
Automatic Proof-Search Heuristics in
the Maude Invariant Analyzer Tool

*Camilo Rochaz

Fecha de Recibido: 09/10/2013 Fecha de Aprobación: 09/11/2013

‡

Abstract

The Invariant Analyzer Tool is an interactive tool that mechanizes an inference
system for proving safety properties of concurrent systems, which may be
infinite-state or whose set of initial states may be infinite. This paper presents
the automatic proof-search heuristics at the core of the Maude Invariant
Analyzer Tool, which provide a substantial degree of automation and can
automatically discharge many proof obligations without user intervention.

These heuristics can take advantage of equationally defined equality predicates
and include rewriting, narrowing, and SMT-based proof-search techniques.

Keywords: software engineering, proof-search heuristics, rewriting logic,
Maude Invariant Analyzer, rewriting logic, satisfiability modulo theories.

REVISTA COLOMBIANA DE COMPUTACIÓN
Volumen 14, número 2
Págs. 98 - 121

*Assistant Professor at Escuela Colombiana de Ingeniería Julio Garavito, AK 45 No. 205-
59, Bogotá, D.C., Colombia. Correo electrónico: camilo.rocha@escuelaing.edu.co.
 Se concede autorización para copiar gratuitamente parte o todo el material publicado en

la Revista Colombiana de Computación siempre y cuando las copias no sean usadas para
fines comerciales, y que se especifique que la copia se realiza con el consentimiento de la
Revista Colombiana de Computación.

‡

1. Introduction

Safety properties of concurrent systems are among the most important
properties to verify. They have received extensive attention in many
different formal approaches, both algorithmic and deductive.
Algorithmic approaches such as model checking are quite attractive
because they are automatic. However, they cannot always be applied as
a system can be infinite-state, so that no model checking algorithm
which assumes a finite-state system can directly be used. Even if an
abstraction can be found to make the system finite-state, an additional
difficulty may arise: although for each initial state the set of states
reachable from it is finite, the set of initial states may still be infinite, so
that model checking verification may not be possible. For example, a
mutual exclusion protocol should be verified for an arbitrary number of
clients in its initial state, even if the states have been abstracted away so
that the set of states reachable from each initial state is always finite.

This paper presents the automatic proof-search heuristics at the core of
the Maude Invariant Analyzer Tool (InvA). The InvA tool mechanizes
the inference system in [13,14] for proving safety properties of
concurrent systems, which may be infinitestate or whose set of initial
states may be infinite. The mechanization of the above inference system
in the InvA tool provides a substantial degree of automation and can
automatically discharge many proof obligations without user
intervention. The development of the InvA tool is part of a broader effort
in the Maude Formal Environment [6] to develop generic automatic and
semi-automatic tool-support for different reasoning methods. The
expression “generic” means that the verification methods and their
associated tools are not tied to a specific programming language. The
advantage of generic verification methods and tools is that the costly
tool development effort can be amortized across a much wider range of
applications, whereas a language-specific verification tool can only be
applied to systems programmed in that specific language.

Any such generic approach requires a logical framework general enough
to encompass many different models and languages. In this case, the use
of the rewriting logic framework [9] is justified by its ability to express
very naturally many different models of concurrent computation and
many concurrent languages. It also has good properties as a general
semantic framework for giving executable semantics to a wide range of
languages and models of concurrency. In particular, it supports very well
concurrent object-oriented computation. The same reasons making
rewriting logic a good semantic framework make it also a good logical
framework, that is, a metalogic in which many other logics can be
naturally represented and executed. Furthermore, rewriting logic is a

99Automatic Proof-Search Heuristics in the Maude Invariant Analyzer Tool

reflective logic so that important aspects of its metatheory can be
represented at the object level in a consistent way, so that the object-level
representation correctly simulates the relevant metatheoretic aspects.
The Maude [3] system is an implementation of rewriting logic, with
efficient support for rewriting, both at the object level and at the
metalevel, and narrowing modulo axioms.

In the rewriting logic framework, a concurrent system, such as, for
example, a network protocol or an entire concurrent programming
language such as Java, is specified as a rewrite theory R = (å;E;R), with

(å;E) an equational theory specifying the system's states as elements of
the initial algebra T and R a collection of (non-equational) rewrite rules å/ E

specifying the system's concurrent transitions. Safety properties are a
special type of inductive properties. That is, they do not hold for just any
model of the given rewrite theory R, but for its initial reachability model

T . Concretely, for R = (å;E;R), this means that the states of such an initial R

model are precisely elements of the initial algebra T , and that its one-å/ E

step transitions are provable rewrite steps between such states by means
of the rules R. Therefore, given any safety property ', the interest is on
checking the model-theoretic satisfaction relation T ╞ ', which is R

approximated deductively by means of the inductive inference relation
R ╟' m echanized in the InvA tool.

The inference system mechanized in the InvA tool is transformational in
the sense that the rules of inference transform pairs of the form R ╟' into

other such pairs R0 ╟'0. It is also reductionistic in the sense that: (i) all

safety formulas in temporal logic eventually disappear and are replaced
by purely equational formulas and (ii) the rewrite theory R = (å;E;R) is

eventually replaced by its underlying equational theory (å;E). That is, in
the end all formal reasoning about safety properties is reduced to
inductive reasoning about equational properties in the underlying
equational theory (å;E). This allows for these generic safety verification
methods to take advantage of the existing wealth of equational
reasoning techniques and tools already available.

The Maude Invariant Analyzer Tool supporting the transformational
and reductionistic inference, at the level of deduction and heuristics for
discharging proof obligations makes systematic use of:

" Equatplification with the equations defining both system states and
state predicates to reduce proof obligations to simpler forms;

100 Camilo Rochaz

" Boolean equality enrichments [7] and its combination by means of
Boolean operations, giving more teeth to the other proof-search
heuristics because firstorder equality is made available to the object
level;

" Narrowing modulo axioms with the equations defining state
predicates to greatly simplify the equational proof obligations to
which all proofs of safety formulas are ultimately reduced; and

" Satisfiability modulo theories solving (i.e., SMT-solving) with built-
in predicates over the integers to automatically check for proof
obligations that are tautologiional simes (or are unsatisfiable) when
these or their subformulae correspond to integer linear arithmetic
constraints.

