
Automatic Proof-Search Heuristics in 
the Maude Invariant Analyzer Tool

*Camilo Rochaz

Fecha de Recibido: 09/10/2013           Fecha de Aprobación: 09/11/2013

‡

Abstract

The Invariant Analyzer Tool is an interactive tool that mechanizes an inference 
system for proving safety properties of concurrent systems, which may be 
infinite-state or whose set of initial states may be infinite. This paper presents 
the automatic proof-search heuristics at the core of the Maude Invariant 
Analyzer Tool, which provide a substantial degree of automation and can 
automatically discharge many proof obligations without user intervention. 

These heuristics can take advantage of equationally defined equality predicates 
and include rewriting, narrowing, and SMT-based proof-search techniques.
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1.   Introduction

Safety properties of concurrent systems are among the most important 
properties to verify. They have received extensive attention in many 
different formal approaches, both algorithmic and deductive. 
Algorithmic approaches such as model checking are quite attractive 
because they are automatic. However, they cannot always be applied as 
a system can be infinite-state, so that no model checking algorithm 
which assumes a finite-state system can directly be used. Even if an 
abstraction can be found to make the system finite-state, an additional 
difficulty may arise: although for each initial state the set of states 
reachable from it is finite, the set of initial states may still be infinite, so 
that model checking verification may not be possible. For example, a 
mutual exclusion protocol should be verified for an arbitrary number of 
clients in its initial state, even if the states have been abstracted away so 
that the set of states reachable from each initial state is always finite.

This paper presents the automatic proof-search heuristics at the core of 
the Maude Invariant Analyzer Tool (InvA). The InvA tool mechanizes 
the inference system in [13,14] for proving safety properties of 
concurrent systems, which may be infinitestate or whose set of initial 
states may be infinite. The mechanization of the above inference system 
in the InvA tool provides a substantial degree of automation and can 
automatically discharge many proof obligations without user 
intervention. The development of the InvA tool is part of a broader effort 
in the Maude Formal Environment [6] to develop generic automatic and 
semi-automatic tool-support for different reasoning methods. The 
expression “generic” means that the verification methods and their 
associated tools are not tied to a specific programming language. The 
advantage of generic verification methods and tools is that the costly 
tool development effort can be amortized across a much wider range of 
applications, whereas a language-specific verification tool can only be 
applied to systems programmed in that specific language.

Any such generic approach requires a logical framework general enough 
to encompass many different models and languages. In this case, the use 
of the rewriting logic framework [9] is justified by its ability to express 
very naturally many different models of concurrent computation and 
many concurrent languages. It also has good properties as a general 
semantic framework for giving executable semantics to a wide range of 
languages and models of concurrency. In particular, it supports very well 
concurrent object-oriented computation. The same reasons making 
rewriting logic a good semantic framework make it also a good logical 
framework, that is, a metalogic in which many other logics can be 
naturally represented and executed. Furthermore, rewriting logic is a 
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reflective logic so that important aspects of its metatheory can be 
represented at the object level in a consistent way, so that the object-level 
representation correctly simulates the relevant metatheoretic aspects. 
The Maude [3] system is an implementation of rewriting logic, with 
efficient support for rewriting, both at the object level and at the 
metalevel, and narrowing modulo axioms. 

In the rewriting logic framework, a concurrent system, such as, for 
example, a network protocol or an entire concurrent programming 
language such as Java, is specified as a rewrite theory R = (å;E;R), with 

(å;E) an equational theory specifying the system's states as elements of 
the initial algebra T and R a collection of (non-equational) rewrite rules å/ E 

specifying the system's concurrent transitions. Safety properties are a 
special type of inductive properties. That is, they do not hold for just any 
model of the given rewrite theory R, but for its initial reachability model 

T . Concretely, for R = (å;E;R), this means that the states of such an initial R

model are precisely elements of the initial algebra T , and that its one-å/ E 

step transitions are provable rewrite steps between such states by means 
of the rules R. Therefore, given any safety property ', the interest is on 
checking the model-theoretic satisfaction relation T ╞ ', which is R

approximated deductively by means of the inductive inference relation  
R  ╟' m echanized in the InvA tool.

The inference system mechanized in the InvA tool is transformational in 
the sense that the rules of inference transform pairs of the form R  ╟' into 

other such pairs R0  ╟'0. It is also reductionistic in the sense that: (i) all 

safety formulas in temporal logic eventually disappear and are replaced 
by purely equational formulas and (ii) the rewrite theory R = (å;E;R) is 

eventually replaced by its underlying equational theory (å;E). That is, in 
the end all formal reasoning about safety properties is reduced to 
inductive reasoning about equational properties in the underlying 
equational theory (å;E). This allows for these generic safety verification 
methods to take advantage of the existing wealth of equational 
reasoning techniques and tools already available.

The Maude Invariant Analyzer Tool supporting the transformational 
and reductionistic inference, at the level of deduction and heuristics for 
discharging proof obligations makes systematic use of:

" Equatplification with the equations defining both system states and 
state predicates to reduce proof obligations to simpler forms; 
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" Boolean equality enrichments [7] and its combination by means of 
Boolean operations, giving more teeth to the other proof-search 
heuristics because firstorder equality is made available to the object 
level;

" Narrowing modulo axioms with the equations defining state 
predicates to greatly simplify the equational proof obligations to 
which all proofs of safety formulas are ultimately reduced; and

" Satisfiability modulo theories solving (i.e., SMT-solving) with built-
in predicates over the integers to automatically check for proof 
obligations that are tautologiional simes (or are unsatisfiable) when 
these or their subformulae correspond to integer linear arithmetic 
constraints.

