Show simple item record

dc.contributor.advisorAcevedo Arenas, Cesar Yobany
dc.contributor.authorLaverde Correa, María Camila
dc.contributor.authorAngulo Argote. Raúl
dc.date.accessioned2020-06-26T17:41:51Z
dc.date.available2020-06-26T17:41:51Z
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/20.500.12749/1189
dc.description.abstractEl avance del presente documento exhibe un estudio de pre-factibilidad económica sobre la construcción de un sistema para obtener biocarbón y valorizar el material orgánico que es llevado al relleno sanitario el Carrasco a través del proceso de pirolisis; buscando incursionar en un mercado potencialmente ascendente debido a la demanda actual de fertilizantes orgánicos en la región de influencia del proyecto. Se analiza el mercado actual con base en información estadística de agencias oficiales y se establecen proyecciones del mercado apoyados en variables que se interrelacionan para determinar la demanda, oferta y el precio; con el objeto de establecer la viabilidad de la construcción de la planta pirolitica. El análisis reflejado en esta tesis hace referencia a las inversiones, estudio técnico y determinación de aspectos administrativos, presentando proyecciones de los estados financieros que indican las mejores decisiones para el desarrollo de la propuesta de valorización de residuos.spa
dc.description.tableofcontentsRESUMEN 5 INTRODUCCIÓN 16 1. MARCO REFERENCIAL 18 1.1. LOCALIZACIÓN 18 2. MARCO LEGAL 20 3. MARCO TEORICO 28 3.1 ESTADO DEL ARTE 28 3.2 BIOCARBÓN 31 3.2.1 Servicios del Producto (Biocarbón). 31 3.2.2 Historia del Biocarbón 32 3.2.3 Origen e Intención de la Investigación del Biocarbón 34 3.3 OBTENCIÓN DEL BIOCARBÓN 36 3.3.1 Características del Biocarbón 37 3.4 PIRÓLISIS 40 3.4.1 Pirólisis Lenta 42 3.4.2 Pirólisis Rápida 43 3.4.3 Pirólisis ultrarrápida 44 3.4.4 Gasificación 44 4. ESTUDIO DEL MERCADO 50 4.1 DESCRIPCIÓN DEL PRODUCTO 50 4.2 MERCADO OBJETIVO 51 4.3 LA DEMANDA 51 4.4 OFERTA O COMPETENCIA 55 4.5 PROYECCIÓN DE LA OFERTA 59 4.6 DEMANDA POTENCIAL INSATISFECHA 60 4.8 PRECIO 62 4.9 PUBLICIDAD Y PROMOCIÓN 63 4. ESTUDIO TÉCNICO 5.1 MÉTODO DE GENERACIÓN DE BIOCARBÓN………………………………..64 5.2. TAMAÑO DE LA PLANTA 66 5.3 PLAN GENERAL FUNCIONAL 66 5.3.1 Disposición de la Materia Prima 69 5.3.2 Recolección y Transporte 70 5.3.3 Acopio de la Materia Prima 72 5.3.4 Distribución de la Planta 72 5.3.7.2 Productos Obtenidos 81 6. ESTUDIO FINANCIERO 82 6.1 INVERSIONES 82 6.3 PRECIO DE VENTA 101 6.5 ESTADOS FINANCIEROS 104 7. RESULTADOS DE LA EVALUACIÓN DEL PROYECTO 104 7.1 EVALUACIÓN FINANCIERO 105 8. SENSIBILIDADES DEL PROYECTO DE INVERSIÓN 112 BIBLIOGRAFÍA 117spa
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titlePrefactibilidad económica de la construcción de un sistema para obtención de biocarbón y valorización de material orgánico a través del proceso de pirólisisspa
dc.title.translatedEconomic pre-feasibility of the construction of a system to obtain biochar and recovery of organic material through the pyrolysis processeng
dc.degree.nameEspecialista en Gerencia de Recursos Energéticos
dc.coverageBucaramanga (Colombia)
dc.publisher.grantorUniversidad Autónoma de Bucaramanga UNAB
dc.rights.localAbierto (Texto Completo)spa
dc.publisher.facultyFacultad Ingeniería
dc.publisher.programEspecialización en Gerencia de Recursos Energéticos
dc.description.degreelevelEspecialización
dc.type.driverinfo:eu-repo/semantics/bachelorThesis
dc.type.localTrabajo de Gradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1f