The InvA tool, together with documentation and more examples, is
available at http://camilorocha.info/software. The exposition on the
automatic proofsearch heuristics currently available from the InvA
tool presented in this paper is based on unpublished work in [13, Sec.
4.4].

2. Preliminaries

Notation and terminology from [10] for order-sorted equational logic
and from [1] for rewriting logic is followed. An order sorted signature _
is a tuple å= (S;≤; F) with finite poset of sorts (S;≤) and a finite set of function
symbols F. It is assumed that: (i) each connected component of a sort
sÎS in the poset ordering has a top sort, denoted by ks, and (ii) for each
operator declaration fÎF there is also a declaration f ÎF . The sl...sn,s Ks1...ksn; ks

collection X = {X } is an S-sorted family of disjoint sets of variables s sÎS

with each X countably infinite. The set of terms of sort s is denoted by s

T (X) and the set of ground terms of sort s is denoted by T , which are å s å,s

assumed nonempty for each s. The expressions T (X) and T denote the å å

respective term algebras. The set of variables of a term t is written
vars(t) and is extended to sets of terms in the natural way. A substitution

q is a sorted map from a finite subset dom(q) ÍX to T (X) and extends å

homomorphically in the natural way; ran(q) denotes the set of variables

introduced by q and tq the application of q to a term t. Substitution q q 1 2

is the composition of substitutions q and q . Asubstitution q is called 1 2

ground if ran (q) = Æ.

101Automatic Proof-Search Heuristics in the Maude Invariant Analyzer Tool

A _-equation is a Horn clause t = u if g, where t = u is a S-equality with

t, u Î T (X) for some sort sÎS, and the condition g is a finite conjunction S s

of S-equalities L t = u . An equational theory is a tuple (S;E) with iÎI i i

order-sorted signature S and finite set of S-equations E. For ' a S-

equation, (S;E) ├j iff j can be proved from (S;E) by the deduction rules
in [10] iff j is valid in all models of (S;E); (S;E) induces the

congruence relation = on T (X) defined for any t; uÎ T (X) by t = u iff E S S E

(S, E) ├ t = u. The expressions T T (X) and ?T denote the quotient S/E S/E

algebras induced by = over the algebras T (X) and T , respectively; T E S S/E

is the initial algebra of (S;E). An E-unifier for a S-equality t = u is a

substitution q such that tq=E uq. A complete set of E-unifiers for a S-
equality t = u is written CSU (t = u) and it is called finitary if it contains E

a finite number of E-unifiers. The expression GU (t = u) denotes the set E

of ground E-unifiers of a S-equality t = u. A theory inclusion (S;E)
Í(S´;E´) is protecting iff the unique S-homomorphism T ®T to S/E ´/E´ ½S S

the S-reduct of the initial algebra T is an isomorphism.S´/E´

AS-rule is a sentence t ® u if g, where t ® u is a S-sequent with t, u Î
T (X) for some sort s Î S and the condition g is a finite conjunction of S s

S-equalities. A rewrite theory is a tuple R = (S;E;R) with equational
theory eR = (S;E) and a finite set of S-rules R. A topmost rewrite theory is

a rewrite theory R = (S;E;R) such that for some top sort s = [] and for

each t ® u if g Î R, the terms t, u satisfy t, u Î T (X) and t Ï X, and no S s

operator in S has s as argument sort. For R = (S;E;R) and ' a S-rule, R ├

' iff ' can be obtained from R by the deduction rules in [1] iff ' is valid

in all models of R . For ' a S-equation, R ├ ' iff eR ├ ' . A rewrite theory

R = (S;E;R) induces the rewrite relation ®R on T (X) defined for every S/E

t, uÎ T (X) by [t] ®R [u] iff there is a one-step rewrite proof R ├ t ® u. S E E

*The expressions R ├ t ® u and R ├ t ® u respectively denote a one-

step rewrite proof and an arbitrary length (but finite) rewrite proof in R

*from t to u. The expression T = (T ,®) denotes the initial R S/E R

reachability model of R = (S;E;R) [1]. A S-sequent j is an inductive

consequence of R iff R╟ j iff ("q: X ® T) R├ jq iff T ╟ j.S R

State predicates. A set of state predicates II for R = (S;E;R) can be

equationally-defined by an equational theory e =(S ;E], E). Signature II II II

S contains S, two sorts Bool £^[Bool] with constants ┬ and ┴ of sort II

s

102 Camilo Rochaz

Bool , predicate symbols p : s ® [Bool]for each p Î II, and optionally
some auxiliary function symbols.

Equations in E define the predicate symbols in S and auxiliary II II

function symbols, if any; they protect (S;E) and the equational theory

specifying sort Bool , constants ┬ and ┴, and the Boolean operations. It
is easy to define a state predicate pÎII as a Boolean combination of other

already-defined state predicates{p1, . . . pn} in S . The reason why p: s II

® [Bool] instead of p : s ®Bool , is to allow partial definitions of p with

equations that only define the positive case by equations p(t) = ┬ if j,
and and either leave the negative case implicit or may only define some

negative cases with equations p(t´) = ┴ if g´without necessarily
covering all the cases.

LTL semantics. For pÎII and [t] Î T , e defines the semantics of p in E S/E; II s

T as follows: it is said that p([t]) holds in T iff e ├ p(t) = ┬. This R E R II

IIdefines a Kripke structure K = (T ;®R;L) with labeling function R S/E; II s

L such that, for each [t] Î T the semantic equivalence pÎ L ([t]) II E S/E; II E s
IIiff p ([t]) holds in T . Then, all of LTL can be interpreted in K R in RE R

the standard way [2], including the “always” (�), “next” (O), and
“strong implication” (Þ) operators.