The InvA tool, together with documentation and more examples, is 
available at http://camilorocha.info/software. The exposition on the 
automatic proofsearch heuristics currently available from the InvA 
tool presented in this paper is based on unpublished work in [13, Sec. 
4.4].

2.  Preliminaries

Notation and terminology from [10] for order-sorted equational logic 
and from [1] for rewriting logic is followed. An order sorted signature _ 
is a tuple å= (S;≤; F) with finite poset of sorts (S;≤) and a finite set of function 
symbols F. It is assumed that: (i) each connected component of a sort 
sÎS    in the poset ordering has a top sort, denoted by ks, and (ii) for each 
operator declaration fÎF  there is also a declaration  f ÎF . The sl...sn,s Ks1...ksn; ks

collection X = {X }  is an S-sorted family of disjoint sets of variables s sÎS

with each X  countably infinite. The set of terms of sort s  is denoted by s   

T (X) and the set of ground terms of sort s is denoted by T , which are å s    å,s    

assumed nonempty for each s. The expressions T (X) and T  denote the å å

respective term algebras. The set of variables of a term t is written 
vars(t) and is extended to sets of terms in the natural way. A substitution 

q is a sorted map from a finite subset dom(q) ÍX to T (X) and extends å

homomorphically in the natural way; ran(q) denotes the set of variables 

introduced by q and tq the application of q  to a term t. Substitution q q  1 2

is the composition of substitutions q   and q  . Asubstitution q is called 1 2

ground  if  ran (q) = Æ.
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A _-equation is a Horn clause t = u                if  g, where t = u  is a S-equality with 

t, u Î T  (X)  for some sort sÎS, and the condition g is a finite conjunction S s

of S-equalities L t = u . An equational theory is a tuple (S;E) with iÎI i i

order-sorted signature S and finite set of S-equations E. For ' a S-

equation, (S;E) ├j iff j can be proved from (S;E) by the deduction rules 
in [10] iff j is valid in all models of (S;E); (S;E) induces the 

congruence relation = on T (X) defined for any t; uÎ T (X) by t = u  iff E  S S E  

(S, E) ├ t = u.  The expressions T T (X) and ?T denote the quotient S/E S/E 

algebras induced by = over the algebras T (X) and T , respectively; T E S S/E  

is the initial algebra of (S;E). An E-unifier for a S-equality t = u is a 

substitution q such that tq=E uq. A complete set of E-unifiers for a S-
equality t = u is written CSU (t = u) and it is called finitary if it contains E

a finite number of E-unifiers. The expression GU (t = u) denotes the set E

of ground E-unifiers of a S-equality t = u. A theory inclusion (S;E) 
Í(S´;E´) is protecting iff the unique S-homomorphism T ®T to S/E  ´/E´ ½S  S

the S-reduct of the initial algebra T  is an isomorphism.S´/E´ 

AS-rule is a sentence t ® u if  g, where t ® u is a S-sequent with t, u Î 
T (X)  for some sort s Î S and the condition  g is a finite conjunction of S s

S-equalities. A rewrite theory is a tuple R   = (S;E;R) with equational 
theory eR  = (S;E) and a finite set of S-rules R. A topmost rewrite theory is 

a rewrite theory R   = (S;E;R) such that for some top sort s = [ ] and for 

each t ® u if  g Î R, the terms t, u satisfy t, u Î T (X)  and t Ï X, and no S s

operator in S has s as argument sort. For R   = (S;E;R) and ' a S-rule, R   ├ 

' iff  ' can be obtained from R   by the deduction rules in [1] iff ' is valid 

in all models of R   . For ' a S-equation, R   ├ ' iff   eR  ├ ' . A rewrite theory 

R  = (S;E;R) induces the rewrite relation ®R  on T (X) defined for every S/E

t, uÎ T (X) by [t]  ®R  [u]  iff there is a one-step rewrite proof R   ├ t ® u. S E E

*The expressions R   ├ t ® u and R   ├  t ® u respectively denote a one-

step rewrite proof and an arbitrary length (but finite) rewrite proof in R 

*from t to u. The expression T  = (T ,® ) denotes the initial R S/E R

reachability model of R = (S;E;R) [1]. A S-sequent j is an inductive 

consequence of R iff R╟       j iff ("q: X ® T ) R├ jq   iff T ╟      j.S R

State predicates. A set of state predicates II for R = (S;E;R) can be 

equationally-defined by an equational theory e =(S ;E], E ). Signature II II II

S  contains S, two sorts Bool £^[Bool ] with constants ┬   and ┴ of sort II

s
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Bool , predicate symbols p : s ®  [Bool ]for each p Î II, and optionally 
some auxiliary function symbols.

Equations in E  define the predicate symbols in S  and auxiliary II II

function symbols, if any; they protect (S;E) and the equational theory 

specifying sort Bool , constants ┬  and ┴, and the Boolean operations. It 
is easy to define a state predicate pÎII as a Boolean combination of other 

already-defined state predicates{p1, . . . pn} in S .  The reason why p:  s II

® [Bool ] instead of p :  s ®Bool , is to allow partial definitions of p with 

equations that only define the positive case by equations  p(t) = ┬ if  j, 
and  and either leave the negative case implicit or may only define some 

negative cases with equations p(t´) = ┴ if g´without necessarily 
covering all the cases.  

