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Abstract
One of the most dangerous threats to Wireless Sensor Networks (WSN) are wormhole attacks, due to 
their capacity to manipulate routing and application data in real time and cause important damages to the 
integrity, availability, and confidentiality of network data. An empirical method to launch a successful 
attack on IEEE 802.15.4/Zigbee devices with source routing enabled is adopted in this work to find 
signatures for detecting wormhole attacks in real environments. It uses the KillerBee framework with 
algorithms for packet manipulation through a malicious node to capture and inject malicious packets 
in victim nodes. Besides, a reverse variant of wormhole attack is presented and executed. To evidence 
the realization of this threat by the attacking software, the experimental framework includes XBee S2C 
nodes. The results include recommendations, detection signatures and future work to face wormhole 
attacks involving source routing protocols like DSR.

Keywords: Wormhole attack, ZigBee, IoT, cybersecurity, DSR.

Resumen
Una de las amenazas más peligrosas para las redes de sensores inalámbricos (WSN) son los ataques 
Wormhole debido a su capacidad de manipular datos de enrutamiento y aplicaciones en tiempo real y 
causar daños importantes a la integridad, disponibilidad y confidencialidad de los datos de una red. En este 
trabajo, se adopta un método empírico para lanzar un ataque de este tipo (que tiene éxito) en dispositivos 
IEEE 802.15.4/Zigbee con enrutamiento de origen habilitado, y con ello encontrar formas para detectar 
ataques de tipo Wormhole en entornos reales. Se utiliza el framework KillerBee con algoritmos para la 
manipulación de paquetes en un nodo malicioso, para capturar e inyectar paquetes maliciosos en los nodos 
víctimas. Además, se presenta y ejecuta una variante inversa del ataque Wormhole. Para evidenciar la 
realización de esta amenaza por parte del software atacante, el marco experimental incluye nodos XBee 
S2C. Los resultados incluyen recomendaciones, firmas de detección y trabajo futuro para enfrentar los 
ataques Wormhole que involucran protocolos de enrutamiento de fuentes como DSR.

Palabras claves: Wormhole attack, ZigBee, IoT, ciberseguridad, DSR.

1. Introduction

The Internet of Things (IoT) is a growing technology aimed at connecting all kinds of electronic devices to the 
Internet. The purpose of IoT devices is to interact and share information to ease end users’ lives. Because of 
it it, nearly 37 billion devices will be connected to the cyberspace by 2020 (Sahmim & Gharsellaoui, 2017). 
Nevertheless, IoT is a new challenge in the field of information security because a wide range of devices 
with different security features can be integrated, leading to a wider security gap. Furthermore, implementing 
security measures such as strong cipher protocols on devices with reduced processing power and memory, such 
as environmental sensors, is a difficult task (Rani & Kumar, 2017). One of the most important IoT technologies 
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are Wireless Sensors Networks (WSN), which can be deployed in many places (e.g. homes, buildings, cities, 
factories and hospitals) to monitor environmental variables: temperature, humidity, movement, lighting, and 
also to improve processes in the industrial field (Zhu, Leung, Shu, & Ngai, 2015).

On the other hand, a considerable number of vulnerabilities and security threats related to WSNs have 
been presented in various research studies (Anwar, Bakhtiari, Zainal, Abdullah, & Qureshi, 2014; Goyal, 
Bhatia, & Verma, 2015; Patle & Gupta, 2016), which introduce potential damages to the integrity, availability, 
and confidentiality of information in a WSN. Some of these threats are related to the network layer in the 
protocols stack. They include attacks, selective forwarding, sinkholes, and wormholes, and are intended to 
induce an unwanted behavior in specific elements of WSNs through malicious nodes and traffic manipulation. 
These attacks are successful because they give an attacker the ability to intercept and modify data in real 
time, execute denials of service and selective forwarding attacks, store packets, inject false information into 
legitimate nodes and disrupt routing processes (Jao et al., 2015). The risks of wormhole attacks represent new 
security gaps that must be addressed and reduced to protect end users’ data and privacy.