Executability conditions. It is assumed that the set of equations of a
rewrite theory R can be decomposed into a disjoint union E] A, with A

a collection of axioms (such as associativity, and/or commutativity,
and/or identity) for which there exists a matching algorithm modulo A
producing a finite number of A-matching substitutions, or failing
otherwise. It is also assumed that the equations E can be oriented into a
set of ground sort-decreasing, ground confluent, and ground ®
terminating rules E modulo A. The expression t¯ ÎT (X) denotes S,E/A S,s

the E/A-canonical form of tÎT (X). The rules R in R are assumed to be S

ground coherent relative to the equations Em odulo A [17].

+Free constructors. For R =(S;E È A;R), the signature WÍS is a

signature of free constructors modulo A iff for each sort s in S and tÎT
 there is uÎ T satisfying t = E u, and u ̄ =A u for any u Î T . For +S,s Ws ÈA S,E/A W,s

the development in this paper it is required that t ÎT (X) for each t® u W

if gÎ R.

103Automatic Proof-Search Heuristics in the Maude Invariant Analyzer Tool

3. The Maude Invariant Analyzer Tool: An
Overview

The Maude Invariant Analyzer Tool (InvA) is a tool designed for
interactively proving two key safety properties of executable Maude
specifications, namely, inductive stability and inductive invariance,
plus their combination by strengthening techniques. The tool
mechanizes an inference system that, without assuming finiteness of
the set of initial or reachable states, uses rewriting and narrowing-based
reasoning techniques, in which all temporal logic formulas eventually
disappear and are replaced bypurely equational conditional sentences.
The InvA tool provides a substantial degree of mechanization and can
automatically discharge many proof obligations without user
intervention. It is implemented in the Maude language and exploits
rewriting logic's reflection capabilities, i.e., it is a Maude specification
that takes, as part of its input, a meta-representation of a Maude
specification.

The concept of inductive stability for R = (S, E, R) is intimately related

with the notion of the set of states t Î T of T that satisfy a state S, s R

predicate p Î II being closed under ® R . More precisely, for p Î II and

xÎX, the property p b eing inductively stable for R i s the safety property:

IIK ╞ p(x))äp(x) (1)R

meaning that if I (t) holds in a state tÎT , then p (u) holds in any state u S,s

Î T , that is reachable from t. S,s

Invariants are among the most important safety properties. Given a set
of initial states characterized by IÎ II, a state predicate pÎ II being
inductively invariant for R from the set of initial states I is the safety

property

IIK ╞ I(x))äp(x) (2)R

meaning that if I(t) holds in a state tÎ T , then p(u) holds in any state u S;s

Î T reachable from t. In other words, the invariant p holds for all states S;s

reachable from I. Since the set of initial states is defined in e as a state II

104 Camilo Rochaz

predicate I Î II , an equational definition of I can of course capture an
infinite set of initial states.

3.1. Inference System Mechanized in the InvA Tool

Given a ground stability or ground invariance property j, the InvA tool

generates equational proof obligations such that, if they hold, then T ╞ j. R

For a topmost rewrite theory R and of a set of state predicates II specified
in Maude, the InvA tool mechanizes inference rules ST, INV, STR1,
STR2, CÞ, NR1, and NR2 depicted in Figure 1. Soundness proofs for
each one of these inference rules can be found in [13]. The application of
inference rules ST, INV, STR1, and STR2 to a given inductive stability or
invariance LTL verification goal ultimately reduces such a goal to simpler
inductive equational reasoning that can be handled by applying rules CÞ,
NR1, and NR2.

Inference rule ST reduces the verification task of p-stability to the
simpler condition p Þp Οp, which only involves 1-step search instead
of arbitrary depth search. Inference rule INV reduces the verification
task of inductive invariance to equational implication and inductive
stability. Inference rules STR1 and STR2 are strengthening rules.
Inference rule CÞ handles equational implications, while rules NR1
and NR2 use 1-step narrowing modulo axioms to handle the symbolic 1-
step search, forthe temporal next operator, in formulae of the form p Þp.
Note that any inductive stability and invariance formula is ultimately
reduced to equational reasoning. Thanks to the availability in Maude 2.6
of unification modulo commutativity (C), associativity and
commutativity (AC), and modulo these theories plus identities (U), and
to the narrowing modulo infrastructure, the InvA tool can handle
modules with operators declared C, CU, AC, and ACU. Furthermore,
since unification modulo the above theory combinations is decidable,
and each one yields a finite set of complete unifiers, the set of proof
obligations is always finite.

3.2. Methodology and Commands Available to the User

The approach for proving inductive stability and invariance properties
in the InvA tool is depicted in Figure 2.

Given a topmost rewrite theory R, an equational specification e II for

the state predicates II , and an inductive safety property j the InvA tool
internally generates equational proof obligations according to the

105Automatic Proof-Search Heuristics in the Maude Invariant Analyzer Tool

inference system in Figure 1 and tries to discharge as many of them as
possible by using the heuristics described in Section 4. Any proof proof
obligation that cannot be automatically discharged is output to the user
so it can be handled interactively in an external tool such as Maude's
Inductive Theorem Prover (ITP) [4, 8] (an experimental interactive tool
for proving properties of the initial algebra Te of an order-sorted
equational theory e written in Maude).

106

Fig. 1. Inference rules mechanized in the InvA tool.

Camilo Rochaz

The user interacts with the InvA tool via the following commands:

- (help .) shows the list of commands available.
- (analyze-stable <pred> in <module> <module>.) generates the

proof obligations for inference ST with inference NR1, for the given
predicate. The first module equationally specifies the state predicate
and the second one the topmost rewrite theory. This command tries
to eagerly discharge the proof obligations; those that cannot be
discharged are shown to the user.