LTL semantics. For pÎII and [t] Î T , e  defines the semantics of p  in E S/E; II s

T  as follows: it is said that p([t] ) holds in T  iff e ├ p(t) = ┬. This R E R II 

IIdefines a Kripke structure K  = ( T ;®R;L  ) with labeling function R S/E; II s

L   such that, for each [t] Î T  the semantic equivalence pÎ L ([t] ) II E S/E; II E s
IIiff p ([t] ) holds in T . Then, all of LTL can be interpreted in K   R  in RE R

the standard way [2], including the “always” (�), “next” (O), and 
“strong implication” (Þ) operators.

Executability conditions. It is assumed that the set of equations of a 
rewrite theory R  can be decomposed into a disjoint union E ]  A, with  A 

a collection of axioms (such as associativity, and/or commutativity, 
and/or identity) for which there exists a matching algorithm modulo A 
producing a finite number of A-matching substitutions, or failing 
otherwise. It is also assumed that the equations E can be oriented into a 
set of ground sort-decreasing, ground confluent, and ground ®
terminating rules E modulo A. The expression t¯ ÎT (X) denotes S,E/A  S,s

the E/A-canonical form of tÎT (X). The rules R in R are assumed to be S

ground coherent relative to the equations Em odulo A [17].

+Free constructors. For R =( S;E È A;R), the signature WÍS is a 

signature of free constructors modulo A iff  for each sort  s  in S and tÎT 
 there is uÎ T  satisfying t = E u, and u ̄ =A u   for any u Î T . For +S,s    Ws ÈA  S,E/A W,s

the development in this paper it is required that t ÎT (X)  for each t® u   W

if gÎ R.
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3. The Maude Invariant Analyzer Tool: An 
Overview

The Maude Invariant Analyzer Tool (InvA) is a tool designed for 
interactively proving two key safety properties of executable Maude 
specifications, namely, inductive stability and inductive invariance, 
plus their combination by strengthening techniques. The tool 
mechanizes an inference system that, without assuming finiteness of 
the set of initial or reachable states, uses rewriting and narrowing-based 
reasoning techniques, in which all temporal logic formulas eventually 
disappear and are replaced bypurely equational conditional sentences. 
The InvA tool provides a substantial degree of mechanization and can 
automatically discharge many proof obligations without user 
intervention. It is implemented in the Maude language and exploits 
rewriting logic's reflection capabilities, i.e., it is a Maude specification 
that takes, as part of its input, a meta-representation of a Maude 
specification.

The concept of inductive stability for R = (S, E, R) is intimately related 

with the notion of the set of states t Î T  of T  that satisfy a state S, s R

predicate p Î II  being closed under ® R . More precisely, for p Î II and 

xÎX, the property p b  eing inductively stable for R i s the safety property:

IIK  ╞ p(x) )äp(x)                                                                          (1)R

meaning that if I (t) holds in a state tÎT , then p (u) holds in any state u S,s

Î T  , that is reachable from t. S,s

Invariants are among the most important safety properties. Given a set 
of initial states characterized by IÎ II, a state predicate pÎ II being 
inductively invariant for R from the set of initial states I is the safety 

property

IIK  ╞ I(x) )äp(x)                                                                          (2)R

meaning that if I(t) holds in a state tÎ T , then p(u) holds in any state u S;s

Î T  reachable from t. In other words, the invariant p holds for all states S;s

reachable from I. Since the set of initial states is defined in e  as a state II
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predicate I Î II , an equational definition of I can of course capture an 
infinite set of initial states.

3.1.  Inference System Mechanized in the InvA Tool

Given a ground stability or ground invariance property j, the InvA tool 

generates equational proof obligations such that, if they hold, then T  ╞ j. R

For a topmost rewrite theory R and of a set of state predicates II specified 
in Maude, the InvA tool mechanizes inference rules ST, INV, STR1, 
STR2, CÞ, NR1, and NR2 depicted in Figure 1. Soundness proofs for 
each one of these inference rules can be found in [13]. The application of 
inference rules ST, INV, STR1, and STR2 to a given inductive stability or 
invariance LTL verification goal ultimately reduces such a goal to simpler 
inductive equational reasoning that can be handled by applying rules CÞ, 
NR1, and NR2.

Inference rule ST reduces the verification task of p-stability to the 
simpler condition p Þp Οp, which only involves 1-step search instead 
of arbitrary depth search. Inference rule INV reduces the verification 
task of inductive invariance to equational implication and inductive 
stability. Inference rules STR1 and STR2 are strengthening rules. 
Inference rule CÞ handles equational implications, while rules NR1 
and NR2 use 1-step narrowing modulo axioms to handle the symbolic 1-
step search, forthe temporal next operator, in formulae of the form p Þp. 
Note that any inductive stability and invariance formula is ultimately 
reduced to equational reasoning. Thanks to the availability in Maude 2.6 
of unification modulo commutativity (C), associativity and 
commutativity (AC), and modulo these theories plus identities (U), and 
to the narrowing modulo infrastructure, the InvA tool can handle 
modules with operators declared C, CU, AC, and ACU. Furthermore, 
since unification modulo the above theory combinations is decidable, 
and each one yields a finite set of complete unifiers, the set of proof 
obligations is always finite.

3.2.  Methodology and Commands Available to the User

The approach for proving inductive stability and invariance properties 
in the InvA tool is depicted in Figure 2.