1.1 Background 

Wireless Sensor Networks (WSN)

Wireless sensor networks are a group of sensors that autonomously control and monitor different physical 
variables in a distributed (in collection) and controlled (central control in processing) (Yang, 2014). 
Wireless sensor networks contemplate a wide range of applications and are implemented in different 
environments, according to the needs of end users, as shown in Figure 1. By collecting information and 
creating a communications network, a data transmission is sent to a central node Sink type. These, at the 
same time, have the ability to forward the information to a local or remote application for final processing. 

Figure 1. Typical structure of a sensor network

Each node of the network must have the capacity to send and receive information in the form of radio 
waves through transmitters/receivers that adapt to external antennas or are already included in the nodes. To 
operate properly, the nodes must have a microcontroller for data processing and storage, since it is natural 
(in its construction) for the nodes to convert analog signals to digital signals.

The WSN communication model comprises fewer layers than those considered in the traditional 
OSI model. This model includes application, routing, link management, access control, and physical 
layer (Forster, 2016).

Wormhole Attack
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Wormhole attacks exploit the mechanisms to discover routes of on-demand routing protocols. The most 
remarkable cases are Ad-Hoc On-Demand Distance Vector (AODV) and Dynamic Source Routing (DSR) 
protocols, which use route request (RREQ) and route replay (RREP) packets as a way to discover routes by 
nodes in a WSN (Yih-Chun Hu, Perrig, & Johnson, 2006). A RREQ packet is a broadcast message sent by 
a source node (“S”) to request a route to a destination node (“D”), while an RREP is a unicast message sent 
by the destination node in response to an RREQ. Besides, when the RREP that contains the route to reach 
“D” arrives at “S”, the source node stores the route collected by the RREP in the route cache and then sends 
the application data to “D” through that route. Accordingly, the main goal of wormhole attacks is to build 
a tunnel between two remote nodes through a third node (“M”) placed within a transmission range of “S” 
and “D”. This occurs when “S” needs to send application data to “D” and broadcasts an RREQ message to 
discover a route to “D”. “M,” which is listening to network traffic, forwards the message directly to “D” 
because the RREQ sent by “M” reaches “D” before the original RREQ through the direct link. “M” can 
listen to the RREP from “D” first and then forward it to “S” with better metrics (zero hops), creating a false 
direct link between “S” and “D” through “M” in the process (Figure 2).

Figure 2. Wormhole attack with malicious node

At this point, the attacker can control the data that flows through the malicious tunnel and launch other 
attacks. Finally, if victim nodes are too far from each other, the attacker can use two malicious nodes 
sharing a link to build the wormhole tunnel (Jabeur, Sahli, & Khan, 2013).

1.2 Related Work

In Amish & Vaghela, wormhole attack detection is based on hop count and delay changes between source 
and destination nodes (Amish & Vaghela, 2016). If there is a wormhole tunnel between given source and 
destination nodes, the delay increases due to the longest path created by the wormhole tunnel, while hop 
count decreases for the same reason. In that sense, the detection scheme compares delay and hop count at a 
given moment with previous values to detect the attack. 

Qazi, Raad, Mu & Susilo (2013), propose applying modifications to the DSR routing protocol to 
automatically calculate a Round Trip Time (RTT) delay value between source and destination nodes at a 
given moment (Qazi, Raad, Mu, & Susilo, 2013). Thus, initial RTT values are stored and compared with 
subsequent values of the same kind. If RTT changes, a wormhole attack is detected.

Additionally, the network nodes are set in a promiscuous mode to monitor neighboring nodes. 
Bhagat (2016), introduces a modified version of the AODV routing protocol to calculate the transmission 
force from source nodes (Bhagat & Panse, 2016). The method aims to detect wormhole attacks with high 
transmission power by establishing a transmission power threshold for network nodes. If a node exceeds 
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this threshold, it could be a compromised node and a wormhole attack is detected. In another modification 
of the AODV protocol (Patel, Patel, & Patel, 2015), network nodes introduce the hash of the hop addresses 
and hop count into the RREQ packet while it follows a path from source to destination. When the RREQ 
packet reaches the destination node, the expected hash of the RREP is calculated and compared with the 
received hash. If the hashes do not match, the packet is discarded, assuming a wormhole attack in progress. 
Amish & Vaghela (2016) stated that to detect a wormhole attack, source nodes of the RREQ calculate the 
delay between a sent RREQ and every received RREP to establish an average RTT value for all received 
routes (Amish & Vaghela, 2016). If the RTT of one or more routes is less than the average RTT, a wormhole 
attack is detected, malicious routes are discarded, and the detection is replied to neighboring nodes to delete 
the malicious routes from their routing table. In Patel et al. (2015), every node calculates changes in the 
number of neighboring nodes by counting neighbors at different times.