- (analyze-stable <pred> in <module> <module> assuming <pred>.)
generates the proof obligations for proving the third premise of
inference STR2 with inference NR2, for the given predicate and the
given modules. The first module equationally specifies the state
predicates and the second one the topmost rewrite theory. This
command tries to eagerly discharge the proof obligations; those that
cannot be discharged are shown to the user.

- (analyze <pred> implies <pred> in <module>.) generates the proof
obligations for proving the given implication in the given module,
according to inference C Þ. This command tries to eagerly
discharge the proof obligations; those that cannot be discharged are
shown to the user.

- (show pos.) shows the proof obligations computed by the last
analyze command that could not be discharged; those that are
discharged are not shown.

- (show-all pos .) shows all the proof obligations computed by the last
analyze command.

Observe that the analysis commands in InvA give direct tool support for
deductive reasoning with some of the inference rules presented in this
chapter, but not for all of them. For example, there is no command in
InvA directly supporting deduction with inference rule INV.
Nevertheless, deduction with all inference rules in this chapter is
supported by InvA via combination of commands. For example,
deduction with inference rule INV can be achieved by combining the
analyze and analyze-stable commands.

107

Fig. 2. Approach for checking inductive stability and invariance
properties for rewrite theories.

Automatic Proof-Search Heuristics in the Maude Invariant Analyzer Tool

InvA

ITP

Proof
Obligations

Success !

Specifiation

System

Property

Predicates

is
 a

na
ly

ze
d

by

generates

strengthening ar
e

ha
nd

le
d

by

Pos discharged

Maude's Inductive
Theorem Prover

108

4. Proof-Search Heuristics in InvA

The InvA tool has been successfully used in the formal verification of
safety properties for concurrent systems in different domains. The InvA
case studies include the formal verification of safety properties for the
Illinois Browser Operating System (IBOS) [16], a modern, security-
conscious web browser designed at the University of Illinois which
could be integrated into a secure operating system. For this case study,
the largest one considered so far, the InvA tool generated approximately
22755 proof obligations and, thanks to its proof-search heuristics, it was
able to automatically discharge all but 48 proof obligations, a success
rate of about 99:8% (see [13, Ch. 6] for details). This section presents a
description of the proof-search heuristics used in the InvA tool and
summarizes how comparatively useful in practice they are.

After applying rules ST, INV, STR1, STR2, CÞ, NR1, and NR2
according to the user commands, the InvA tool uses rewriting-based
reasoning and narrowing procedures, and SMT decision procedures for
automatically discharging as many of the generated equational proof
obligations as possible. For an executable equational specification e = II

(S , E ÈA) and a conditional proof obligation j of the formII II

t = u if g;

the InvA tool applies a proof-search strategy such that, if it succeeds,
IIthen the Kripke structure K associated to the initial reachability R

model TR satisfies j. Otherwise, if the proof-search fails, the proof

obligation j (or a logically equivalent variant) is output to the user.

4.1. Boolean Transformations

For the proof-search process, the InvA tool first tries to simplify
Boolean expressions in j. During the simplification process, the tool
assumes that any operator '~' is an equationally defined equality
predicate, i.e., an equality enrichment. Given an order-sorted signature
S = (S, £, F) and an order-sorted equational theory e=(S,E) with initial

~algebra Te , an equality enrichment [11] of e is an equational theory e

that extends e by defining a Boolean-valued equality function symbol
'~' that coincides with '=' in Te .

~ ~ ~Definition 1 An equational theory e = (S ,E) is called an equality
~ ~ ~ ~enrichment of e = (S,E), with S = (S ,£ , F) and S = (S,£,F), iff

Camilo Rochaz

~- E is a protecting extension of E;

~- the poset of sorts of S extends (S;£) by adding a new sort Bool that
belongs to a new connected component, with constants T and ? such ~ ~that TE ;Bool = f[>]; [?]g, with > 6=E ?; and

~- for each connected component in (S, £) there is a top sort kÎ S and
~a binary commutative operator _~ _ : k k ® Bool in S such that the

following equivalences hold for any ground terms t, u Î T :S,k

An equality enrichment ? ˜o f ? is called Boolean iff it contains all the
function symbols and equations making the elements of T a two-? ˜;Bool

element Boolean algebra.

Using the information about `?́ , a Boolean transformation can be
applied recursively to ' with the additional information of the equality
enrichment, if any is defined.

The goal of the Boolean transformation process is to obtain, if possible,
an inductively equivalent proof obligation '´ for which the automatic
search tests, explainedbelow, have better chances of success. The
following is a description of the Boolean mtransformations applied
recursively by the InvA tool:

- If t = u in j is such that t is of the form t ~ t and u of the form , 1 2 ┴
 then j is transformed into = if γ Ù t = t .1 2┴

- If v = v , with v v Î T (X) , is any of the S-equalities in the 1 2 1, 2 S Bool

condition g of j, then:

1 2- If v is of the form v ~ v and v of the form , then v = v , is 1 1 1 2 1 2
1 2replaced by v = v .1 1

1 n- If v is of the form v u ... v and v of the form , then v = 1 1 1 2 1
1 n iv is replaced by v = ... v = . Note that the v have 2 1 1 1

sort Bool .
1 n- f v is of the form v u ... v and v of the form , then v = 1 1 1 2 1

1 n iv is replaced by v = ... v = . Note that the v have 2 1 1 1

sort Bool .

Symbols and are used to represent, respectively, the conjunction and
disjunction function symbols used by the Boolean equality enrichment in

109Automatic Proof-Search Heuristics in the Maude Invariant Analyzer Tool

Definition 1. Also note that _S-equalities are unoriented, and thus in the
Boolean transformation the order of terms in the equalities is immaterial.

4.2. Automatic Proof-Search Tests

After the Boolean transformation process is completed, some automatic
search tests are applied to the resulting proof obligation following the
strategy described below. In what follows, it is assumed that ' has been
already simplified by the transformations described in Section 4.1..
Furthermore, let t,̄ u,̄ ̄g be obtained by replacing each variable x Î X by a

¯ ¯new constant x Î X , with S Ç X = Æ.