dc.subject.keywordsPhysico-mechanical engineering
dc.subject.keywordsManagement of energy resources
dc.subject.keywordsCarbon technology
dc.subject.keywordsCoal industry
dc.subject.keywordsInvestigations
dc.subject.keywordsAnalysis
dc.subject.keywordsWaste recoveryeng
dc.subject.keywordsPyrolysiseng
dc.subject.keywordsBiochareng
dc.subject.keywordsEnergyeng
dc.subject.keywordsFertilizerseng
dc.subject.keywordsBiomasseng
dc.identifier.instnameinstname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponamereponame:Repositorio Institucional UNAB
dc.type.hasversioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.relation.referencesLaverde Correa, María Camila, Angulo Argote. Raúl (2015). Prefactibilidad económica de la construcción de un sistema para obtención de biocarbón y valorización de material orgánico a través del proceso de priólisis. Bucaramanga (Santander, Colombia) : Universidad Autónoma de Bucaramanga UNAB
dc.relation.referencesEttwig, K., Butler, M., Pelletier, E., Mangenot, S., Le Paslier, D., Kuypers, M., .Strous, M. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 543-550.
dc.relation.referencesLehmann,J; Pereira da Silva, Jr; Nehls, T; Zech,W and Glaser, B. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal Amendments Plant and Soil 249 (2003): 343–357.
dc.relation.referencesCarvajal Muñoz, Juan Sebastián, & Mera Benavides, Adriana Consuelo. (2010). Fertilización biológica: técnicas de vanguardia para el desarrollo agrícola sostenible. Producción + Limpia, 5(2), 77-96. Retrieved June 02, 2015
dc.relation.referencesPengthamkeerati, P; Motavalli, PP; Kremer, RJ. 2011. Soil microbial activity and functional diversity changed by compaction, poultry litter and cropping in a claypan soil. Applied Soil Ecology 48(1):71-80.
dc.relation.referencesHARGADON, Bernard, MUÑERA C. Armando. Contabilidad de Costos, Bogotá. Editorial Norma. 2da Edición, 1985.
dc.relation.referencesKUSHELL, Jennifer. Solo para Emprendedores. Grupo Editorial Norma, Santafé de Bogotá, 2001.
dc.relation.referencesMENDEZ, Carlos. Metodología. Editorial McGraw Hill Interamericana S.A., Santafé de Bogotá, 2001.
dc.relation.referencesMORA ZAMBRANO, Armando. Matemáticas Financieras. Mc Graw Hill. Bogotá. 2da Edición. 2000.
dc.relation.referencesORTIZ A., Héctor., Finanzas Básicas Para no Financieros, Colombia, Thompson. 1era Edición. 2003.
dc.relation.referencesORTEGA P, Armando. Contabilidad de Costos, México, Noriega Editores, 6ta Edición. 1997.
dc.relation.referencesPHILIP, Kotler. Dirección de Mercadotecnia, México, Editorial Prentice Hall, 8va Edición. 1996
dc.relation.referencesReview of Pyrolysis Reactors. First Project Report. Department of Biological Systems Engineering and the Center for Sustaining Agriculture and Natural Resources, Washington State University, Pullman, WA, 137 pp.
dc.relation.referencesGaunt, J.L., Lehmann, J. (2008). “Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production”. Environmental Science and Technology 42, 4152-4158.
dc.relation.referencesHammes, K., RJ Smernick, JO. Skjemstad, A. Herzog, UF. Vogt, MWI. Schmidt. 2006. Synthesis and caracterisation of laboratory-charred grass straw (Oriza sativa) and chesnut wood (Castanea sativa) as reference materials for black carbon quantification. Organic Geochemistry. 37: 1629-1633.
dc.relation.referencesHiller, E., A. Fargasova, L. Zemanova, M. Bartal. 2007. Influence of wheat ash on the MCPA inmobilization in agricultural soils. Bulletin of Environmental Contamination and Toxicology 78: 345-348.