Given a topmost rewrite theory R, an equational specification e II for 

the state predicates II , and an inductive safety property j the InvA tool 
internally generates equational proof obligations according to the 
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inference system in Figure 1 and tries to discharge as many of them as 
possible by using the heuristics described in Section 4. Any proof proof 
obligation that cannot be automatically discharged is output to the user 
so it can be handled interactively in an external tool such as Maude's 
Inductive Theorem Prover (ITP) [4, 8] (an experimental interactive tool 
for proving properties of the initial algebra Te of an order-sorted 
equational theory e  written in Maude).
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Fig. 1. Inference rules mechanized in the InvA tool.
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The user interacts with the InvA tool via the following commands:

- (help .) shows the list of commands available.
- (analyze-stable <pred> in <module> <module>.) generates the 

proof obligations for inference ST with inference NR1, for the given 
predicate. The first module equationally specifies the state predicate 
and the second one the topmost rewrite theory. This command tries 
to eagerly discharge the proof obligations; those that cannot be 
discharged are shown to the user.

- (analyze-stable <pred> in <module> <module> assuming <pred>.) 
generates the proof obligations for proving the third premise of 
inference STR2 with inference NR2, for the given predicate and the 
given modules. The first module equationally specifies the state 
predicates and the second one the topmost rewrite theory. This 
command tries to eagerly discharge the proof obligations; those that 
cannot be discharged are shown to the user.

- (analyze <pred> implies <pred> in <module>.) generates the proof 
obligations for proving the given implication in the given module, 
according to inference C Þ. This command tries to eagerly 
discharge the proof obligations; those that cannot be discharged are 
shown to the user.

- (show pos.) shows the proof obligations computed by the last 
analyze command that could not be discharged; those that are 
discharged are not shown.

- (show-all pos .) shows all the proof obligations computed by the last 
analyze command.

Observe that the analysis commands in InvA give direct tool support for 
deductive reasoning with some of the inference rules presented in this 
chapter, but not for all of them. For example, there is no command in 
InvA directly supporting deduction with inference rule INV. 
Nevertheless, deduction with all inference rules in this chapter is 
supported by InvA via combination of commands. For example, 
deduction with inference rule INV can be achieved by combining the 
analyze and analyze-stable commands.
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Fig. 2. Approach for checking inductive stability and invariance 
properties for rewrite theories.
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4.   Proof-Search Heuristics in InvA

The InvA tool has been successfully used in the formal verification of 
safety properties for concurrent systems in different domains. The InvA 
case studies include the formal verification of safety properties for the 
Illinois Browser Operating System (IBOS) [16], a modern, security-
conscious web browser designed at the University of Illinois which 
could be integrated into a secure operating system. For this case study, 
the largest one considered so far, the InvA tool generated approximately 
22755 proof obligations and, thanks to its proof-search heuristics, it was 
able to automatically discharge all but 48 proof obligations, a success 
rate of about 99:8% (see [13, Ch. 6] for details). This section presents a 
description of the proof-search heuristics used in the InvA tool and 
summarizes how comparatively useful in practice they are.

After applying rules ST, INV, STR1, STR2, CÞ, NR1, and NR2 
according to the user commands, the InvA tool uses rewriting-based 
reasoning and narrowing procedures, and SMT decision procedures for 
automatically discharging as many of the generated equational proof 
obligations as possible. For an executable equational specification e   = II

(S , E  ÈA) and a conditional proof obligation j of the formII II

t = u if g;

the InvA tool applies a proof-search strategy such that, if it succeeds, 
IIthen the Kripke structure K   associated to the initial reachability R  

model TR       satisfies j. Otherwise, if the proof-search fails, the proof 

obligation j  (or a logically equivalent variant) is output to the user.

4.1.  Boolean Transformations

For the proof-search process, the InvA tool first tries to simplify 
Boolean expressions in j. During the simplification process, the tool 
assumes that any operator '~' is an equationally defined equality 
predicate, i.e., an equality enrichment. Given an order-sorted signature 
S = (S, £, F) and an order-sorted equational theory e=(S,E) with initial 

~algebra Te , an equality enrichment [11] of e is an equational theory e  

that extends e by defining a Boolean-valued equality function symbol 
'~'  that coincides with '=' in Te .

~ ~ ~Definition 1 An equational theory e  = (S ,E ) is called an equality 
~ ~ ~ ~enrichment of e = (S,E), with S  = (S ,£ , F ) and S = (S,£,F), iff
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~- E  is a protecting extension of E;

~- the poset of sorts of S  extends (S;£) by adding a new sort Bool that 
belongs to a new connected component, with constants T and ? such ~ ~that TE ;Bool = f[>]; [?]g, with > 6=E  ?; and

~- for each connected component in (S, £) there is a top sort kÎ S  and 
~a binary commutative  operator _~ _ : k   k ® Bool in S   such that the 

following equivalences hold for any ground terms t, u  Î T :S,k

An equality enrichment ? ˜o f ?  is called Boolean iff it contains all the 
function symbols and equations making the elements of T a two-? ˜;Bool 

element Boolean algebra.

Using the information about `?́ , a Boolean transformation can be 
applied recursively to ' with the additional information of the equality 
enrichment, if any is defined.