4.2.1. Equational simplification.

The strategy checks if 'h olds trivially, i.e., if

or there is t =u in g such that t #S;E=A; u #S;E /B Î T buti i i i S

t #S;E=A=6 A u #S;E=A:i i

Some simplifications in the form of reduction to canonical forms can be
made to ', even if they do not yield a trivial proof of '. In some cases,
such canonical reductions are incorporated into ' and the Boolean
transformation is used again.

4.2.2. Context joinability.

It checks whether ' is context-joinable [5]. The proof obligation ' is
-j ?context-joinable iff t and ̄u are joinable in the rewrite theory R = (S(X), e

® ®
A, E È g), obtain by making variables into constants and by orienting

®
the equations E as rewrite rules E and heuristically orienting each

- ®-equality t = u in g as a sequent t ® u in g .i i i i

4.2.3. Unfeasability.

It checks if the proof obligation is unfeasible [5]. The proof obligationj
- ®-is unfeasible if there is a conjunct t ® u in g and v, w Î T (X) such i i S

- -j - -that R ├ t ® u Ù t ®w CSU (v = w) = Æ, and v and w are strongly i i Ae ®
irreducible with E modulo A, i.e., if v and w are such that each one of its
ground instances is in E-canonical form modulo A.

4.2.4. SMT Solving.

It checks if the proof obligation can be proved by an SMT decision

110 Camilo Rochaz

procedure. The condition g of the proof obligation ' is analyzed and, if
possible, a subformula consisting only of arithmetic subexpressions is
extracted. This subformula has the following property: if it is a
contradiction, then g is unsatisfiable. Therefore, if the SMT decision
procedure answers that the given subformula is unsatisfiable, then, as in
the previous test, 'i s unfeasible.

Because of the admissibility assumptions on (S;E È A), the first test of the
strategy either succeeds or fails in finitely many equational rewrite steps.
For the second and third tests, the strategy is not guaranteed to succeed or

®
fail in finitely many rewrite steps because the oriented sequents g can
falsify a termination assumption of the underlying equational theory. So, for
these last two checks, InvA uses a bound on the depth of the proof-search.
For the fourth test, the InvA offers support for integer linear arithmetic
constraints, which is known to be decidable and for which there may be
decision procedures already implemented in the SMT solver of choice.

The code in InvA for tests (2) and (3) was borrowed and adapted from
the Church-Rosser Checker Tool [5]. For the test (4), the InvA tool relies
on an extension of Maude with the CVC3 theorem prover available
from the Matching Logic Project [15].

4.3. Comparison of the Proof-Search Tests

As noted before, the InvA tool has been successfully used in the formal
verification of safety properties for concurrent systems in different
domains. Its case studies include, among others, the IBOS secure browsing
system [13, Ch. 6], the Alternating Bit Protocol [13, Ch. 5], and the Bakery
Protocol for both bounded and unbounded number of processes. See the
current version of the InvA tool for the complete set of case studies.

Table 1. Success rate of the automatic search-proof
tests for discharged proof obligations

Table 1 compares the rate of success of each automatic search-proof test
on the case studies that are part of the InvA’s distribution for all
automatically discharged proof obligations. Equational simplification
is the most successful test, which is natural given the fact that many
proof obligations can be handled by directly rewriting from the

111

Test
Equational simplification
Context joinability(search deptg £ 10)
Unfeasability (search depth £ 10)
SMT -solving

Rate os Success
54.2%
34.7%
9.3%
1.8%

Automatic Proof-Search Heuristics in the Maude Invariant Analyzer Tool

definitions. Context joinability is also highly successful and it has
proved to be a good complement to the former test. Unfeasability has a
success rate of almost 10%, which is high taking into account its third
place in the list and the fact that state predicates are not required to be
fully defined for the negative case. Finally, SMTsolving is 1:8%
successful mainly because, if possible, it is the last test ever applied to a
proof obligation and also because many proof obligations in the case
studies considered here do not have many integer arithmetic constraints.

5. A Case Study: The Bakery Protocol

This section presents a case study about the deductive analysis of
inductive safety properties using the methodology, the proof system,
and the Maude Invariant Analyzer tool (InvA) introduced in Section 3..
The subject of study is a concurrent protocol for achieving mutual
exclusion. As a result, this section illustrates how the proof obligations
generated during the verification task are automatically discharged by
the proof-search heuristics presented in Section 4.. Full versions of the
specification of the case study and the proof scripts presented here, can
be downloaded with the InvA distribution.

5.1. The Bakery Protocol

The Bakery Protocol was proposed by L. Lamport as the first real solution
for the mutual exclusion problem between processes. It derives its name
from the situation in a busy bakery or deli shop where costumers pick a
number at the ticket machine in order to guarantee that they are served in a
proper order. The protocol is based on the “first in, first out” principle: the
customer whose ticket matches the current available slot number is served
first. The Bakery Protocol is considered as a benchmark case study in
formal verification [12] because it is inherently concurrent and its state
space is unbounded (i.e., it is potentially infinite). This section presents
the Bakery Protocol (2BAK) specification for two processes.

The 2BAK specification in Maude has 2 modules. At the top level, he
state space is represented by the top sort Sys, defined in module 2BAK-
STATE, which is a 4-tuple:

.

sorts Mode Sys .
ops sleep wait crit : -> Mode [ctor] .
op <_,_,_,_> : Mode Nat Mode Nat -> Sys [ctor]

The arguments of a system state are the state of the first customer (as
Mode), the ticket number of the first customer (as Nat), the state of the
second customer (as Mode), and the ticket number of the second

112 Camilo Rochaz

113

customer (as Nat). The sort Mode is an enumeration of constants for
identifying an inactive customer (as sleep), a customer waiting to be
served (as wait), and a customer being served (as crit). The sort Nat is
that of natural numbers in Peano notation, together with an equality
enrichment and the usual comparison operators.

