
Computación y Sistemas Vol. xx No. x, xxxx pp xx
ISSN 1405-5546

Requirements for an IoT middleware with Speech recognition
interfaces

Johana A. Manrique1, Jesús M. T. Portocarrero2

1 Universidad Autónoma de Bucaramanga, Centro de Excelencia y Apropiación en Internet
de las Cosa – CEA IoT,
Bucaramanga, Colombia

2 Nuance Communications Inc
Rio de Janeiro, Brasil

jmanrique4@unab.edu.co, jesus.talavera@nuance.com

Abstract. Internet develops as a new paradigm known

as Internet of things where people and daily things are
connecting to the Internet. In the virtual world, things
need digital interfaces to facilitate communication
between human-machine. However, since IoT is a
complex paradigm, the development of these
applications becomes a challenging task.
IoT is influencing how we live, but the interaction in a
natural way between human-machine is still far from
being non-intrusive. To achieve this concern, it is
necessary to make use of basic human capabilities such
as voice, which occurs naturally but in the IoT, do not still
widely used it.
Hence, this paper proposes the basic functional and
non-functional requirements for SWITCH a middleware
with research potential for hiding the complexity in the
development of IoT applications, in terms of (i) IoT
reference architectures, (ii) middleware for IoT, and (iii)
speech recognition systems for IoT.

Keywords. Internet of Things, Middleware, Speech

Recognition.

1 Introduction

IoT focuses on connecting everyday things,
providing to people digital interfaces for making
easy human-machine interaction [1], [2]. According
to Borgia [3], IoT involves communication with
anything (between devices, applications, people),
at any time and place, through any network.

Currently, the proliferation of devices
connected to the Internet is bigger in relation to the
number of people in the world. CISCO estimated
by 2030, more than 500 billion devices would be

connected to the Internet, an average of 8 devices
per person [4].

With IoT, daily things can be equipped with
devices such as sensors, allowing them to
generate and exchange data with minimal human
intervention, transforming many aspects of how we
live: personal, social, health, logistics, industrial,
and others, knowing as applications domains [5].
Each domain has specific requirements as
required by the application. The development of an
IoT application faces a varied list of difficulties, as
known: (i) There is no standard configuration to
develop IoT applications (horizontal and vertical
approach) [6], [7], (ii) The IoT ecosystem is
composed of several heterogeneous technologies
(hardware and software) [2]. Some of these
technologies have decades of existence. Other
new techs have been created under the
requirements that IoT attends [8], and (iii)
According to Patel and Cassou [9] the
development of an IoT application involves several
stakeholders work, who guarantee a more
structured and better defined process in
accordance with all the layers of an IoT reference
architecture.

To avoid overloading costs in terms of financial,
personnel and development time resources, it is
important the implementation of platforms that
facilitate the development of IoT applications and
the administration of the generic requirements for
the different domains [3], [10], [11]. An IoT platform
defines as the middleware and infrastructure that
allows end users to interact with smart things [2].

mailto:jmanrique4@unab.edu.co
mailto:jesus.talavera@nuance.com

The development of this type of platform will be
one of the fastest growing tech market segments
in the coming years [12].

As the number of devices to connect things to
the Internet increases, the number of applications
available to handle them increases as well. Daily
things do not have interfaces for interacting with
humans in a non-intrusive way. Some applications
use digital prints for identify attributes in the net,
but a better method for natural interaction can be
the human capabilities such as voice or
movements and that is why the research of this
area continues growing up [18], [19].

Considering the relevance of IoT in several
domains, this paper proposes the basic functional
and non-functional requirements for a Smart
middleWare for Iot with speeCH recognition –
SWITCH, a middleware with research potential for
hiding the complexity in the development of IoT
applications with voice-based interfaces. The
paper as organized as follows: (i) generic
functional and non-functional requirements for IoT
middleware (Section II), (ii) Specific requirements
for SWITCH (Section III), and (iii) finally,
recommending future research directions.

2 Requirements analysis for a generic
IoT middleware

The middleware offers common services for the
agile development of applications that support the
heterogeneity between the communication and
computing devices, and the interoperability within
the diverse applications and services that are
executed in those devices [20]–[22]. For
understanding the requirements that this type of
IoT platform must address, we conducted a
literature review in three items described below.

2.1 IoT reference architectures

At the architectural level, a middleware must
provide an Application Programming Interface -
API to support the developers, programming
abstraction, interoperability, context-aware,
adaptability, self-governed, distributed services.