As a result, a wormhole attack is detected if a predefined threshold of the number of neighboring 
nodes is exceeded by one or more nodes. BesZheng, Qian, & Wang (2015) presents a wormhole detection 
algorithm with node connectivity and statistical calculation (Zheng, Qian, & Wang, 2015). Such method 
defines two terms, node connectivity and network connectivity, to determine the probability of a wormhole 
attack in progress in the network. The probability of said attack depends on the network’s density, which is 
based on the number of nodes and connections between nodes.

The research studies above conducted tests in simulation environments to measure the impact of 
wormhole attacks and the effectiveness of different detection/prevention algorithms in WSNs. Nevertheless, 
they are based on simulations of routing protocol attacks and are difficult to implement in real environments 
because of the lack of devices with the features required by the proposed methods. Due to existing and 
potential cybersecurity threats to WSNs, intrusion detection systems need to be developed for real 
sensor nodes. At last, since most WSN security research studies are based on simulation results, future 
characterization of WSN threats should focus on real devices to build actual security solutions and prevent 
security disasters in WSN technologies.

Marian & Mircea (2015) manage to empirically prove that the RSSI (Received Signal Strength 
Indicator) parameter to measure the power level of node signals can be used to detect Sybil type nodes, 
and is effective (Marian & Mircea, 2015). Additionally, an algorithm is proposed for detecting Sybil nodes, 
which consists of establishing three monitor nodes in the network, where two of the nodes collect the RSSI 
of the identities generated by a hypothetical Sybil node and send the values obtained to the third monitor 
node, which performs calculations of RSSI relationships and determines if the node is Sybil or not.

To expose the flexibility of a wormhole attack and its impact on real cybersecurity environments, 
this paper proposes an algorithm to execute classic and “reverse” wormhole attacks on XBee S2C devices 
with source routing enabled. The main goal is to modify the route record field in routing packet headers 
to manipulate the routing cache in victim nodes. The algorithm is implemented in Python language using 
the KillerBee framework and an RZUSBSTICK dongle with preinstalled KillerBee firmware. The results 
include recommendations to prevent wormhole attacks, attack patterns and fingerprints to develop an 
Intrusion Detection System (IDS) for WSNs as future work.

1.3 Attacks and Vulnerabilities of WSN Security

Due to the characteristics of the wireless sensor networks’ nodes and the lack of robust security mechanisms 
in the protocols of the different layers of the communications model, there are a considerable amount of 
attacks and threats that seriously affect end users due to the risk of losing the fundamental characteristics of 
the information: integrity, availability and confidentiality.

WSN attacks can be classified according to the communication layer (Gaware & Dhonde, 2016; 
Ioannou & Vassiliou, 2016; Purohit & Sidhu, 2015; Tomic & McCann, 2017), where attacks such as denial of 
service, impersonation, man in the middle (MiTM) or information theft are the most common. Some of the 
attacks and vulnerabilities by layers can be seen in Figure 3, as well as the type of attack and possible impact.
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Figure 3. Classification of attacks on WSNs

Denial of service (DoS) attacks are more frequent between the layers, which constitutes a high risk for 
the sensors for the purposes of this article. The attacks in the layer of network are reviewed, which take 
advantage of point to point connection vulnerabilities, low monitoring components, a lack of configuration 
of cryptographic functions or having the shared means. 

Denial of services – DoS: the attack occurs when the normal flow of data is interrupted, denying 
service from (or to) the source or destination. When this attack occurs, the WSN may be partially or totally 
affected, depending on where the attack occurs.