As an example, consider the following ground term of sort Sys
representing a state in the system:

< wait, s s 0, crit, s 0 >

In this state, the first customer is waiting with ticket number 2 and the
second customer is being served with ticket number 1.

Module 2BAK specifies the operation of the protocol with 6 rewrite
rules. These rewrite rules model the transitions of the customers through
the three different states in the system.

rl [p1-s] :
< sleep, M:Nat, Y:Mode, N:Nat >

=> < wait, s N:Nat, Y:Mode, N:Nat > .

crl [p1-w] :
< wait, M:Nat, Y:Mode, N:Nat >

=> < crit, M:Nat, Y:Mode, N:Nat >
if M:Nat <= N:Nat = true .

rl [p1-c] :
< crit, M:Nat, Y:Mode, N:Nat >

=> < sleep, 0, Y:Mode, N:Nat > .

rl [p2-s] :
< X:Mode, M:Nat, sleep, N:Nat >

=> < X:Mode, M:Nat, wait, s M:Nat > .

crl [p2-w] :
< X:Mode, M:Nat, wait, N:Nat >

=> < X:Mode, M:Nat, crit, N:Nat >
if N:Nat < M:Nat = true .

rl [p2-c] :
< X:Mode, M:Nat, crit, N:Nat >

=> < X:Mode, M:Nat, sleep, 0 > .

The effects of these rules in a state can be summarized as follows:

Automatic Proof-Search Heuristics in the Maude Invariant Analyzer Tool

114

[p1-s] models the transition of the first customer from state inactive to
state waiting, with a new ticket number corresponding to the
next available one (in this case, the next available ticket is the
successor of the ticket number of the second customer).

[p1-w] models the transition of the first customer from state waiting to
being served (i.e., to the critical section), whenever its ticket
number is at most as the ticket number of the second customer.

[p1-c] models the transition of the first customer from being served to
state inactive; the new ticket number is zero (which represents a
non-existent ticket).

[p2-s] models the transition of the second customer from state inactive
to state waiting, with a new ticket number corresponding to the
next available one (in this case, the next available ticket is the
successor of the ticket number of the first customer).

[p2-w] models the transition of the second customer from state waiting
to being served (i.e., to the critical section), whenever its ticket
number is greater than the ticket number of the first customer.

[p2-c] models the transition of the second customer from being served
to state inactive; the new ticket number is zero (which represents
a non-existent ticket).

5.2. Mutual Exclusion

The main property the 2BAK enjoys is the mutual exclusion property.
This means that the protocol makes possible to safely serve the two
costumers, i.e., to serve at most one customer at a time. The goal of the
remaining of this section is to illustrate how the proof-search heuristics
presented in Section 4. can automatically discharge all proof
obligations generated by the InvA tool during the verification task of
2BAK’s mutual exclusion property.

Mutual exclusion in 2BAK means that if one customer is being served,
then the other customer is not being served. Note that this is a property
that must hold for each pair of natural numbers. Thus, this property
cannot be effectively checked by means of direct algorithmic
techniques, such as model checking the 2BAK specification, even if the
set of initial states is finite (which is not even the case for 2BAK, as
explained below).

The mutual exclusion property is expressed by state predicate mutex
and is defined in module 2BAK-PREDS as follows:

op mutex : Sys -> [Bool] .
eq [p1-s&p2-s] :

mutex(< sleep, M:Nat, sleep, N:Nat >)

Camilo Rochaz

115

= true .
eq [p1-w&p2-s] :

mutex(< wait, M:Nat, sleep, N:Nat >)
= true .
eq [p1-c&p2-s] :

mutex(< crit, M:Nat, sleep, N:Nat >)
= true .
eq [p1-s&p2-w] :
mutex(< sleep, M:Nat, wait, N:Nat >)
= true .
eq [p1-w&p2-w] :

mutex(< wait, M:Nat, wait, N:Nat >)
= true .
eq [p1-s&p2-c] :

mutex(< sleep, M:Nat, crit, N:Nat >)
= true .
eq [p1-c&p2-c] :

mutex(< crit, M:Nat, crit, N:Nat >)
= false .
eq [p1-c&p2-w] :

mutex(< crit, M:Nat, wait, N:Nat >)
= M:Nat <= N:Nat . --- strengthening
eq [p1-w&p2-c] :

mutex(< wait, M:Nat, crit, N:Nat >)
= N:Nat < M:Nat . --- strengthening

State predicate mutex is fully defined (i.e., for positive and negative
cases) by nine equations. In particular, equations [p1-s&p2-s], [p1-
w&p2-s], [p1-c&p2-s], [p1-s&p2-w], [p1-w&p2-w], and [p1-s&p2-c]
consider the case when the mutual exclusion property is trivially true:
there is at most one process in the critical section. Equation [p1-c&p2-c]
considers the case when the property is trivially false: the two processes
are in the critical section. Equations [p1-c&p2-w] and [p1-w&p2-c]
consider the case when one process is in the critical section while the
other one is waiting to enter the critical section. An initial observation
would suggest that in such a state the property trivially holds. However,
with a closer look it becomes evident that this is not the case because
such a condition would be too week: if the waiting process has a ticket
number less than the ticket number of the process in the critical section,
then the waiting process would transition and enter the critical section,
causing a mutual exclusion violation. This is evidence for requiring a
stronger condition for equations [p1-c&p2-w] and [p1-w&p2-c] to be
true. This observation is realized by the strengthening conditions on
right-hand side of each one of these two rules.

Automatic Proof-Search Heuristics in the Maude Invariant Analyzer Tool

Note that inference rule INV, presented in Section 3., does ensure that
any reachable state from the set of initial states satisfies predicate mutex
if it is an inductive invariant. Thus, if the latter is the case, then the
mutual exclusion property also holds for a predicate similar to mutex in
which the right-hand side of equations [p1-c&p2-w] and [p1-w&p2-c]
is replaced by true (this is thanks to the strengthening rule STR1,
presented in Section 3.). The above remarks and the strengthening of the
invariant are omitted here for brevity, but are worked out in detail in the
sources of the case study (available with the InvA distribution).