Fig 1 presents the categories on the IoT
reference architectures cited in the literature
review. The IoT-A project is an architecture with

more open access documentation for developers.
In addition, it is one of the most cited in the
literature. The proposal has a layered architectural
design approach, as follows. Application, virtual
entity, IoT service and device derived from the
main abstractions identified in the domain model.
The layer communication supports the large
number of devices connection. The requirements
expressed by the stakeholders regarding the
possibility of creating services and applications in
the IoT application layer are covered by IoT
process management and service organization. To
address the expressed concern about trust,
security and privacy in the IoT that supports for this
layer. Finally, the management layer is required to
manage the interaction between the functional
groups of this architecture.

In general, a RA establish a common
understanding of the IoT paradigm with a set of
components that identify its main concepts,
relationships and limitations. Also, facilitates the
development of systems for IoT. The generic
structure of the architectures is comprised in
layers/levels that start from the device (hardware)
to the application (software). Generally, they have

Fig 1. IoT Reference Architectures RA more cited in

the literature

 RA1: ITU-T reference model [13].

 RA2: Industrial Internet Reference Architecture
(IIRA) [14], [15].

 RA3: Reference Architecture Model Industry (RAMI
4.0) [16].

 RA4: Others IoT reference architecture proposed
[10].

 RA5: IoT-A Project [17] divided in IoT-A: Internet of
Things Architecture, IoT-ARM: Architecture Reference
Model and IoT-CRM: Communication Reference
Model

Computación y Sistemas Vol. xx No. x, xxxx pp xx
ISSN 1405-5546

two cross layers: security and data management,
network or devices. These can be used in the other
components of the horizontal structure of the RA
according to the specific needs of each one. They
share relevant non-functional requirements for IoT
as horizontality (support for different application
domains), heterogeneity, scalability, connectivity,
identity management, device management,
communication management and security.

2.2 Middleware for IoT

Even though the IoT concept is relatively new,
the idea of monitoring and controlling devices
through computers and networks has existed for
decades, and that is why IoT is often confused with
other technologies. Some middleware in the
literature described as IoT middleware, they were
also described as WSN middleware, a few years
ago [23].

Based on the literature review, there are
different types of middleware platform developed
for IoT categorized according to their design
approach [2], [22], [24], [25]. We describe below
the most approaches cited in the literature.

Event-based middleware is viable when an
application has mobility and common failures.
Events run from the components of the sending
application (producers) to the components of the
receiving application (consumers). An event is a
significant change of state [26], [27]. This approach
has advantages such as the use of patterns for
publication and subscription (asynchronous),
scalability, real-time processing with minimum
delay. However, some of them do not provide
interoperability, adaptability and context
awareness.

Service-oriented middleware builds software in
a service form. It is based on Service Oriented
Architecture (SOA), which provides abstractions
for the underlying hardware through a set of
services that applications need. The services can
be designed, implemented and integrated into a
framework taking into account the incorporation of
a service provider (hosting services), a consumer
of services (represents any application) and a
record of services (actions) to offer an environment
flexible and easy for the development of
applications [28], [29]. This approach has
advantages such as the discovery of services,

composition of services and reuse of services.
However, code management is not easy to
develop.

Agent-based middleware, where applications
are divided into modular programs to facilitate the
injection and distribution of the network, using
mobile agents. When migrating from one node to
another, the agents maintain their execution
status. This facilitates the design of decentralized
systems capable of tolerating partial failures [30].
This approach has advantages are resource
management (network load reduction and network
latency reduction), code management
(asynchronous and autonomous execution and
protocol encapsulation), availability, reliability
(robustness and fault tolerance) and adaptability.
However, its greatest disadvantage is the low
interoperability among resources.

Cloud-based middleware focuses on the
provision of hosting services through the Internet.
It limits users to the type and quantity of IoT
devices they can implement, but allows them to
connect, collect and interpret data, since possible
use cases can be determined and programmed a
priori [31]. In this approach, the security
management depends on the cloud service
provider.

Actor-based middleware configures
applications in a plug-and-play form. It exposes a
variety of IoT devices as reusable actors to
distribute them in the network in such a way that
each of them can perform computational
calculations. They do not have a particular
standard for communication between IoT devices,
which facilitates interoperability and scalability.
However, it has as a disadvantage the low security
of the system.

