 8.2.2. Configuración del paquete de soporte ................................................ 71 8.3. Primeros programas con PX4 y Simulink. ................................................. 72 8.3.1. Lectura de giróscopo PX4 con Simulink ............................................. 73 8.3.2. Verificación de activación de motores con simulink. ........................... 74 8.3.3. Programa de activación y desactivación de motores .......................... 75 8.3.4. Diseño, construcción e implementación de un control PID y LQG 2dof para orientación en la controladora de vuelo PX4 .......................................... 75 9. RESULTADOS ............................................................................................... 79 9.1. Pruebas de vuelo controlador por defecto ................................................ 79 9.1.1. Zonas de pruebas para vuelo del Drone ............................................ 82 9.2. Pruebas controladas de implementación .................................................. 82 9.2.1. Resultados de implementación bajo ambiente controlado (control de roll, pitch y yaw) .............................................................................................. 83 10. ALCANCE DEL PROYECTO ....................................................................... 87 11. CONCLUSIONES ........................................................................................ 90 ANEXOS ................................................................................................................ 91 12. TRABAJOS FUTUROS ................................................................................ 93 13. BIBLIOGRAFIA ............................................................................................ 94spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleDesarrollo del sistema de control con seguimiento de trayectorias de un cuadrotor para captura de imágenes en afloramientos geológicos de difícil accesospa
dc.title.translatedDevelopment of the control system with tracking of the trajectories of a quadrotor for capturing images in geological outcrops that are difficult to accessspa
dc.degree.nameIngeniero Mecatrónicospa
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNABspa
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingenieríaspa
dc.publisher.programPregrado Ingeniería Mecatrónicaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsMechatronicspa
dc.subject.keywordsMathematical modelspa
dc.subject.keywordsDronespa
dc.subject.keywordsAfloramientos geológicosspa
dc.subject.keywordsRemotely piloted vehiclesspa
dc.subject.keywordsRemote controlspa
dc.subject.keywordsArtificial intelligencespa
dc.subject.keywordsProgrammingspa
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNABspa
dc.identifier.reponamereponame:Repositorio Institucional UNABspa
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.relation.references[1] B. Siciliano and O. Khatib, Handbook of Robotics, Verag,Berlin,Heidelberg: Springer, 2008.spa
dc.relation.references[2] K. P. Valvanis and G. J. Vachtsevanos, Handbook of Unmanned Aerial Vehicles, Dordrecht, Heidelberg, New York, London: Springer Reference, 2015spa
dc.relation.references[3] Unmanned Aerial Vehicle Market by Application, «marketsandmarkets,» febero 2018. [En línea]. Available: https://www.marketsandmarkets.com/Market- Reports/unmanned-aerial-vehicles-uav-market- 662.html?gclid=EAIaIQobChMImM2_4qX02wIVFFqGCh3Z3QxjEAAYASAAEgIKAv D_BwEspa
dc.relation.references[4] J. Garcia, «Frontera,» 25 diciembre 2016. [En línea]. Available: http://www.frontera.info/EdicionEnLinea/Notas/Noticias/25122016/1162425- Cicese-resalta-la-importancia-del-estudio-de-las-rocas.html.spa
dc.relation.references[5] UNIRED-Ecopetrol S.A., "Acuerdo de cooperacion N03-AC03 "Innóvate 2017: Generando valor"," Bucaramanga, 2017spa
dc.relation.references[6] UAB, "Pautas para el trabajo de campo en geología: El estudio de afloramientos," [Online]. Available: http://webs2002.uab.es/_c_gr_geocamp/geocamp/esp/treball/pautes.htm .spa
dc.relation.references[7] P. Marqués y A. Da Ronch, Advance UAV Aerodynamics, Flight Stability and Control: Novel Concepts, Chichester, U.K: Jhon Wiley and Sons Ltd, 2017spa
dc.relation.references[8] O. Araar and N. Aoutf, "Quadrotor Control for Trayectory Tracking in presence of Wind Disturbances," in 2014 UKACC INternational Conference on Control, Loughborough, U.k., 2014.spa
dc.relation.references[9] J. A. P. R. y. R. P. S. Gilmar H. Tuta Navajas, "Concurrent design optimization and control of a custom designed quadcopter," in 16 international Conference on research and Education in Mechatronics, 2015spa
dc.relation.references[10] H. Paiva, J. C. Soto and W. Ipanaque, "Modeling and PID cascade control of a Quadcopter for trajectory tracking," in 2015 CHILEAN Conference on Electrical, Electronics Engieneering, nformation and Communication Technologies (CHILECON), Chile, 2015spa