The goal of the Boolean transformation process is to obtain, if possible, 
an inductively equivalent proof obligation '´ for which the automatic 
search tests, explainedbelow, have better chances of success. The 
following is a description of the Boolean mtransformations applied 
recursively by the InvA tool:

- If t = u in j   is such that t is of the form t   ~  t  and u of the form  , 1 2 ┴
 then j  is transformed into  =    if  γ Ù  t   = t .1 2┴

-  If v  = v , with v  v  Î T  (X) , is any of the S-equalities in the 1 2 1, 2 S Bool 

condition g of j, then:

1 2-  If v  is of the form v  ~  v  and v  of the form  , then v  = v , is 1 1 1 2 1 2 
1 2replaced by v   = v .1 1

1 n- If v  is of the form v  u  ...  v  and v of the form  , then v  = 1 1 1 2  1
1 n iv  is replaced by v  =    ...   v  = .  Note that the v   have 2 1 1 1

sort Bool .
1 n-  f v  is of the form v  u  ...  v  and v of the form , then v  = 1 1 1 2  1

1 n iv  is replaced by v  =    ...   v  = .  Note that the v   have 2 1 1 1

sort Bool .

Symbols    and  are used to represent, respectively, the conjunction and 
disjunction function symbols used by the Boolean equality enrichment in 
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Definition 1. Also note that _S-equalities are unoriented, and thus in the 
Boolean transformation the order of terms in the equalities is immaterial.

4.2.  Automatic Proof-Search Tests

After the Boolean transformation process is completed, some automatic 
search tests are applied to the resulting proof obligation following the 
strategy described below. In what follows, it is assumed that ' has been 
already simplified by the transformations described in Section 4.1.. 
Furthermore, let t,̄ u,̄ ̄g be obtained by replacing each variable x Î X by a 

¯ ¯new constant x Î X , with S Ç X  = Æ.

4.2.1.  Equational simplification.

The strategy checks if 'h olds trivially, i.e., if

or there is t =u   in g such that t #S;E=A; u #S;E /B Î T   buti i i i S

t #S;E=A=6 A u #S;E=A:i i

Some simplifications in the form of reduction to canonical forms can be 
made to ', even if they do not yield a trivial proof of '. In some cases, 
such canonical reductions are incorporated into ' and the Boolean 
transformation is used again.

4.2.2. Context joinability.

It checks whether ' is context-joinable [5]. The proof obligation ' is 
-j ?context-joinable iff t and ̄u  are joinable in the rewrite theory R  = (S( X ), e

® ®
A,  E È g  ), obtain by making variables into constants and by orienting 

®
the equations  E as rewrite rules E and heuristically orienting each 

- ®-equality t  = u  in g as a sequent t  ® u  in g  .i i i i

4.2.3. Unfeasability.

It checks if the proof obligation is unfeasible [5]. The proof obligationj 
- ®-is unfeasible if there is a conjunct  t  ® u  in g  and v, w Î T (X)   such i i S

- -j -    -that  R  ├  t  ® u Ù t  ®w  CSU  (v = w) = Æ, and v and w are strongly i i Ae ®
irreducible with E modulo A, i.e., if v and w are such that each one of its 
ground instances is in E-canonical form modulo A.

4.2.4. SMT Solving.

It checks if the proof obligation can be proved by an SMT decision 
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procedure. The condition g of the proof obligation ' is analyzed and, if 
possible, a subformula consisting only of arithmetic subexpressions is 
extracted. This subformula has the following property: if it is a 
contradiction, then g is unsatisfiable. Therefore, if the SMT decision 
procedure answers that the given subformula is unsatisfiable, then, as in 
the previous test, 'i s unfeasible.

Because of the admissibility assumptions on (S;E È A), the first test of the 
strategy either succeeds or fails in finitely many equational rewrite steps. 
For the second and third tests, the strategy is not guaranteed to succeed or 

®
fail in finitely many rewrite steps because the oriented sequents g  can 
falsify a termination assumption of the underlying equational theory. So, for 
these last two checks, InvA uses a bound on the depth of the proof-search. 
For the fourth test, the InvA offers support for integer linear arithmetic 
constraints, which is known to be decidable and for which there may be 
decision procedures already implemented in the SMT solver of choice.

The code in InvA for tests (2) and (3) was borrowed and adapted from 
the Church-Rosser Checker Tool [5]. For the test (4), the InvA tool relies 
on an extension of Maude with the CVC3 theorem prover available 
from the Matching Logic Project [15].

4.3.  Comparison of the Proof-Search Tests

As noted before, the InvA tool has been successfully used in the formal 
verification of safety properties for concurrent systems in different 
domains. Its case studies include, among others, the IBOS secure browsing 
system [13, Ch. 6], the Alternating Bit Protocol [13, Ch. 5], and the Bakery 
Protocol for both bounded and unbounded number of processes. See the 
current version of the InvA tool for the complete set of case studies.

Table 1. Success rate of the automatic search-proof 
tests for discharged proof obligations

Table 1 compares the rate of success of each automatic search-proof test 
on the case studies that are part of the InvA’s distribution for all 
automatically discharged proof obligations. Equational simplification 
is the most successful test, which is natural given the fact that many 
proof obligations can be handled by directly rewriting from the 
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Test
Equational simplification
Context joinability(search deptg £ 10)
Unfeasability (search depth £ 10)
SMT -solving

Rate os Success
54.2%
34.7%
9.3%
1.8%
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definitions. Context joinability is also highly successful and it has 
proved to be a good complement to the former test. Unfeasability has a 
success rate of almost 10%, which is high taking into account its third 
place in the list and the fact that state predicates are not required to be 
fully defined for the negative case. Finally, SMTsolving is 1:8% 
successful mainly because, if possible, it is the last test ever applied to a 
proof obligation and also because many proof obligations in the case 
studies considered here do not have many integer arithmetic constraints.