Fig 2. Generic architecture for IoT middleware

Some middleware use hybrid approach to have
a better performance than those belonging to a
single approach [22]. Taking into account all the
requirements that the different types of approaches
support, Fig 2 shows a generic architecture for IoT
middleware.

2.3 Speech recognition systems for IoT

Speech is one of the most important
communication methods that human beings have.
Currently, human-computer interaction using voice
without resorting to the implementation of
interfaces such as keyboards or pointing devices is
possible thanks to the Automatic Speech
Recognition - ASR, which represents the function
of modulating a voice signal to a series of words
(phonemes) with the help of algorithms made by a
computer program [32].

There are four types of ASR system [33], [34],
as follows: (i) Isolated word recognition requires
only one statement at a time. It is ideal for
situations when the user must give answers or
commands of a single word, but it is not natural for
the entries of several words. (ii) Connected word
recognition needs a minimum pause between word
utterances to allow effortless voice flow. Its
functionality is very similar to isolated words. (iii)
Continuous speech recognition allows users to
speak more or less naturally, while the computer
decides the content. Recognizers with continuous
speech skills are more difficult to generate since
they employ machine-learning techniques to
decide on emission limits. (iv) Spontaneous
Speech Recognition allows recognizing
spontaneous speech as that which occurs in
interviews, debates, dialogues. The ASR system
with the ability to speak spontaneously must
handle a variety of natural speech characteristics.

Fig 3 shows a generic ASR architecture system
[35], [36]. The pre-processing starts with Features
extraction. During this step, the voice signal (that
is, a set of acoustic waves) is transformed into a
sequence of pre-phonetic symbols without
linguistic meaning but containing characteristics
with eigenvalues.

Acoustic modeling compares symbols with
specific phonetic waveforms. In this step, it
represents the audio signals by discriminating the
classes of basic speech units and taking into

account the variability of speech with respect to the
speakers, channel, and environment. For this, a
training speech data is required, which focuses on
improving the model in aspects such as (i) Speech
acoustics requires the recording of several
speakers; (ii) Language requires a text corpus or
sentence grammar and; (iii) Recognition lexicon is
a list of recognizable tokens with one or more
phonetic transcriptions.

Language modeling imposes restrictions on the
recognition hypotheses generated to model the
structure, syntax, and semantics of the target
language. Statistical language models are based
on the empirical fact that a good estimate of the
probability of a lexical unit can be obtained by
observing it in amount text data.

2.4 Functional requirements for a generic IoT
middleware

Functional requirements are functionalities that
the system must provide, on how it should react to
particular inputs and how it should behave in
specific situations [37]. IoT has main requirements
to satisfy the needs of the different application
domains [22], [24], as follows.

Resource discovery: Every device must
announce its presence and the resources it offers
automatically. Discovery mechanisms also need to
scale well, and there should be efficient distribution
of discovery load, given the IoT’s composition of
resource-constrained devices.

Resource management: Facilitating potentially
spontaneous resource re-composition, to satisfy
application needs. The resource usage should be
monitored, allocated or provisioned in a fair
manner.

Data management: Providing data
management services to applications. This data is

Fig 3. ASR Architecture

Computación y Sistemas Vol. xx No. x, xxxx pp xx
ISSN 1405-5546

represented in different formats and various
models. The data process has stage as
acquisition, processing, filtering, compression,
classification, aggregation, storage.

Event management: Transforming simple
observed events into meaningful events.
Managing real-time analysis of high-velocity data
so that downstream applications are driven by
accurate, real-time information, and intelligence.

Code management is necessary when the
application requests it. However, it is not
mandatory.

2.5 Non-functional requirements for a generic
IoT middleware

Describe how the software will do its
functionalities, based on quality attributes [38]. In
this case, the quality of the software product is the
degree to which the middleware satisfies the
requirements of its users, thus contributing into
values. These requirements are establish in the
quality model of the International Organization for
Standardization 25010 [39]. This model is divided
in eight groups, as follows.

Functional suitability: A middleware provides
functions that meet explicit and implied needs
when used under specified conditions with
completeness, correctness and appropriateness
functionality.

Performance efficiency: Represents the
performance relative to the amount of resources
used under stated conditions. This performance is
related with the time behavior of the middleware.

Compatibility: A middleware can exchange
information with other products, systems or
components, and perform its required functions,
while sharing the same hardware or software
environment (interoperability).

Usability: A middleware can achieve specific
goals with effectiveness, efficiency, and
satisfaction in a specified context. This
performance is given to the user by an easy-of-
deployment feature.