Man in the Middle – MiTM: This attack occurs when a node is maliciously entered into the network 
and positioned in the middle of a data stream of two (2) sensors or a sensor and a router node, capturing as 
much traffic circulating on the intercepted network as possible.

Sybil attack: Occurs when a malicious or compromised node assumes different identities within the 
network or replaces the identity of one or more nodes (Patle & Gupta, 2016).

Sinkhole attack: In this attack, a malicious or compromised node tries to attract all or at least a large 
part of network traffic, replacing the identity of the sink node, causing the other nodes to voluntarily send 
data to the node (Ioannou & Vassiliou, 2016).

Wormhole attack: In a wormhole attack, the attacker captures the packets from a specific point on the 
network (node) and forwards them to another previously selected point, making the two legitimate nodes 
involved in the attack believe that they are neighbors (Ioannou & Vassiliou, 2016).

2. Proposed Wormhole Attack Algorithm

The route record field in source routing packets contains the whole route from source to destination when 
the routing packet reaches the source of data transmission (Johnson, 2003; Zigbee Alliance, 2014). This 
feature allows the intermediary hops between source and destination nodes to introduce their network 
address into the routing packets (RREP) while the packet follows the path from destination to source. A 
route is thus created and can be used by source nodes to send data packets to the corresponding destination 
of the source route, as shown in Figure 4. When the route record field is void in received RREP packets, it 
means that both nodes source and destination are neighboring nodes.

Figure 4. Route record parameter process
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In a classic wormhole attack, the main goal is to create a false neighborhood between two remote nodes 
through a third malicious node, causing the route record field of RREP packets sent through the malicious 
links to be unmodifiable by intermediary nodes; as a result, they arrive at the destination with zero hops. 
This approach encompasses capturing packets, modifying the route record in RREP packets and injecting 
them into the source node to override its routing table with zero hop routes, which eventually builds a false 
neighborhood between source and destination nodes, as shown in Figure 5. Consequently, the route record 
parameter needs to be modified because RREP packets could come from an intermediary node.

Figure 5. False route record injection

A wormhole attack begins with an attacker introducing a malicious node into a WSN to gather critical 
information about network attributes related to node types, network ID, frequency, and operational channel. 
During this step, the target nodes are selected. Subsequently, the malicious node starts a packet capture 
process to find routing packets involving target nodes (interesting traffic). Once the interesting traffic is 
captured, the malicious node sets the hop count and relay list to zero in the route record header of the 
routing packets. In addition, source and destination MAC addresses are changed to match the network 
addressing of victim nodes, since packets from an intermediary node can be captured. 

Finally, the malicious node forwards the modified routing packet to the destination node, overriding 
its routing table with the false route and creating a false neighborhood between target nodes in the process. 
The next step is to continue capturing packets to find application data to be modified and injected into 
destination nodes. When malicious nodes are not able to capture interesting traffic, the packets are stored 
and the capture process is restarted. Figure 6 shows the workflow of the proposed algorithm.

In addition, two conditions must be satisfied to carry out a successful wormhole attack: (1) Source and 
destination addresses must match between layer 2 (802.15.4) and layer 3 (Zigbee); otherwise, the destination 
node of the RREP discards the packet, and (2) The packet sequence number has to be different from the 
original routing packet. Otherwise, the modified packet is discarded (Patel et al., 2015). The proposed attack 
works by overriding the destination node of the RREP’s routing cache by injecting a modified version of the 
original routing packet, which prevents ZigBee devices from using the original route.

2.1 Impacts of Attack

The Wormhole attack impacts the confidentiality, availability and integrity of the data in the WSN, which 
could affect part or all of the network. Some of the impacts are described below:

Impact on confidentiality: confidentiality is the characteristic of the Information that guarantees that it 
can only be accessed by authorized elements or personnel, for which any unauthorized access is considered a 
violation (International Organization for Standardization, 2013). Under the assumption that all data collection 
and routing nodes are known in the WSN, including a malicious node without the respective authorization makes 
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the confidentiality of the network and data such that the principle of confidentiality is the first to be affected, 
since unregistered nodes enter the WSN, taking advantage of the lack of monitoring and prior registration.  