dc.relation.references[11] T. Xiang, F. Jiang, Q. Hao and W. Cong, "Adaptative Flight Control for Quadrotor UAVs with Dynamics Inversion and Neural Networks," in 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Baden-Baden. Alemania, 2016.spa
dc.relation.references[12] C. Liu, J. Pan and Y. Chang, "PID and LQR Trayectory Control for Unmmaned Quadrotor Helicopter: Experimental Studies," in 35th Chinese Control Conference, Chengdu, China, 2016spa
dc.relation.references[13] C. Zhang, X. Zhou, H. Zhao, A. Dai and H. Zhou, "Three dimensional Fuzzy Control of mini Quadrotor UAV Trayectory Tracking Under Impact of Wind Disturbance," in 2016 International Conference on Afvance Mechatronic Systems, Melbourne, Australia, 2016.spa
dc.relation.references[14] D. Salunkhe, S. Sharma, S. Topno, C. Darapaneni, Kankane, Amol and Shah, Suril, "Design, Trajectory Generation and Control of Quadrotor Research Platform," in 2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA), 2016spa
dc.relation.references[15] DRONCODE, «Developer Guide,» Px4.io, 17 08 2018. [En línea]. Available: http://px4.io/. [Último acceso: julio 2018].spa
dc.relation.references[16] Z. Andrew and J. Samuel, "A Review of Control Algoritms for Autonomous Quadrotors," Open Journal of Applied Sciences, 2014.spa
dc.relation.references[17] S. Bouabdallah, "Design and Control of Quadrotors with application to autonomous flying," in Tesis del École Polytechnique Fédérale de Lausanne, 2007.spa
dc.relation.references[18] V. Rincon, A. Ricardo and J. A. Herrera Vasquez, "Diseño y construcción del Prototipo experimental de la estructura para un vehiculo aéreo no tripulado (UAV) tipo Cuadrotor," in Tesis de la Universidad Industrial de Santander, Bucaramanga, 2012.spa
dc.relation.references[19] F. Sabatino, "Quadrotor control: modeling, nonlinear control design, and simulation," in Tesis de maestria KTH Royal Institute of Technology, Stockholm, 2015spa
dc.relation.references[20] Advector, «Advector Products,» 2014. [En línea]. Available: http://www.advector.co/productos.html. [Último acceso: 4 Julio 2018].spa
dc.relation.references[21] Yuneec, «H520,» 2017. [En línea]. Available: http://us.yuneec.com/comm-en- h520-overview. [Último acceso: 4 Julio 2018].spa
dc.relation.references[22] DJI, «Matrice,» 2018. [En línea]. Available: https://www.dji.com/matrice100/info#specs. . [Último acceso: 4 Julio 2018].spa
dc.relation.references[23] DJI, «Phantom 4,» 2018. [En línea]. Available: https://www.dji.com/phantom- 4-pro/info#specs. . [Último acceso: 4 Julio 2018].spa
dc.relation.references[24] DJI, «Inspire 2,» 2018. [En línea]. Available: https://www.dji.com/inspire- 2/info#specs. [Último acceso: 4 Julio 2018].spa
dc.relation.references[25] Intel, "Intel Aero Ready to Fly," 2018. [Online]. Available: https://click.intel.com/intel-aero-ready-to-fly-drone.html. [Accessed 4 Julio 2018].spa
dc.relation.references[26] Z. Guoxiang , S. Bo, C. YangQuan and M. Holley, "SmartCaveDrone: 3D cave mapping using UAVs as obotic co-archeologists," 2017 International Conference on Unmanned Aircraft Systems (ICUAS), vol. 1, no. 17060614, 2017spa
dc.relation.references[27] h. C. Seung, w. H. Seok and h. M. Yong, "Hardware-In-the-Loop Simulation Platform," 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), 2016spa
dc.relation.references[28] E. A. Niit and W. J. Smit, "Integration of Model Reference Adaptative Control (MRAC) with PX4 firmware for quadcopters," 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 2017.spa
dc.relation.references[29] S. Watcharapol, T. Suradet, T. Chalothorn and S. Jiraphon, "Implementation of System Identification and Flight Control System for VA V," 2017 3rd International Conference on Control, Automation and Robotics, 2017spa
dc.relation.references[30] M R REESE, «The steam-powered pigeon of Archytas the flying machine of antiquity,» ancient-origins.net, [En línea]. Available: https://www.ancient- origins.net/ancient-technology/steam-powered-pigeon-archytas-flying-machine- antiquity-002179..spa
dc.relation.references[31] F. Gerin, P. Gleason y T. James, Introduction to UAV Systems, Cuarta ed., New Delhi, India: Wiley, 2012spa
dc.relation.references[32] S. Zaloga, «Unmmaned Aerial Vehicles: Robotic Air Warframe 1917-2007,» New Vanguard, New York, 2008spa
dc.relation.references[33] KROSBLADE AEROSPACE, "History of Quadcopters and Other Multirotors," Krossblade.com, [Online]. Available: http://www.krossblade.com/history-of- quadcopters-and-multirotors/.spa
dc.relation.references[34] Ffden-2, "History of Quadcopters," Ffden-2.phys.uaf.edu, [Online]. Available: http://ffden- 2.phys.uaf.edu/webproj/212_spring_2014/Clay_Allen/clay_allen/history.htmlspa
dc.relation.references[35] Intel, "PRODUCT BRIEF: the Intel Aero Ready to Fly Drone," 2017. [Online]. Available: www.intel.com/aero.spa