Reliability: Every component or service in a
middleware needs to be reliable to achieve overall
reliability and fault tolerance, which includes
communication, data, technologies, and devices
from all layers.

Security: In IoT middleware, security needs to
be considered in all the functional and
nonfunctional blocks including the user level
application. The availability property means the
system is robust enough to be able to operate in
adverse situations.

Maintainability: Represents the degree of
effectiveness and efficiency with the middleware
can be modified to improve it, correct it or adapt it
to changes in environment, and in requirements.

Portability: Degree of effectiveness and
efficiency with the middleware can be transferred
from one hardware, software or other operational
or usage environment to another. It is necessary
that the code management address this process.

Other non-functional requirements as
scalability, context-aware, persistence, monitoring,
real time, autonomous, stream processing are not
explicitly described in the ISO. The literature
mentioned them because they are specifically for
an IoT middleware design.

3 Requirements for SWITCH

This section specifies the functional and non-
functional requirements for SWITCH. Based on the
requirements presented in section 2, we proposed
a list of functional requirements shows in Table 1.

Any stakeholder in the IoT process (Domain
expert, Software architect, Software development,
network manager, database manager, Software
administrator) can take these requirements for the
IoT middleware development considering
introduce into voice-based interfaces from design.

We considered SWITCH as service-oriented
middleware with a layer architectural style. Each
layer provides a set of services to the previous
layer and uses the services of the next layer [40].
The design addresses some non-functional
requirements, as known (i) Scalability where the
number of components increases without affecting
the upper layer. They are independent of each
other. (ii) Security, since having isolated layers,
when one of them has failures at the security level,
does not imply that the others must be committed
in the same way; (iii) Maintainability, since the fact
of making corrections of software failures (bug), or
simple maintenance tasks in one layer, does not
imply that the upper layers must be re-implanted.

Table 1. Functional requirements for SWITCH

ID Requirements

R1 The middleware should allow end users to configure
IoT applications with speech recognition system

R2 The middleware must allow the "listen" status each
time the instruction is given

R3 The middleware should provide mechanisms to
transform the voice signal into phonetic symbols

R4 The middleware should compare the phonetic
symbols with a recognition lexicon

R5 The middleware should compare the phonetic
symbols with the text corpus

R6 The middleware must transform the voice signal into
a command that is understood by the IoT
applications

R7 The middleware must categorize the entities
obtained from the transcription speech to text

R8 The middleware must transform simple events in
significant events for all the system

R9 The middleware could allow the storage of
algorithms for the features extraction of the voice
signal

R10 The middleware should allow the storage of the
voice command

R11 The middleware should allow the storage of the text
corpus

R12 The middleware should allow the storage of a
recognition lexicon

R13 The middleware should provide mechanisms to
configure an ASR platform

R14 The middleware should show the user the voice
command in text format

R15 The middleware should provide mechanisms to
analyze the network connectivity

R16 The middleware must offer network connectivity
control functions

R17 The middleware should storage of the voice
command in a text format

R18 The middleware should provide mechanisms to
configure of the an IoT application requirements

R19 The middleware must manage the mobility of the
data in the system

R20 The middleware must show the user the recognized
entities from the text categorization

R21 The middleware allows creating IoT applications

R22 The middleware should resource discovery
automatically

R23 The middleware should facilitate the display of
collected data at any time

R24 The middleware must be monitoring, resolve
conflicts and fairly assign services because all the
applications must have an acceptable quality of
service.

R25 The middleware allows collecting data from sensors

R26 The middleware should facilitate the implementation
of code for the development of IoT applications

R27 The middleware should allow the user to categorize
(training) entities

4 Conclusions

A middleware is a software tool that hides
complexity in the development of IoT applications
and helps in the communication process between
application and device layers.

SWITCH is a proposal that once implemented,
contributes to the solution of the problems
identified in the literature, as follows: (i) easy-
deployment IoT applications with voice-based
interfaces; (ii) speech recognition system for
interacting human-machine in a non-intrusive way;
(iii) provide digital interfaces to the devices

Acknowledgements

We thank all partners within the Center of
Excellence and Appropriation on the Internet of
Things (CEA-IoT), as well the Colombian Ministry
for the Information and Communication
Technologies (MinTIC), and the Colombian
Administrative Department of Science, Technology
and Innovation (Colciencias) through the project
ID: FP44842- 502-2015 from the National Trust for
Funding Science, Technology and Innovation
Francisco José de Caldas.