Impact on availability: availability is the characteristic of the information that guarantees that the flow 
of data should not be interrupted and that the information is always available before any consultation or use 
(International Organization for Standardization, 2013). When a malicious node intercepts the information, it 
would have the possibility of blocking the origin or the destiny, since when re-doing an identity impersonation, 
it remains with the capacity to collect the information through the attack of man in the middle (MiTM) and the 
possibility to interrupt the flow of data, making the nodes and routers unavailable.

Impact on integrity: integrity is the characteristic that guarantees that information is free of modifications 
or alterations by third parties, keeping the data intact from the time it is created until its final disposal (International 
Organization for Standardization, 2013). Considering the inclusion of a malicious node in the WSN through a 
man in the middle (MiTM) attack, the attacker has the possibility to modify the original data received from the 
sensors, giving other information to the router nodes. With it, it would alter the normal flow of data. 

Another relevant impact generated by a Wormhole attack would be associated with the same sensor 
network’s credibility and stability, since it would not be possible to monitor the normal flow of data at any 
given time, creating an unreliable flow of data within the WSN. 

2.2 Attacking Software Design

The proposed algorithm was used to develop an attacking software for real devices as a tool to probe 
security levels in wireless sensor networks, since most research studies describe wormhole attacks by 
means of simulation environments. On the other hand, the purpose of the attacking software is to expose 
attributes of ZigBee devices and wormhole attacks that could be used to effectively detect the latter. This 
section presents a short description of every phase of the attack.

2.3 Software Requirements 

Scapy and KillerBee frameworks are required to dissect, capture and store packets, and also to inject 
malicious traffic into victim nodes. These features are combined in a Python script to execute the wormhole 
attack and build the malicious tunnel.

• Malicious node introduction: During this phase, an attacker sends “beacon-frame”1 requests channel 
by channel to discover routing and coordinator nodes in the network, as well as device addressing 
and network IDs using the zbstumbler  command of the KillerBee framework.

• Attacking software design: The attacking software presents the following attributes and functions.

Packet capture and network learning: it occurs when the attacker has selected victim nodes in the network. 
Then, using relevant networking data like PANID, frequency channel, and node addressing, it captures the 

1 A “beacon-frame” is a message sent by the coordinator node to synchronize the clocks with network nodes.
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packets transmitted over the air through a malicious node. The following pseudocode algorithm describes 
the packet capture phase (see Algorithm 1):

The attack begins by using the sniffer object of the KillerBee framework to capture packets with a 
ZigBee source routing header. Once a source routing packet has been captured, the next step determines 
if the packet belongs to a target device. If not, the while loop continues until KillerBee’s sniffer captures a 
source routing packet that involves victim nodes.

Interesting traffic: A packet is interesting traffic when it is originated or sent from/to an attacker-
defined victim device. In that sense, the attacker must dissect the captured packet, extract the addressing 
data and compare it with the victims’ node addressing. As shown in Algorithm 1, the compare function 
compares addresses. Since the KillerBee sniffer generates an object from the captured packet, packet 
dissection becomes a simple task. It consists of retrieving the addressing data from the packet object 
attributes (see Algorithm 2).

Algorithm 2 Interesting traffic algorithm

Ensure: coincidence
1: function compare (pkt, victim_addr)
2: src_addr<-pkt.source_address
3: dst_addr<-pkt.destination_address
4: if src_addr = victim_addr[0] then
5:  src_eval <- 1
6: else
7:  src eval <-       0
8: if dst_addr = victim_addr[1] then
9:  dst_eval <- 1
10: else
11:  dst_eval <- 0
12: coincidence <-  src_eval dst_eval
13: return coincidence

Revista Colombiana de Computación, Vol. 20, No. 1, enero-junio 2019, pp. 41-58.

Algorithm 1 Packet capture algorithm

Require: victim addr <- target_node_addressing
Require: channel <- panid_operational_channel
Require: filter <- routing_header
1: function main ( )
2: while true do
3:  pkt<-KillerBee sniffer (channel, filter)
4:  if  pkt is source_routing_packet then
5:   if compare (pkt, victim_addr)  then
6:   new_pkt <-pkt_mod (pkt, victim_addr)
7:   pkt_injection (new_pkt)
8:  else
9:   continue
10:  else
11:   continue
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The previous algorithm determines if a captured packet involves a victim’s node addressing in a data 
transaction. Once the addressing data is compared, the result can be true if both destination and source 
addresses of the captured packet and victim nodes are the same. It can also be false if one or more addressing 
data are not equal. In that case, the packet capture algorithm is executed again.