The goal is to prove that mutex is an inductive invariant of 2BAK for the
set of initial states defined by predicate init, defined as follows:

2BAK:

(analyze init(S:Sys) implies mutex(S:Sys) in 2BAK-PREDS .)

(analyze-stable mutex(S:Sys) in 2BAK-PREDS 2BAK .)

When issuing the above-mentioned commands, the InvA tool generates
the following output:

rewrites: 6540 in 12ms cpu (11ms real) (545000 rewrites/second)
Checking 2BAK-PREDS ||- init(S:Sys) => mutex(S:Sys) ...
Proof obligations generated: 1
Proof obligations discharged: 1

op init : Sys -> [Bool] .
eq [init] :

init(< sleep, M:Nat, sleep, N:Nat >)
= true .

The set of initial states corresponds to states in which both customers are
inactive and can have any ticket number. Note that the set of initial states
is countably infinite.

Formally, the goal is to check if state predicate mutex is an inductive
invariant from init:

2BAK ╟ init) Þðmutex:

The following verification commands can be given to the InvA tool in
order to check the inductive invariant for achieving mutual exclusion in

Success!

116 Camilo Rochaz

Table 2. Success count of search-proof tests for the invariance of mutex in 2BAK.

Maude> (analyze-stable mutex(S:Sys) in 2BAK-PREDS 2BAK .)
rewrites: 14694 in 15ms cpu (15ms real) (979600 rewrites/second)
Checking 2BAK-PREDS ||- mutex(S:Sys) => O mutex(S:Sys) ...
Proof obligations generated: 18
Proof obligations discharged: 18
Success!

The tool generates 19 proof obligations and its search-proof tests
automatically discharges all of them. Table 2 summarizes the
effectiveness of each search-proof test in discharging the 19
proof obligations.

The following is the list of all proof obligations generated for the
first above-mentioned command:

rewrites: 3247 in 2ms cpu (2ms real) (1623500 rewrites/second)
These are all proof obligations:
0. from init : trivially joinable

mutex(< sleep,#1:Nat,sleep,#2:Nat >) = true

The following is the list of all proof obligations generated for the
second abovementioned command:

0. from p1-c&p2-c & p2-c : trivially joinable
mutex(< crit,#3:Nat,sleep,0 >) = true

if false = true .

1. from p1-c&p2-c & p1-c : trivially joinable
mutex(< sleep,0,crit,#4:Nat >) = true

if false = true .

2. from p1-c&p2-s & p2-s : trivially joinable
mutex(< crit,#3:Nat,wait,s #3:Nat >) = true

3. from p1-c&p2-s & p1-c : trivially joinable
mutex(< sleep,0,sleep,#4:Nat >) = true

4. from p1-c&p2-w & p2-w : smt
mutex(< crit,#3:Nat,crit,#4:Nat >) = true

117

Test Proof obligations discharged
Equational simplification 15
Context joinability (search depth 10) 2
Unfeasability (search depth 10) 0

Automatic Proof-Search Heuristics in the Maude Invariant Analyzer Tool

118

if #3:Nat <= #4:Nat = true
/\ #4:Nat < #3:Nat = true .

5. from p1-c&p2-w & p1-c : trivially joinable
mutex(< sleep,0,wait,#4:Nat >) = true

if #3:Nat <= #4:Nat = true .

6. from p1-s&p2-c & p2-c : trivially joinable
mutex(< sleep,#3:Nat,sleep,0 >) = true

7. from p1-s&p2-c & p1-s : trivially joinable
mutex(< wait,s #4:Nat,crit,#4:Nat >) = true

8. from p1-s&p2-s & p2-s : trivially joinable
mutex(< sleep,#3:Nat,wait,s #3:Nat >) = true

9. from p1-s&p2-s & p1-s : trivially joinable
mutex(< wait,s #4:Nat,sleep,#4:Nat >) = true

10. from p1-s&p2-w & p2-w : trivially joinable
mutex(< sleep,#3:Nat,crit,#4:Nat >) = true

if #4:Nat < #3:Nat = true .

11. from p1-s&p2-w & p1-s : trivially joinable
mutex(< wait,s #4:Nat,wait,#4:Nat >) = true

12. from p1-w&p2-c & p2-c : trivially joinable
mutex(< wait,#3:Nat,sleep,0 >) = true

if #4:Nat < #3:Nat = true .

13. from p1-w&p2-c & p1-w : smt
mutex(< crit,#3:Nat,crit,#4:Nat >) = true

if #4:Nat < #3:Nat = true
/\ #3:Nat <= #4:Nat = true .

14. from p1-w&p2-s & p2-s : trivially joinable
mutex(< wait,#3:Nat,wait,s #3:Nat >) = true

15. from p1-w&p2-s & p1-w : trivially joinable
mutex(< crit,#3:Nat,sleep,#4:Nat >) = true

if #3:Nat <= #4:Nat = true .

16. from p1-w&p2-w & p2-w : context joinable
mutex(< wait,#3:Nat,crit,#4:Nat >) = true

if #4:Nat < #3:Nat = true .

Camilo Rochaz

119

17. from p1-w&p2-w & p1-w : context joinable
mutex(< crit,#3:Nat,wait,#4:Nat >) = true

if #3:Nat <= #4:Nat = true .

Internally, the InvA tool classifies proof obligations discharged by
equational simplification as “trivially joinable”, the ones discharged by
context joinability as “context joinable”, the ones discharged by unfeasibility
as “unfeasible”, and the ones discharged by SMT-solving as “smt”.

As a final remark, note that the proof obligations discharged by SMT-
solving have unfeasible (arithmetic) conditions that could not be dealt
with by the unfesability proof-search test, which is applied before
calling the SMT solver. The reason for this ‘failure’ is that the equational
specification for the operators <= and < is not convenient for search by
equational narrowing. On the other hand, the arithmetic conditions in
proof obligations (4) and (13) are easy tests for arithmetic decision
procedures, such as the ones available from SMT solvers.