5.   A Case Study: The Bakery Protocol

This section presents a case study about the deductive analysis of 
inductive safety properties using the methodology, the proof system, 
and the Maude Invariant Analyzer tool (InvA) introduced in Section 3.. 
The subject of study is a concurrent protocol for achieving mutual 
exclusion. As a result, this section illustrates how the proof obligations 
generated during the verification task are automatically discharged by 
the proof-search heuristics presented in Section 4.. Full versions of the 
specification of the case study and the proof scripts presented here, can 
be downloaded with the InvA distribution.

5.1.  The Bakery Protocol

The Bakery Protocol was proposed by L. Lamport as the first real solution 
for the mutual exclusion problem between processes. It derives its name 
from the situation in a busy bakery or deli shop where costumers pick a 
number at the ticket machine in order to guarantee that they are served in a 
proper order. The protocol is based on the “first in, first out” principle: the 
customer whose ticket matches the current available slot number is served 
first. The Bakery Protocol is considered as a benchmark case study in 
formal verification [12] because it is inherently concurrent and its state 
space is unbounded (i.e., it is potentially infinite). This section presents 
the Bakery Protocol (2BAK) specification for two processes.

The 2BAK specification in Maude has 2 modules. At the top level, he 
state space is represented by the top sort Sys, defined in module 2BAK-
STATE, which is a 4-tuple:

.

sorts Mode Sys .
ops sleep wait crit : -> Mode [ctor] .
op <_,_,_,_> : Mode Nat Mode Nat -> Sys [ctor] 

The arguments of a system state are the state of the first customer (as 
Mode), the ticket number of the first customer (as Nat), the state of the 
second customer (as Mode), and the ticket number of the second 
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customer (as Nat). The sort Mode is an enumeration of constants for 
identifying an inactive customer (as sleep), a customer waiting to be 
served (as wait), and a customer being served (as crit). The sort Nat is 
that of natural numbers in Peano notation, together with an equality 
enrichment and the usual comparison operators.

As an example, consider the following ground term of sort Sys 
representing a state in the system:

< wait, s s 0, crit, s 0 >

In this state, the first customer is waiting with ticket number 2 and the 
second customer is being served with ticket number 1.

Module 2BAK specifies the operation of the protocol with 6 rewrite 
rules. These rewrite rules model the transitions of the customers through 
the three different states in the system.

rl [p1-s] :
< sleep, M:Nat, Y:Mode, N:Nat >

=> < wait, s N:Nat, Y:Mode, N:Nat > .

crl [p1-w] :
< wait, M:Nat, Y:Mode, N:Nat >

=> < crit, M:Nat, Y:Mode, N:Nat >
if M:Nat <= N:Nat = true .

rl [p1-c] :
< crit, M:Nat, Y:Mode, N:Nat >

=> < sleep, 0, Y:Mode, N:Nat > .

rl [p2-s] :
< X:Mode, M:Nat, sleep, N:Nat >

=> < X:Mode, M:Nat, wait, s M:Nat > .

crl [p2-w] :
< X:Mode, M:Nat, wait, N:Nat >

=> < X:Mode, M:Nat, crit, N:Nat >
if N:Nat < M:Nat = true .

rl [p2-c] :
< X:Mode, M:Nat, crit, N:Nat >

=> < X:Mode, M:Nat, sleep, 0 > .

The effects of these rules in a state can be summarized as follows:
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[p1-s] models the transition of the first customer from state inactive to 
state waiting, with a new ticket number corresponding to the 
next available one (in this case, the next available ticket is the 
successor of the ticket number of the second customer).

[p1-w] models the transition of the first customer from state waiting to 
being served (i.e., to the critical section), whenever its ticket 
number is at most as the ticket number of the second customer.

[p1-c] models the transition of the first customer from being served to 
state inactive; the new ticket number is zero (which represents a 
non-existent ticket).

[p2-s] models the transition of the second customer from state inactive 
to state waiting, with a new ticket number corresponding to the 
next available one (in this case, the next available ticket is the 
successor of the ticket number of the first customer).

[p2-w] models the transition of the second customer from state waiting 
to being served (i.e., to the critical section), whenever its ticket 
number is greater than the ticket number of the first customer. 

[p2-c] models the transition of the second customer from being served 
to state inactive; the new ticket number is zero (which represents 
a non-existent ticket).

5.2.  Mutual Exclusion

The main property the 2BAK enjoys is the mutual exclusion property. 
This means that the protocol makes possible to safely serve the two 
costumers, i.e., to serve at most one customer at a time. The goal of the 
remaining of this section is to illustrate how the proof-search heuristics 
presented in Section 4. can automatically discharge all proof 
obligations generated by the InvA tool during the verification task of 
2BAK’s mutual exclusion property.

Mutual exclusion in 2BAK means that if one customer is being served, 
then the other customer is not being served. Note that this is a property 
that must hold for each pair of natural numbers. Thus, this property 
cannot be effectively checked by means of direct algorithmic 
techniques, such as model checking the 2BAK specification, even if the 
set of initial states is finite (which is not even the case for 2BAK, as 
explained below).