Routing packet modification: after finding an RREP packet with the right addressing, the attacking 
software changes some attributes of the routing information in the captured packet to build the malicious 
tunnel. It specifically modifies route record information related to hop count, relay list, and sequence 
number. Algorithm 3 executes the routing packet modification.

Algorithm 3 Routing packet modification 

Ensure: new packet
1: function pkt_mod(pkt, victim_addr)
2: new_packet pkt
3: new_pkt.sequence number Random(1, 255)
4: if new_pkt.hop count1 then
5:  new_pkt.hop count 0
6:  new_pkt.relay list  []
7:  new_pkt.src address = victim addr0
8:  new_pkt.dst address = victim addr[1]
9:  else if pkt.hop count = 0 then
10:  new_pkt.hop count ← 1
11:  new_pkt.relay list ← [abcd]
12: return new_pkt

Packet modification begins by rewriting the sequence_number of the captured packet with a random 
number between 1 and 255 to prevent the destination node from discarding the modified packet sent by the 
malicious node. At that point, the wormhole attack can present two scenarios: (1) victim nodes are further 
apart than one hop of distance, or (2) the victim nodes are neighbors.

The first case describes a classic wormhole attack, and the modifications of hop_count and relay_list 
are made to “eliminate” the distance between victim nodes. Such changes also make nodes “think” they 
are neighbors because of the wormhole tunnel. Because victim nodes are distant from each other, layer 
2 addressing must be altered to match layer 3 addressing. The second scenario is a “reverse” wormhole 
attack, where victim nodes are neighbors and a malicious node tries to add distance in-between. In such 
a case, packet modifications are performed by increasing the hop_count number and adding intermediary 
nodes to the relay_list.

Routing packet forwarding: after the routing packet has been modified, the next step is to send it to 
its real destination with the send method of the KillerBee framework. Additionally, a new packet capture 
process is conducted to search for application data. The latter is used to make further modifications that 
may cause unwanted behavior in the WSN’s application. Algorithm 4 shows the packet injection process.

Packet injection causes two possible effects in victim nodes because, once the modified packet is 
processed by the destination node, whether to forward the next application packets or not depends on the 
malicious node. If they are not forwarded, the attack may cause a Denial-of-Service (DoS) state.

Data packets modification and forwarding: as shown in Algorithm 4, this wormhole attack tries to 
modify application as well as routing data. In this case, the destination node of the application data would 
receive the attacker’s data. The main differences with a replication attack are that the proposed wormhole 
prevents direct communication between involved victim nodes and it works over real-time traffic.

Finally, the entire process is repeated indefinitely, injecting false routes with every modified data 
packet sent to the destination node to maintain the wormhole tunnel until the script is stopped or moved to 
another network point.
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3. Implementation and Results

In this section, the implementation of the proposed wormhole attack on a testing network takes place 
without encryption protocols applied in the packets to measure its impact on unsecured devices.

3.1 Network Requirements and Characteristics

Table 1 lists legitimate features of nodes and the parameters used to build the prototype network. The malicious 
node specifications are shown in Table 2. Atmel RZUSBSTICK with KillerBee firmware is used in conjunction 
with Raspberry Pi 3 to capture packets and inject modified data and routing packets into victim nodes.