dc.relation.referencesKimetu, J.M., J.Lehmann, S.O. Ngoze, D.N. Mugendi, J.M. Kinyangi, S. Riha, L. Verchot, J.W. Recha and A.N. Pell. 2008. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems 11: 726-739.
dc.relation.referencesLaird, D.A., R. Brown, J. Amonette and J. Lehmann. 2009. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels, Bioproducts & Biorefining. 3:547-562. Wiley InterScience.
dc.relation.referencesEttwig, K., Butler, M., Pelletier, E., Mangenot, S., Le Paslier, D., Kuypers, M., .Strous, M. (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 543-550.
dc.relation.referencesAsai, H., K. Benjamin, M. Haefele , S. Khamdok, H. Koki, K. Yoshiyuki, I. Yoshio, S. Tatsuhiko, and H. Takeshi. 2009. Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research 111 (1-2):81-84.
dc.relation.referencesAntal Jr. M.J. and M. Grönli. 2003. The art, science, and technology of charcoal production. Industrial and Engineering Chemistry Research 42(8): 1619- 1640
dc.relation.referencesBaccile, N., M. Antonietti and M.M. Titirici. 2010. One-step hydrothermal synthesis of nitrogen-doped nanocarbons: Albumine directing the carbonization of glucose. ChemSusChem 3: 246-253.
dc.relation.referencesBaronti, S., G. Alberti, G. Vedove, F. Di Gennaro, G. Fellet, L. Genesio, F. Miglietta, A. Peressittu, F. Vaccari. 2010. The biochar option to improve plant yields: First results from some field and pot experiments in Italy. Ital. J. Agron./Riv. Agron. 2010 (5): 3-11.
dc.relation.referencesBenítez, T; Rincón, AM; Limón, MC; Codón, AC. 2004. Biocontrol mechanisms of Trichoderma strains. International Microbiology 7:249 - 260.
dc.relation.referencesBRIDGEWATER, A.V. (2004). “Biomass fast pyrolysis”. Thermal Science 8, 21-49.
dc.relation.referencesBrick, S. 2010. Biochar: assessing the promise and risks to guide U.S. Policy. Natural resources fefense council. U.S.A.
dc.relation.references2007. Improving wheat production with deep banded oil mallee charcoal in Western Australia. First Asia Pacific Biochar Conference, Terrigal,l Australia.
dc.relation.referencesBol, S; Chuenchit, S; Petcharat, V. 2011. Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper. BioControl 56(3):365-374.
dc.relation.referencesCalabrese, EJ; Blain, RB. 2009. Hormesis and plant biology. Environmental Pollution 157(1):42-48.
dc.relation.referencesBurbano, H. 22002. La enseñanza de la Ciencia del Suelo:Referentes para su análisis y proyección en Colombia. Suelos Ecuatoriales. 32(2) 335-340.
dc.relation.referencesCarvajal Muñoz, Juan Sebastián, & Mera Benavides, Adriana Consuelo. (2010). Fertilización biológica: técnicas de vanguardia para el desarrollo agrícola sostenible. Producción + Limpia, 5(2), 77-96. Retrieved June 02, 2015.
dc.relation.referencesCayuela, M.L., P.J. Kuikman, O. Oenema, R.R. Bakker, J.W. Groenigen. 2010. Bioenergy residues and biochar as soil amendments:
dc.relation.referencesClimate-relevant and N dynamics during decomposition in soil. Use of manures and organic wastes to improve soil quality and nutrient balances.
dc.relation.referencesChan, KY; Van Zwieten, L; Meszaros, I; Downie, A; Joseph, S. 2007. Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research 45(8):629.
dc.relation.referencesChan, KY; Zwieten, LV; Meszaros, I; Downie, A; Joseph, S. 2008. Using poultry litter biochars as soil amendments. Australian Journal of Soil Research 46:437- 444.
dc.relation.referencesChan, K.Y., Xu, Z., 2009. Biochar: Nutrient properties and their enhancement. In: Biochar for Environmental Management: Science and Technology (Lehmann, J. & Joseph, S. ed.) .