dc.relation.references[36] Intel, "Mechanical Assembly Guide: Intel Aero Ready to Fly," octubre 2016. [Online]. Available: www.intel/aero.comspa
dc.relation.references[37] C. C. (Intel), "Intel RealSense SDK," 15 mayo 2015. [Online]. Available: https://software.intel.com/en-us/articles/realsense-r200-camera. [Accessed 19 agosto 2018].spa
dc.relation.references[38] YUNNEC, "Intelaerodroneparts," 2018. [Online]. Available: http://shop.yuneecusa.com/intelaerodroneparts. [Accessed 19 agosto 2018].spa
dc.relation.references[39] D. Casner, J. Renaud, R. Houssin and D. Kinittek, "A novel design approach for mechatronic systems based on multidisciplinary design optimization," in ICAM 2012: International Conference on Automation and Mechatronics, Oslo, Agosto 2012.spa
dc.relation.references[40] D. Casner, J. Renaud, R. Houssin and D. Kinittel, "Proposal for a design approach for mechatronic systems based on optimization and case based reasoning," in ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engieneering Conference (IDETC/CIE), Portland, 2013spa
dc.relation.references[41] H. Voos, "Nonlinear State-Dependent Riccati Equation Control of a Quadrotor UAV," International Conference on Control Applications, 4-6 Octubre 2006.spa
dc.relation.references[42] A. Astudillo Vigoya, Design and Impleemntation of Flight Dynamics Control Strategies for a Smasrtphone-based Quadrotor, Cali, Colombia, 2017.spa
dc.relation.references[43] K. Ogata, Ingeniería de control moderna, Madrid: PEARSON EDUCACIÓN, 2010.spa
dc.relation.references[44] O. Katsuhiko, Sistemas de Control en Tiempo Discreto, Mexico: PRENTICE HALL, 1996.spa
dc.relation.references[45] MatLab, "mathworks," 2018. [Online]. Available: https://la.mathworks.com/help/control/ref/dlqr.html.spa
dc.relation.references[46] GitHub, "github.com," GitHub, Inc. [US], 14 11 2017. [Online]. Available: https://github.com/intel-aero/meta-intel-aero/wiki/01-About-Intel-Aero. [Accessed 31 08 2018].spa
dc.relation.references[47] Intel, "Intel Aero Platform for UAVs Installation Files," Intel, 25 5 2018. [Online]. Available: https://downloadcenter.intel.com/download/27833/Intel-Aero- Platform-for-UAVs-Installation-Files?v=t. [Accessed 1 9 2018].spa
dc.relation.references[48] Y. Wei, "intel-aero/ meta-intel-aero," GitHub US, 15 mayo 2018. [Online]. Available: https://github.com/intel-aero/meta-intel-aero/wiki/02-Initial-Setup.spa
dc.relation.references[49] Mathworks.com. 2021. Setup and Configuration- MATLAB & Simulink. [online] Available at: <https://www.mathworks.com/help/supportpkg/px4/setup-and- configuration.html> [Accessed 10 February 2020].spa
dc.relation.references[50] García, R. E. & Rincón, A. F. (2013). Controlador para estabilización de vuelo de un quadrotor. Recuperado de: http://hdl.handle.net/20.500.12749/1570.spa
dc.relation.references[51] Fum, W. (2015). Implementation of Simulink controller design on Iris+ quadrotor. Calhoun.nps.edu. Retrieved 3 May 2020, from https://calhoun.nps.edu/handle/10945/47258spa
dc.contributor.cvlacMoncada Guayazán, Camilo Enrique [0000062838]spa
dc.contributor.cvlacRoa Prada, Sebastián [0000295523]spa
dc.contributor.googlescholarRoa Prada, Sebastián [xXcp5HcAAAAJ&hl=es&oi=ao]spa
dc.contributor.orcidRoa Prada, Sebastián [0000-0002-1079-9798]spa
dc.contributor.researchgateMoncada Guayazán, Camilo Enrique [Camilo_Moncada_Guayazan2]spa
dc.subject.lembMecatrónicaspa
dc.subject.lembVehículos piloteados de forma remotaspa
dc.subject.lembControl remotospa
dc.subject.lembInteligencia artificialspa
dc.subject.lembProgramaciónspa
dc.identifier.repourlrepourl:https://repository.unab.edu.cospa
dc.description.abstractenglishThe work prepared presents the design, simulation and implementation of two control strategies, PID in its proportional and derivative control configuration (PD), and LQG with 2 degrees of freedom (LQR and Luenberger observer), for which it begins by capturing The mathematical model of the drone, followed by simulations to corroborate the model, also presents the identification of model parameters, such as mass, moments of inertia and thrust forces generated by the motors, in order to adjust the model to parameters actual system. For the implementation phase, a test plan for orientation control is elaborated and for this the PX4 flight controller is used, which is used for development projects, managing to modify parts of its code from Simulink and observing control variables in real time. and system performance. The status of implementation of the 2 control strategies proposed for the orientations (variables roll, pitch and yaw) is included in the results section.spa
dc.subject.proposalModelo matemáticospa
dc.subject.proposalDronespa
dc.subject.proposalAfloramientos geológicosspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*
dc.coverage.campusUNAB Campus Bucaramangaspa
dc.description.learningmodalityModalidad Presencialspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 2.5 Colombia