The mutual exclusion property is expressed by state predicate mutex 
and is defined in module 2BAK-PREDS as follows:

op mutex : Sys -> [Bool] .
eq [p1-s&p2-s] :

mutex(< sleep, M:Nat, sleep, N:Nat >)
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= true .
eq [p1-w&p2-s] :

mutex(< wait, M:Nat, sleep, N:Nat >)
= true .
eq [p1-c&p2-s] :

mutex(< crit, M:Nat, sleep, N:Nat >)
= true .
eq [p1-s&p2-w] :
mutex(< sleep, M:Nat, wait, N:Nat >)
= true .
eq [p1-w&p2-w] :

mutex(< wait, M:Nat, wait, N:Nat >)
= true .
eq [p1-s&p2-c] :

mutex(< sleep, M:Nat, crit, N:Nat >)
= true .
eq [p1-c&p2-c] :

mutex(< crit, M:Nat, crit, N:Nat >)
= false .
eq [p1-c&p2-w] :

mutex(< crit, M:Nat, wait, N:Nat >)
= M:Nat <= N:Nat . --- strengthening
eq [p1-w&p2-c] :

mutex(< wait, M:Nat, crit, N:Nat >)
= N:Nat < M:Nat . --- strengthening

State predicate mutex is fully defined (i.e., for positive and negative 
cases) by nine equations. In particular, equations [p1-s&p2-s], [p1-
w&p2-s], [p1-c&p2-s], [p1-s&p2-w], [p1-w&p2-w], and [p1-s&p2-c] 
consider the case when the mutual exclusion property is trivially true: 
there is at most one process in the critical section. Equation [p1-c&p2-c] 
considers the case when the property is trivially false: the two processes 
are in the critical section. Equations [p1-c&p2-w] and [p1-w&p2-c] 
consider the case when one process is in the critical section while the 
other one is waiting to enter the critical section. An initial observation 
would suggest that in such a state the property trivially holds. However,  
with a closer look it becomes evident that this is not the case because 
such a condition would be too week: if the waiting process has a ticket 
number less than the ticket number of the process in the critical section, 
then the waiting process would transition and enter the critical section, 
causing a mutual exclusion violation. This is evidence for requiring a 
stronger condition for equations [p1-c&p2-w] and [p1-w&p2-c] to be 
true. This observation is realized by the strengthening conditions on 
right-hand side of each one of these two rules.
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Note that inference rule INV, presented in Section 3., does ensure that 
any reachable state from the set of initial states satisfies predicate mutex 
if it is an inductive invariant. Thus, if the latter is the case, then the 
mutual exclusion property also holds for a predicate similar to mutex in 
which the right-hand side of equations [p1-c&p2-w] and [p1-w&p2-c] 
is replaced by true (this is thanks to the strengthening rule STR1, 
presented in Section 3.). The above remarks and the strengthening of the 
invariant are omitted here for brevity, but are worked out in detail in the 
sources of the case study (available with the InvA distribution). 

The goal is to prove that mutex is an inductive invariant of 2BAK for the 
set of initial states defined by predicate init, defined as follows:

2BAK:

(analyze init(S:Sys) implies mutex(S:Sys) in 2BAK-PREDS .)

(analyze-stable mutex(S:Sys) in 2BAK-PREDS 2BAK .)

When issuing the above-mentioned commands, the InvA tool generates 
the following output:

rewrites: 6540 in 12ms cpu (11ms real) (545000 rewrites/second)
Checking 2BAK-PREDS ||- init(S:Sys) => mutex(S:Sys) ...
Proof obligations generated: 1
Proof obligations discharged: 1

op init : Sys -> [Bool] .
eq [init] :

init(< sleep, M:Nat, sleep, N:Nat >)
= true .

The set of initial states corresponds to states in which both customers are 
inactive and can have any ticket number. Note that the set of initial states 
is countably infinite.

Formally, the goal is to check if state predicate mutex is an inductive 
invariant from init:

2BAK ╟ init ) Þðmutex:

The following verification commands can be given to the InvA tool in 
order to check the inductive invariant for achieving mutual exclusion in 

Success!
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Table 2. Success count of search-proof tests for the invariance of mutex in 2BAK.

Maude> (analyze-stable mutex(S:Sys) in 2BAK-PREDS 2BAK .)
rewrites: 14694 in 15ms cpu (15ms real) (979600 rewrites/second)
Checking 2BAK-PREDS ||- mutex(S:Sys) => O mutex(S:Sys) ...
Proof obligations generated: 18
Proof obligations discharged: 18
Success!

The tool generates 19 proof obligations and its search-proof tests 
automatically discharges all of them. Table 2 summarizes the 
effectiveness of each search-proof test in discharging the 19 
proof obligations.

The following is the list of all proof obligations generated for the 
first above-mentioned command:

rewrites: 3247 in 2ms cpu (2ms real) (1623500 rewrites/second)
These are all proof obligations:
0. from init : trivially joinable

mutex(< sleep,#1:Nat,sleep,#2:Nat >) = true

The following is the list of all proof obligations generated for the 
second abovementioned command:

0. from p1-c&p2-c & p2-c : trivially joinable
mutex(< crit,#3:Nat,sleep,0 >) = true

if false = true .

1. from p1-c&p2-c & p1-c : trivially joinable
mutex(< sleep,0,crit,#4:Nat >) = true

if false = true .