Table 1. Legitimate node features

Type XBee S2C (XB24C)
Firmware 405E
Functions set ZIGBEE TH Reg
Medium Access Control IEEE 802.15.4
Network Layer ZigBee (Source Routing)
Frequency 2.4GHz
Router nodes 2
Coordinator nodes 1
Network ID (PANID) 10
Microcontroller Arduino UNO - ATMEGA 328p

Table 2. Malicious node features

Node type Raspberry Pi 3 Model B
Network interface ATAVRRZUSBSTICK
Firmware Killerbee
Scripting language Python 2.7.14
Frameworks Scapy - Killerbee
Operating system Raspbian

In order to execute reverse and classic wormhole attacks, two testing networks were built with a coordinator 
node and two router nodes. Figure 7 presents a reverse wormhole scenario with router nodes sharing a 
direct link, which is common between neighboring nodes. On the other hand, Figure 8 shows router nodes 
without a direct link and the coordinator node as an intermediary node (adding one hop of distance between 
router nodes) to test a classic wormhole attack.
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Algorithm 4 Packet injection algorithm

Require: filter<- application_packet_header
Require: channel<-panid_operational_channel
Require: new_data<-attacker_defined_data
1: function pkt_injection(new_pkt)
2: killerbee_send(new_pkt, channel, count <- 1
3: while true do
4:  pkt <-killerbee_sniffer(channel, filter)
5:  if compare(pkt, victim_addr) then
6:   pkt.data = new_data
7:   killerbee_send(pkt, channel, count <- 1)
8:  else
9:   continue
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Figure 7. Prototype network for reverse wormhole attack

Figure 8. Prototype network for classic wormhole attack

In a reverse wormhole attack, victim nodes are identified by network addresses 0x72DD (source of route 
record) and 0x88F8 (source of application data). In a classic wormhole attack, the source node has the 
network address 0xE99C, while the destination node has 0xF14B. At last, the coordinator node has the 
default address 0x0000 in both cases.

3.2 Wormhole Attack Execution

1) Reverse wormhole attack: The main goal is to add distance between victim nodes by modifying the hop 
count and relay list in the routing packet, thus avoiding using the direct link shared by nodes 0x72DD and 
0x88F8. The following command line output shows the execution of the wormhole attack script.

$ sudo python wormhole.py 0x72DD 0x88F8 14-e –f “reverse wormhole”
[**]Enter number of hops:1 [**]Enter comma separated hops:abcd [**]Sniffing and 
searching
for sourcerouting...
[OK]Route record found for src’0x88f8’: [OK]Sequence Number:199
[OK]Route record parameters:
source_addr:’0x72DD’ addresses:[] hop_count:0 options:0

id: route record [**]Inyecting route record to 88f8 Sent1packets.
[->]Fake route injected! [**]Sniffing for application data... Sent1packets.
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Figure 9. Original application packet payload

Figure 10. Original source routing packet for neighboring nodes

Figure 11. Modified source routing packet
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The attack starts by capturing packets until a source routing packet involving victim nodes is found. Then, 
a hop counts equal to 1 and an intermediary node (0xABCD) is injected into the relay list parameter of the 
routing packet. Finally, when the script captures an application packet, the application data is replaced with 
the sentence “reverse wormhole”. Figure 9 shows the original application frame sent by node 0x88F8. In 
this case, the original application packet has the word “TEST”. When the packet arrives at the destination 
node, an update of the source route is sent to 0x88F8 from 0x72DD, as shown in Figure 10.

Figures 10 and 11 show the difference between both routes. The first one contains the attributes of 
the original route with 0 relays as “Number of addresses”. The second one contains the false intermediary 
nodes with a relay that has the address, 0xABCD. Due to this, the malicious node is the only one that can 
listen to the next application packets sent by , which are changed by the attacker’s malicious data 
(Figure 12).

Figure 11 shows the malicious route injected into  when the reverse wormhole attack 
captures the first source’s routing packet.

Figure 12. Malicious data received at destination node

2) Classic wormhole attack: Similar to a reverse wormhole attack, this variant capture routing packets to 
create the malicious tunnel and application packets to inject malicious data. Figure 13 shows the legitimate 
and malicious routing packet received at the source node. The first route record indicator entry belongs to 
the original source of RREP and the second entry is the RREP modified by the malicious node to override 
the routing table of a victim node.