References

[1] L. Atzori, A. Iera, and G. Morabito, “The internet
of things: A survey,” Comput. networks, vol. 54,
no. 15, pp. 2787–2805, 2010.

[2] J. Mineraud, O. Mazhelis, X. Su, and S.
Tarkoma, “A gap analysis of Internet-of-Things
platforms,” Comput. Commun., vol. 89, pp. 5–
16, 2016.

[3] E. Borgia, “The Internet of Things vision: Key
features, applications and open issues,”
Comput. Commun., vol. 54, pp. 1–31, 2014.

[4] CISCO, “Internet of Things at a Glance,” 2016.
[5] Internet Society, “The Internet of Things (IoT):

An Overview,” Geneva, Switzerland, 2015.
[6] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M.

Aledhari, and M. Ayyash, “Internet of things: A
survey on enabling technologies, protocols, and
applications,” IEEE Commun. Surv. Tutorials,

vol. 17, no. 4, pp. 2347–2376, 2015.
[7] F. Wortmann, K. Flüchter, and others, “Internet

of things,” Bus. Inf. Syst. Eng., vol. 57, no. 3, pp.
221–224, 2015.

Computación y Sistemas Vol. xx No. x, xxxx pp xx
ISSN 1405-5546

[8] I. Lee and K. Lee, “The Internet of Things (IoT):
Applications, investments, and challenges for
enterprises,” Bus. Horiz., vol. 58, no. 4, pp. 431–
440, 2015.

[9] P. Patel and D. Cassou, “Enabling high-level
application development for the Internet of
Things,” J. Syst. Softw., vol. 103, pp. 62–84,
2015.

[10] M. R. Abdmeziem, D. Tandjaoui, and I.
Romdhani, “Architecting the internet of things:
state of the art,” in Robots and Sensor Clouds,
Springer, 2016, pp. 55–75.

[11] L. Atzori, A. Iera, and G. Morabito,
“Understanding the Internet of Things: definition,
potentials, and societal role of a fast evolving
paradigm,” Ad Hoc Networks, vol. 56, no. 1, pp.
122–140, 2017.

[12] IoT Analytics, “IoT Platforms: Market Report
2015-2021,” Hamburg, Germany, 2016.

[13] J. Höller, V. Tsiatsis, C. Mulligan, S.
Karnouskos, S. Avesand, and D. Boyle, “IoT
Architecture – State of the Art,” in From
Machine-To-Machine to the Internet of Things,

Elsevier, 2014, pp. 145–165.
[14] M. Weyrich and C. Ebert, “Reference

architectures for the internet of things,” IEEE
Softw., vol. 33, no. 1, pp. 112–116, 2016.

[15] G. Banda, K. Chaitanya, and H. Mohan, “An IoT
protocol and framework for OEMs to make IoT-
enabled devices forward compatible,” in Signal-
Image Technology & Internet-Based Systems
(SITIS), 2015 11th International Conference on,
2015, pp. 824–832.

[16] T. Usländer and U. Epple, “Reference model of
industrie 4.0 service architectures,” at-
Automatisierungstechnik, vol. 63, no. 10, pp.
858–866, 2015.

[17] IoT-A Project, “Requirements — IOT-A: Internet
of Things Architecture,” Requirements — IOT-A:
Internet of Things Architecture, 2016. .

[18] H. Sundmaeker, P. Guillemin, P. Friess, and S.
Woelfflé, Vision and challenges for realising the
Internet of Things. 2010.

[19] N. Zhong, J. Ma, R. Huang, J. Liu, Y. Yao, Y.
Zhang, and J. Chen, “Research challenges and
perspectives on Wisdom Web of Things (W2T),”
in Wisdom Web of Things, Springer, 2016, pp.
3–26.

[20] S. Hadim and N. Mohamed, “Middleware:
Middleware challenges and approaches for
wireless sensor networks,” IEEE Distrib. Syst.
online, vol. 7, no. 3, p. 1, 2006.

[21] M.-M. Wang, J.-N. Cao, J. Li, and S. K. Dasi,
“Middleware for wireless sensor networks: A
survey,” J. Comput. Sci. Technol., vol. 23, no. 3,

pp. 305–326, 2008.
[22] M. A. Razzaque, M. Milojevic-Jevric, A. Palade,

and S. Clarke, “Middleware for internet of things:
a survey,” IEEE Internet Things J., vol. 3, no. 1,
pp. 70–95, 2016.