2. from p1-c&p2-s & p2-s : trivially joinable
mutex(< crit,#3:Nat,wait,s #3:Nat >) = true

3. from p1-c&p2-s & p1-c : trivially joinable
mutex(< sleep,0,sleep,#4:Nat >) = true

4. from p1-c&p2-w & p2-w : smt
mutex(< crit,#3:Nat,crit,#4:Nat >) = true
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Test Proof obligations discharged
Equational simplification 15
Context joinability (search depth  10) 2
Unfeasability (search depth  10) 0
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if #3:Nat <= #4:Nat = true
/\ #4:Nat < #3:Nat = true .

5. from p1-c&p2-w & p1-c : trivially joinable
mutex(< sleep,0,wait,#4:Nat >) = true

if #3:Nat <= #4:Nat = true .

6. from p1-s&p2-c & p2-c : trivially joinable
mutex(< sleep,#3:Nat,sleep,0 >) = true

7. from p1-s&p2-c & p1-s : trivially joinable
mutex(< wait,s #4:Nat,crit,#4:Nat >) = true

8. from p1-s&p2-s & p2-s : trivially joinable
mutex(< sleep,#3:Nat,wait,s #3:Nat >) = true

9. from p1-s&p2-s & p1-s : trivially joinable
mutex(< wait,s #4:Nat,sleep,#4:Nat >) = true

10. from p1-s&p2-w & p2-w : trivially joinable
mutex(< sleep,#3:Nat,crit,#4:Nat >) = true

if #4:Nat < #3:Nat = true .

11. from p1-s&p2-w & p1-s : trivially joinable
mutex(< wait,s #4:Nat,wait,#4:Nat >) = true

12. from p1-w&p2-c & p2-c : trivially joinable
mutex(< wait,#3:Nat,sleep,0 >) = true

if #4:Nat < #3:Nat = true .

13. from p1-w&p2-c & p1-w : smt
mutex(< crit,#3:Nat,crit,#4:Nat >) = true

if #4:Nat < #3:Nat = true
/\ #3:Nat <= #4:Nat = true .

14. from p1-w&p2-s & p2-s : trivially joinable
mutex(< wait,#3:Nat,wait,s #3:Nat >) = true

15. from p1-w&p2-s & p1-w : trivially joinable
mutex(< crit,#3:Nat,sleep,#4:Nat >) = true

if #3:Nat <= #4:Nat = true .

16. from p1-w&p2-w & p2-w : context joinable
mutex(< wait,#3:Nat,crit,#4:Nat >) = true

if #4:Nat < #3:Nat = true .
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17.  from p1-w&p2-w & p1-w : context joinable
mutex(< crit,#3:Nat,wait,#4:Nat >) = true

if #3:Nat <= #4:Nat = true .

Internally, the InvA tool classifies proof obligations discharged by 
equational simplification as “trivially joinable”, the ones discharged by 
context joinability as “context joinable”, the ones discharged by unfeasibility 
as “unfeasible”, and the ones discharged by SMT-solving as “smt”.

As a final remark, note that the proof obligations discharged by SMT-
solving have unfeasible (arithmetic) conditions that could not be dealt 
with by the unfesability proof-search test, which is applied before 
calling the SMT solver. The reason for this ‘failure’ is that the equational 
specification for the operators <= and < is not convenient for search by 
equational narrowing. On the other hand, the arithmetic conditions in 
proof obligations (4) and (13) are easy tests for arithmetic decision 
procedures, such as the ones available from SMT solvers.

6.  Conclusion and Future Work

This paper has presented the automatic proof-search tests implemented in 
the Maude Invariant Analyzer Tool (InvA). This tool offers interactive 
support, with a high degree of automation, for deductively proving 
inductive stability and inductive invariance of a (possibly infinite-state) 
concurrent system specified by conditional topmost rewrite theories under 
reasonable conditions. The proof obligations generated by the mechanized 
inference rules in the InvA tool are equational Horn clauses. The original 
safety properties of the concurrent system are automatically reduced to 
such equational proof obligations by the mechanization of these rules and 
the 1-step inductively complete narrowing procedures. The proof-search 
tests automatically discharge many of the resulting equational proof 
obligations. In some case studies these tests have achieved a success rate 
for automatically discharging proof obligations of 99:8% on thousands of 
proof obligations. In particular, the effectiveness of the proofsearch tests 
has been illustrated by a case study on the mutual exclusion property for 
Lamport’s 2-process Bakery Protocol in which all proof obligations are 
automatically discharged without any user intervention. In the broader 
picture of the Maude formal environment and community, the InvA tool 
adds theorem proving support for verifying safety properties of infinite-
state rewrite theories to the Maude environment.

The challenging case studies analyzed in the InvA tool have unveiled 
limitations of the InvA tool which, from the perspective of stress testing 
the limits of the tool, is a positive experience. First, there should be better 
management of proof obligations, specially when analyzing large 
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specifications: it is very complicated, time consuming, and error-prone 
to analyze a list of more than 30 proof obligations ‘by hand’. 

Second, the SMT-solving automatic test could perhaps be combined with 
equational narrowing, which is already available in Maude. This should 
increase the number of proof obligations automatically discharged by the 
tool and thus lessen the proof effort of the user. Third, there is also the need 
for improving the techniques available to the user in tools such as the ITP. 
These could help in obtaining easy interactive proofs in many cases where 
the proof obligations cannot be discharged automatically. Inductive 
techniques such as cover-set induction modulo AC should be investigated, 
implemented, and offered to the user. The current ITP version supports 
cover-set induction [8] but for the moment not modulo AC.
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