Figure 13. Received routing

Once again, a source route is updated when the source node attempts to send the word “TEST” and the 
packet is captured and modified by the wormhole attack. Figures 14 and 15 present the changes in the route 
received by the source node.
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Figure 14. False source route fields

Figure 15. Original source route fields

An evident change can be observed in the field, number of addresses (hop count), of the source routes: the 
value goes from 1 hop in the first packet to 0 hops in the second. After false route injection, the source node 
attempts to send the word “TEST” and the task of the wormhole attack script is to replace these data with 
the word “WORMHOLE”. Figure 16 shows the malicious data packet received by the destination node, and 
Figure 17 shows the content of the packet.

Figure 16. Modified application data received at destination node

Figure 17. Application data content after attack
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3.3 Signatures for Wormhole Attack Detection

General detection procedure

To detect and identify attacks, an algorithm was designed that divides the tasks of the detection method into 
several procedures in order to allow the method to be flexible and modifiable according to the network’s 
needs. Figure 18 shows a representation of the flows. In phase 1, the network interface is used for packet 
capture, then the type of packet that travels through the network is filtered and the relevant transmission 
and reception data is extracted. Phase 2 follows, in which a comparison is made with filtering rules (black 
lists and white lists) for known nodes and those that may be malicious. A validation is made of signatures 
that can identify if traffic is malicious or not and, depending on this, an alert is generated that allows the 
administrator to act quickly on the node that is threatening the WSN Security.

Figure 18: Attack detection flow

The signatures for detecting possible malicious nodes or attacks on the WSN are: 
1) Routing packet duplication: in ZigBee devices, source routes can be requested by sending the 

Network Discovery (ND) command or updated when destination nodes receive a packet. In that sense, a 
wormhole attack must inject false routes for every modified packet that is sent, forcing the sensors/devices 
to receive two source routing packets per data packet transmitted to destination nodes. The abrupt changes 
in route record fields of the routing packets and the increase in transmitted routing packets could be used to 
detect the presence of an attacker in the network.

2) Multiple “beacon-frame” requests without a joined device: the first step to attack WSN is 
launching a discovering process to identify possible targets in the network. In 802.15.4/Zigbee networks, 
“beacon-frame” requests are responded by router and coordinator nodes to have new nodes join the 
network. However, after malicious nodes send a “beacon-frame” request, no new devices join the network. 
To monitor this behavior, pairing beacon request frames with newly joined devices in the WSN would help 
detect active scans before the wormhole attack occurs.
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3) Neighborhood table and link status packets: ZigBee devices regularly send link status packets to 
maintain a first hop neighborhood table. Due to the fact that remote nodes cannot share link status packets, 
wormholes are detected by examining previous link status messages of nodes in a routing packet with a route 
record of zero hops. If previous link status messages are not found, a wormhole threat is detected. On the other 
hand, a reverse wormhole is detected by checking routing packets with route records containing more than 
one hop. If the nodes involved in the transmitted packet have shared link status messages before, a reverse 
wormhole is detected. This approach could be used with neighborhood tables instead of link status messages.

3.4 Recommendations

Due to the harmful behavior of a wormhole attack, the cryptographical features of the ZigBee specification 
should avoid modifying data and routing packets during wireless transmission. Furthermore, encryption 
keys must be regularly changed to prevent brute force attacks and reduce the functionality of possible key 
extraction from a stolen node. Additionally, the ZigBee specification must implement a better randomization 
method for the sequence number in every packet to make predicting this number difficult and prevent packet 
injection attacks, which causes packets with a wrong sequence number to be discarded by legitimate nodes.

4. Conclusions and Future Work 

Implementing a wormhole attack in real devices was successful in using the algorithm proposed to manipulate 
packets with the KillerBee framework and Scapy decoders. Besides, a new variant of the wormhole attack 
was introduced and tested to show the flexibility and risk of malicious nodes in a network. This variant 
takes advantage of the vulnerability of ZigBee devices for wormhole attacks and packet injection. On the 
other hand, the lack of effective security measures for WSNs must be explored from an empirical point of 
view to close the security gap of the IoT with the available technology. This would also enable end users 
to implement security tools for real devices. As future work, an Intrusion Detection System (IDS) for 
wormhole attacks is going to be designed and implemented using signatures and patterns presented in this 
paper as result of the wormhole attack execution on real devices. Additionally, other experimental attacks, 
such as sinkhole and Sybil, will be explored to improve the detection system.
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