[23] J. A. Manrique, J. S. Rueda-Rueda, and J. M. T.
Portocarrero, “Contrasting Internet of Things
and Wireless Sensor Network from a conceptual
overview,” in Internet of Things (iThings) and
IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart
Data (SmartData), 2016 IEEE International
Conference on, 2016, pp. 252–257.

[24] S. A. Chelloug and M. A. El-Zawawy,
“Middleware for Internet of Things: Survey and
Challenges,” Intell. Autom. Soft Comput., vol. 0,
no. 0, pp. 1–9, 2017.

[25] A. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and
Q. Z. Sheng, “IoT middleware: A survey on
issues and enabling technologies,” IEEE
Internet Things J., vol. 4, no. 1, pp. 1–20, 2017.

[26] R. Meier and V. Cahill, “Steam: Event-based
middleware for wireless ad hoc networks,” in
Distributed Computing Systems Workshops,
2002. Proceedings. 22nd International
Conference on, 2002, pp. 639–644.

[27] R. Sanchez-Guerrero, F. Almenárez, D. Diaz-
Sanchez, P. Arias, and A. Marin, “A model for
dimensioning a secure event-driven health care
system,” in Wireless and Mobile Networking
Conference (WMNC), 2012 5th Joint IFIP, 2012,
pp. 30–37.

[28] V. A. Immanuel and P. Raj, “Enabling context-
awareness: A service oriented architecture
implementation for a hospital use case,” in 2015
International Conference on Applied and
Theoretical Computing and Communication
Technology (iCATccT), 2015, pp. 224–228.

[29] M. P. Papazoglou, “Service-oriented computing:
Concepts, characteristics and directions,” in
Web Information Systems Engineering, 2003.
WISE 2003. Proceedings of the Fourth
International Conference on, 2003, pp. 3–12.

[30] C. Perrot, G. Finnie, and I. Morrison,
“Establishing context for software agents in
pervasive healthcare systems,” in 2012 15th
International Conference on Network-Based
Information Systems, 2012, pp. 447–452.

[31] J. Soldatos, N. Kefalakis, M. Hauswirth, M.
Serrano, J.-P. Calbimonte, M. Riahi, K. Aberer,
P. P. Jayaraman, A. Zaslavsky, I. P. Žarko, L.
Skorin-Kapov, and R. Herzog, “OpenIoT: Open
Source Internet-of-Things in the Cloud,” in
Interoperability and Open-Source Solutions for

the Internet of Things: International Workshop,
FP7 OpenIoT Project, Held in Conjunction with
SoftCOM 2014, Split, Croatia, September 18,
2014, Invited Papers, I. Podnar Žarko, K.
Pripužić, and M. Serrano, Eds. Cham: Springer
International Publishing, 2015, pp. 13–25.

[32] EY, “Internet of Things: Human machine
interactions that unlock possibilities,” United
Kingdom, 2016.

[33] L. Besacier, E. Barnard, A. Karpov, and T.
Schultz, “Automatic speech recognition for
under-resourced languages: A survey,” Speech
Commun., vol. 56, pp. 85–100, 2014.

[34] A. H. Unnibhavi and D. S. Jangamshetti, “A
survey of speech recognition on south Indian
Languages,” in Signal Processing,
Communication, Power and Embedded System
(SCOPES), 2016 International Conference on,
2016, pp. 1122–1126.

[35] H. Bouraoui, C. Jerad, A. Chattopadhyay, and
N. Ben Hadj-Alouane, “Hardware Architectures
for Embedded Speaker Recognition
Applications: A Survey,” ACM Trans. Embed.
Comput. Syst., vol. 16, no. 3, p. 78, 2017.

[36] A. V. Haridas, R. Marimuthu, and V. G.
Sivakumar, “A critical review and analysis on
techniques of speech recognition: The road
ahead,” Int. J. Knowledge-based Intell. Eng.
Syst., vol. 22, no. 1, pp. 39–57, 2018.

[37] I. Sommerville, Ingeniería del Software.
PEARSON, 2011.

[38] K. Adams, Non-functional Requirements in
Systems Analysis and Design. Springer, 2015.

[39] International Organization for Standardization -
ISO, Software product quality, vol. 1. 2011, p.

34.
[40] M. Richards, Software architecture patterns.

O’Reilly Media, Incorporated, 2015.

Article received on 5/11/2018; accepted xx/xx/xxxx.
Corresponding author is jmanrique4@unab.edu.co