dc.relation.referencesCheng, C-H, Lehmann, J., Thies, J., Burton, S.D., Engelhard, M.H., 2006. Oxidation of black carbon by biotic and abiotic processes. Organic Geochemistry 37: 1477-1488.
dc.relation.referencesCheng, C. and J. Lehmann. 2009. Ageing of black carbon along a temperature gradient. Chemosphere 75, 1021-1027.
dc.relation.referencesCornelissen, G., V. Martinsen, V. Shitumbanuma, V. Alling, G. Breedveld, D. Rutherford, M. Sparrevik, S. Hale. 2013. Biochar Effect on
dc.relation.referencesMaize Yield and Soil characteristicas in five conservation farming sites in Zambia. Agronomy 2013, 3:256-274.
dc.relation.referencesCORDOBA PADILLA, Marcial. Formulación y Evaluación de Proyectos. Ecoe Ediciones Ltda., Bogotá, D. C, 2008.
dc.relation.referencesDemirbas Ayhan, 2004. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues.
dc.relation.referencesDemirbas, A. (2006). “Production and characterization of bio-chars from biomass via pyrolysis”. Energy sources Part a 28, 413-422.
dc.relation.referencesDemirbas, M.F. 2009. Biorefineries for biofuel upgrading: A critical review. Applied Energy 86: S151-S161.
dc.relation.referencesDownie, A., Crosky, A., Munroe, P., 2009. Physical properties of biochar. In: Biochar for Environmental Management: Science and Technology (Eds. Lehmann, J. & Joseph, S.), Earthscan.
dc.relation.referencesDownie, A., Klatt P., Downie R., Munroe P. 2007. Slow pyrolysis: Australian demonstration plant successful on multi-feedstocks. Bioenergy 2007 Conference, Jyväskylä, Finland.
dc.relation.referencesFREIRE, Andy. Pasión por emprender. Colombia: Ed norma. 2008
dc.relation.referencesMašek, O. and Brownsort, P. 2011. Biochar production. In: An assessment of the benefits and issues associated with the application of biochar to soil. Shackley, S. and Sohi, S. edit. UK Biochar Research Centre.
dc.relation.referencesMills, E. 2012. Weighing the risks of climate change mitigation strategies. Bulletin of the Atomic Scientists 68(6) 67-78.
dc.relation.referencesMcElligott, K., (2011). Biochar amendments to forest soils: effects on soil properties and tree growth. Germany.
dc.relation.referencesNovak, J.M., W.J. Busscher, D.W. Watts, D.A. Laird, M.A. Ahmedna, M.A.S. Niandou. 2010. Short-term CO2 mineralization after additions of biochar and switch grass to a typic kandiudult. Geoderma 154: 281-288.
dc.relation.referencesOrbegozo, Ander. 2013. Efectos de la aplicación de biochar en el modelo jerárquico de agregación de un suelo forestal bajo condiciones oceánicas.
dc.relation.referencesPengthamkeerati, P; Motavalli, PP; Kremer, RJ. 2011. Soil microbial activity and functional diversity changed by compaction, poultry litter and cropping in a claypan soil. Applied Soil Ecology 48(1):71-80.
dc.relation.referencesQiu, S., A.J. McComb, and R.W. Bell. 2008. Ratios of C, N and P in soil water direct microbial immobilization–mineralization and N availability in nutrient amended sandy soils in southwestern Australia. Agriculture, Ecosystems and Environment 127: 93-99.
dc.relation.referencesRegmi, P., Moscoso, J. L. G., Kumar, S., Cao, X. Y., Mao, J. D., and Schafran, G.: Removal of copper and cadmium from aqueous solution using switch grass biochar produced via hydrothermal carbonization process, J. Environ. Manage., 109, 61e69 (2012).
dc.relation.referencesSadaka, S. and Eng, P. 2007. 2. Pyrolisis. Center for sustainable enviromental technologies. Departament of agricultural and biosystems engineering. Iowa State University. Nevada.
dc.relation.referencesSAPAG CHAIN, Nassir. Preparación y Evaluación de Proyectos. Santiago, Ed. Graw Hill, 4ta Edición. 2002.