6. Conclusion and Future Work

This paper has presented the automatic proof-search tests implemented in
the Maude Invariant Analyzer Tool (InvA). This tool offers interactive
support, with a high degree of automation, for deductively proving
inductive stability and inductive invariance of a (possibly infinite-state)
concurrent system specified by conditional topmost rewrite theories under
reasonable conditions. The proof obligations generated by the mechanized
inference rules in the InvA tool are equational Horn clauses. The original
safety properties of the concurrent system are automatically reduced to
such equational proof obligations by the mechanization of these rules and
the 1-step inductively complete narrowing procedures. The proof-search
tests automatically discharge many of the resulting equational proof
obligations. In some case studies these tests have achieved a success rate
for automatically discharging proof obligations of 99:8% on thousands of
proof obligations. In particular, the effectiveness of the proofsearch tests
has been illustrated by a case study on the mutual exclusion property for
Lamport’s 2-process Bakery Protocol in which all proof obligations are
automatically discharged without any user intervention. In the broader
picture of the Maude formal environment and community, the InvA tool
adds theorem proving support for verifying safety properties of infinite-
state rewrite theories to the Maude environment.

The challenging case studies analyzed in the InvA tool have unveiled
limitations of the InvA tool which, from the perspective of stress testing
the limits of the tool, is a positive experience. First, there should be better
management of proof obligations, specially when analyzing large

Automatic Proof-Search Heuristics in the Maude Invariant Analyzer Tool

specifications: it is very complicated, time consuming, and error-prone
to analyze a list of more than 30 proof obligations ‘by hand’.

Second, the SMT-solving automatic test could perhaps be combined with
equational narrowing, which is already available in Maude. This should
increase the number of proof obligations automatically discharged by the
tool and thus lessen the proof effort of the user. Third, there is also the need
for improving the techniques available to the user in tools such as the ITP.
These could help in obtaining easy interactive proofs in many cases where
the proof obligations cannot be discharged automatically. Inductive
techniques such as cover-set induction modulo AC should be investigated,
implemented, and offered to the user. The current ITP version supports
cover-set induction [8] but for the moment not modulo AC.

References

[1] R. Bruni and J. Meseguer. Semantic foundations for generalized
rewrite theories. Theoretical Computer Science, 360(1-
3):386–414, 2006.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking.
The MIT Press, Cambridge, Massachusetts, 1999.

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J.
Meseguer, and C. L. Talcott, editors. All About Maude - A High-
Performance Logical Framework, How to Specify, Program and
Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes
in Computer Science. Springer, 2007.

[4] M. Clavel and M. Egea. ITP/OCL: A rewriting-based validation
tool for UML+OCL static class diagrams. In M. Johnson and V.
Vene, editors, AMAST, volume 4019 of Lecture Notes in
Computer Science, pages 368–373. Springer, 2006.

[5] F. Durán and J. Meseguer. A Church-Rosser checker tool for
conditional ordersorted equational maude specifications. In P. C.
Ölveczky, editor, WRLA, volume 6381 of Lecture Notes in
Computer Science, pages 69–85. Springer, 2010.

[6] F. Durán, C. Rocha, and J. M. Álvarez. Towards a Maude Formal
Environment. In Formal Modeling: Actors, Open Systems,
Biological Systems, volume 7000 of Lecture Notes in Computer
Science, pages 329–351, 2011.

[7] R. Gutiérrez, J. Meseguer, and C. Rocha. Order-sorted equality
enrichments modulo axioms. In F. Durán, editor, Rewriting Logic

120 Camilo Rochaz

and Its Applications, volume 7571 of Lecture Notes in Computer
Science, pages 162–181. Springer Berlin Heidelberg, 2012.

[8] J. Hendrix. Decision Procedures for Equationally Based
Reasoning. PhD thesis, University of Illinois at Urbana-
Champaign, April 2008.

[9] J. Meseguer. Conditional rewriting logic as a unified model of
concurrency. Theoretical Computer Science, 96(1):73–155,
1992.

[10] J. Meseguer. Membership algebra as a logical framework for
equational specification. In F. Parisi-Presicce, editor, WADT,
volume 1376 of Lecture Notes in Computer Science, pages
18–61. Springer, 1997.

[11] J. Meseguer and J. A. Goguen. Initially, induction and
computability. Algebraic Methods in Semantics, 1986.

[12] K. Ogata and K. Futatsugi. Formal analysis of the bakery protocol
with consideration of nonatomic reads and writes. In S. Liu, T.
Maibaum, and K. Araki, editors, Formal Methods and Software
Engineering, volume 5256 of Lecture Notes in Computer
Science, pages 187–206. Springer Berlin Heidelberg, 2008.

[13] C. Rocha. Symbolic Reachability Analysis for Rewrite Theories.
PhD thesis, University of Illinois at Urbana-Champaign, 2012.

[14] C. Rocha and J. Meseguer. Proving safety properties of rewrite
theories. In A. Corradini, B. Klin, and C. Cîrstea, editors,
CALCO, volume 6859 of Lecture Notes in Computer Science,
pages 314–328. Springer, 2011.

[15] G. Ro¸su and A. ¸ Stef?anescu. Matching Logic: A New Program
Verification Approach (NIER Track). In ICSE’11: Proceedings of
the 30th International Conference on Software Engineering,
pages 868–871. ACM, 2011.

[16] S. Tang, H. Mai, and S. T. King. Trust and protection in the Illinois
Browser Operating System. In R. H. Arpaci-Dusseau and B.
Chen, editors, OSDI, pages 17–32. USENIX Association, 2010.

[17] P. Viry. Equational rules for rewriting logic. Theoretical
Computer Science, 285:487–517, 2002.

121Automatic Proof-Search Heuristics in the Maude Invariant Analyzer Tool