dc.relation.referencesSchmidt, M.W.I. and A. G. Noack. 2000. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochem. Cycles. 14, 777–794
dc.relation.referencesSohi, S.P., Krull, E., Lopez-Capel, E., Bol, R., (2010). A review of biochar and its us and function in soil. ADVANCES IN AGRONOMY, Vol. 105, pp.47-82.
dc.relation.referencesSohi, S., Loez-Capel, E., Krull, E. & Bol, R. (2009). Biochar's roles in soil and climate change: A review of research needs. CSIRO Land and Water Science Report 05/09, 64.
dc.relation.referencesShrestha, G., S.J. Traina and C.W. Swanston. 2010. Black carbon’s properties and role in the environment: A comprehensive review. Sustainability 2: 294-320.
dc.relation.referencesSteiner, C., 2004 Biochar carbon sequestration. University of Georgia, Biorefining and Carbon Cyclin program.
dc.relation.referencesSteiner, C; Das, KC; Garcia, M; Förster, B; Zech, W. 2008. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 51(5-6):359-366.
dc.relation.referencesSteiner, C., K.C. Das, N. Melear and D. Lakely. 2010. Reducing nitrogen loss during poultry litter composting using biochar. Journal of Environmental Quality 39:1236-1242.
dc.relation.referencesSmith, N.J. H. 1980. Anthrosoles and human carrying capacity in Amazonia. Annals of de Association of American Geographers 70: 553-566.
dc.relation.referencesWoods, W.I. 2004. Development of Anthrosol Research. In: Amazonian Dark Earths. Lehman, J., Kern, D.C., Glaser, B. and Woods, W.I. (Ed.). Kluwer Academic Publishers. USA.
dc.relation.referencesZAPATA S, Pedro. Contabilidad General, Colombia, Mc Graw Hill, 3era Edición. 1999.
dc.relation.referencesICONTEC, Normas Técnicas para la Presentación de Trabajos de Investigación Santafé de Bogotá, 2008.
dc.relation.referencesCAMARA DE COMERCIO DE BUCARAMANGA www.sintramites.com
dc.relation.referencesDANE. www.dane.gov.co
dc.relation.referencesINTRODUCCION A LA ADMINISTRACION. http://www.gestiopolis.com/recursos/documentos/fulldocuc/eehh/codetiade.html
dc.relation.referencesMARKETING FREE. http://www.marketing-free.com
dc.relation.referencesBiblioteca UIS, catalogo bibliográfico, tesis de grado, palabra clave: factibilidad www.uis.edu.co
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000376671
dc.contributor.orcidhttps://orcid.org/0000-0002-5470-181X
dc.contributor.researchgatehttps://www.researchgate.net/profile/Cesar_Yobany_Acevedo_Arenas
dc.subject.lembIngenierías fisicomecánicasspa
dc.subject.lembGerencia de recursos energéticosspa
dc.subject.lembTecnología del carbónspa
dc.subject.lembIndustria del carbónspa
dc.subject.lembInvestigacionesspa
dc.subject.lembAnálisisspa
dc.description.abstractenglishThe advance of this document shows an economic pre-feasibility study on the construction of a system to obtain biochar and to value the organic material that is taken to the El Carrasco landfill through the pyrolysis process; seeking to enter a potentially upward market due to the current demand for organic fertilizers in the project's region of influence. The current market is analyzed based on statistical information from official agencies and market projections are established based on variables that are interrelated to determine demand, supply and price; in order to establish the viability of the construction of the pyrolytic plant. The analysis reflected in this thesis refers to investments, technical study and determination of administrative aspects, presenting projections of the financial statements that indicate the best decisions for the development of the waste recovery proposal.eng
dc.subject.proposalValorización de residuosspa
dc.subject.proposalPirolisisspa
dc.subject.proposalBiocarbónspa
dc.subject.proposalEnergíaspa
dc.subject.proposalFertilizantesspa
dc.subject.proposalBiomasaeng
dc.type.redcolhttp://purl.org/redcol/resource_type/TP
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 2.5 Colombia*


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia